Generative and Discriminative Models in Statistical Parsing

Michael Collins

MIT

December 11, 2009

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Canadian Utilities had 1988 revenue of C\$ 1.16 billion, mainly from its natural gas and electric utility businesses in Alberta, where the company serves about 800,000 customers.

- Generative and discriminative models for parsing:
 - SPATTER
 - 5 lexicalized models
- Two hybrid generative/discriminative models

Discriminative Model 1: SPATTER

(Magerman 1995; Jelinek et al 1994)

► Input sentence = x, parse tree y represented as a sequence of decisions, d₁d₂...d_n.

$$P(y|x) = \prod_{i=1}^{n} P(d_i|d_1 \dots d_{i-1}, x)$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

 $P(d_i|d_1 \dots d_{i-1}, x)$ estimated using decision trees

$$P(y|x) = \prod_{i=1}^{n} P(d_i|d_1 \dots d_{i-1}, x)$$

If you think the label-bias problem is bad for MEMMs, you should try parsing...

・ロン ・聞 と ・ ヨ と ・ ヨ と

E 900

Discriminative Model 2: Lexical Dependencies (C, 1996)

The "probability" for this parse tree:

 $P(S-VP-NP|Mary saw Bill) \times P(VP-V-NP|Mary saw Bill) \times P(ROOT|Mary saw Bill)$

Model	F-measure	
D1: SPATTER	84.1	
D2	85.5	
G1	87.8	
G2	89.6	
D4	91.1	

• D1:
$$P(y|x) = \prod_{i=1}^{n} P(d_i|d_1 \dots d_{i-1}, x)$$

- ► D2: *P*(S-VP-NP|Mary saw Bill)
- D2 gives some improvements, and is considerably simpler, but it's pretty suspect as a probabilistic model

Generative Models 1, 2: Markov Grammars

(C, 1997; Charniak, 1997/1999)

A parse tree is represented as a set of spines and adjunctions:

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

P(S-VP-v-eats|ROOT)

- Each spine has a separate left/right weighted finite-state automaton (HMM) at each level of the tree (in this case S, VP)
- The automata generate sequences of modifier spines at each level of the tree

P(NP-cake|VP-v-eats, RIGHT, ADJACENT)

- Each spine has a separate left/right weighted finite-state automaton (HMM) at each level of the tree (in this case S, VP)
- The automata generate sequences of modifier spines at each level of the tree

P(PP-on|VP-v-eats, RIGHT, !ADJACENT)

- Each spine has a separate left/right weighted finite-state automaton (HMM) at each level of the tree (in this case S, VP)
- The automata generate sequences of modifier spines at each level of the tree

P(STOP|VP-v-eats, RIGHT, !ADJACENT)

- Each spine has a separate left/right weighted finite-state automaton (HMM) at each level of the tree (in this case S, VP)
- The automata generate sequences of modifier spines at each level of the tree

- Each spine has a separate left/right weighted finite-state automaton (HMM) at each level of the tree (in this case S, VP)
- The automata generate sequences of modifier spines at each level of the tree

- Each spine has a separate left/right weighted finite-state automaton (HMM) at each level of the tree (in this case S, VP)
- The automata generate sequences of modifier spines at each level of the tree

- Each spine has a separate left/right weighted finite-state automaton (HMM) at each level of the tree (in this case S, VP)
- The automata generate sequences of modifier spines at each level of the tree

- Each spine has a separate left/right weighted finite-state automaton (HMM) at each level of the tree (in this case S, VP)
- The automata generate sequences of modifier spines at each level of the tree

(日)

Model	F-measure
D1: SPATTER	84.1
D2	85.5
G1	87.8
G2	89.6
D4	91.1

- D2: P(S-VP-NP|Mary saw Bill)
- ► G1/G2: *P*(NP-cake|VP-v-eats, RIGHT, ADJACENT, ...)
- Markov grammars are coherent probabilistic models, and give improvements, but there are many details...

Discriminative Model 3: (McDonald et al, 2005)

A discriminative model for dependency parsing:

$$\mathbf{y}^* = \arg \max_{\mathbf{y}} \sum_{r \in \mathbf{y}} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, r)$$

where each *r* is a tuple $\langle h, m \rangle$ representing a dependency from modifier *m* to head *h*

- f(x, r) is a feature vector associated with dependency r, w is a parameter vector (trained using MIRA, averaged perceptron, etc.)
- A simple, direct model, allows easy incorporation of features. Very easy to replicate

Discriminative Model 4: a TAG-Based Model (Carreras, C, and Koo, 2008)

A parse tree is represented as a set of *spines* and *adjunctions*:

・ロット (雪) (日) (日)

(Carreras, C, and Koo, 2008)

- x is the sentence
- ▶ h = 3 (index of head word), m = 5 (index of modifier word)
- σ_h and σ_m are the head and modifier spines
- POS is the position being adjoined into (e.g., VP)

(Carreras, C, and Koo, 2008)

- x is the sentence
- ▶ h = 3 (index of head word), m = 5 (index of modifier word)
- σ_h and σ_m are the head and modifier spines
- POS is the position being adjoined into (e.g., VP)

(Carreras, C, and Koo, 2008)

- x is the sentence
- ▶ h = 3 (index of head word), m = 5 (index of modifier word)
- σ_h and σ_m are the head and modifier spines
- POS is the position being adjoined into (e.g., VP)

(Carreras, C, and Koo, 2008)

- x is the sentence
- ▶ h = 3 (index of head word), m = 5 (index of modifier word)
- σ_h and σ_m are the head and modifier spines
- POS is the position being adjoined into (e.g., VP)

(Carreras, C, and Koo, 2008)

- x is the sentence
- ▶ h = 3 (index of head word), m = 5 (index of modifier word)
- σ_h and σ_m are the head and modifier spines
- POS is the position being adjoined into (e.g., VP)

(Carreras, C, and Koo, 2008)

- x is the sentence
- h = 3 (index of head word), m = 5 (index of modifier word)
- σ_h and σ_m are the head and modifier spines
- ► POS is the position being adjoined into (e.g., VP)

(Carreras, C, and Koo, 2008)

- x is the sentence
- h = 3 (index of head word), m = 5 (index of modifier word)
- σ_h and σ_m are the head and modifier spines
- ► POS is the position being adjoined into (e.g., VP)

(Carreras, C, and Koo, 2008)

Trigram dependency features:

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Discriminative Model 4: a TAG-Based Model (Carreras, C, and Koo, 2008)

More trigram dependency features:

・ロット (雪) (日) (日)

3

Results

Model	F-measure	
D1: SPATTER	84.1	
D2	85.5	
G1	87.8	
G2	89.6	
D4	91.1	

▶ D1:

$$y^* = \arg\max_{y} \sum_{i=1}^n \log P(d_i | d_1 \dots d_{i-1}, x)$$

► D4:

$$y^* = \arg\max_{y} \sum_{r \in y} \mathbf{w} \cdot \mathbf{f}(x, r)$$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

"Hybrid" Discriminative/Generative Model 1: Word Clusters (Коо, С, Carreras, 2008)

$$\mathbf{y}^* = \arg \max_{\mathbf{y}} \sum_{(h,m) \in \mathbf{y}} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, h, m)$$

- Feature vectors f(x, h, m) depend heavily on lexical items, which are sparse
- A semi-supervised method: use unlabeled data to induce hierarchichal word clusters, then use these within features

Dependency accuracy for a 2nd order parser:

Training	Baseline	Clusters	Improvement
size			
1k	81.95	85.33	3.38
2k	85.02	87.54	2.52
4k	87.88	89.67	1.79
8k	89.71	91.37	1.66
16k	91.14	92.22	1.08
32k	92.09	93.21	1.12
All	92.42	93.30	0.88

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

"Hybrid" Discriminative/Generative Model 2 (Suzuki et al, 2009)

Step 1 Train a CRF-style dependency model on the labeled examples

$$y^* = \arg \max_{y} \sum_{r \in y} \mathbf{w} \cdot \mathbf{f}(x, r)$$

Step 2 Use the model from step 1 to produce parse trees on unlabeled data, and estimate generative models

$$P(y, x; \theta_i)$$
 for $i = 1 \dots k$

(typically $k \approx 100$)

Step 3 Add new features $\log P(y, x; \theta_i)$ for $i = 1 \dots k$ to the supervised model, and retrain

- The k generative models are derived directly from the original feature vectors f(x, r)!
- First partition the feature vector into k sets of disjoint features (typically by feature type)
- Next, define a naive-bayes model for each partition

(日) (日) (日) (日) (日) (日) (日) (日)

Results

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Final Thoughts

- Advantages of generative models:
 - Very fast to train
 - Very useful in semi-supervised approaches
 - Invaluable as language models in speech recognition, machine translation
 - Better than discriminative models with small amounts of training data? (I'm skeptical about this...)
- Advantages of discriminative models:
 - Very easy to incorporate new features (including features induced from unlabeled data)
 - Easy to implement and replicate (no issues of smoothing, independence assumptions etc. — all you need is the feature definitions)