
Generative and Discriminative Models in
Statistical Parsing

Michael Collins

MIT

December 11, 2009

Parsing

Canadian Utilities had 1988 revenue of C$ 1.16 billion,
mainly from its natural gas and electric utility businesses in
Alberta, where the company serves about 800,000
customers.

⇓

Canadian

NNP

Utilities

NNPS

NP

had

VBD

1988

CD

revenue

NN

NP

of

IN

C$

$

1.16

CD

billion

CD

,

PUNC,

QP

NP

PP

NP

mainly

RB

ADVP

from

IN

its

PRP$

natural

JJ

gas

NN

and

CC

electric

JJ

utility

NN

businesses

NNS

NP

in

IN

Alberta

NNP

,

PUNC,

NP

where

WRB

WHADVP

the

DT

company

NN

NP

serves

VBZ

about

RB

800,000

CD

QP

customers

NNS

.

PUNC.

NP

VP

S

SBAR

NP

PP

NP

PP

VP

S

TOP

Outline

◮ Generative and discriminative models for parsing:
◮ SPATTER
◮ 5 lexicalized models

◮ Two hybrid generative/discriminative models

Discriminative Model 1: SPATTER
(Magerman 1995; Jelinek et al 1994)

◮ Input sentence = x, parse tree y represented as a
sequence of decisions, d1d2 . . . dn.

P(y|x) =

n∏

i=1

P(di|d1 . . . di−1, x)

P(di|d1 . . . di−1, x) estimated using decision trees

The Label-Bias Problem

P(y|x) =
n∏

i=1

P(di|d1 . . . di−1, x)

◮ If you think the label-bias problem is bad for MEMMs, you
should try parsing...

NP

N

bill

VP

VB

likes

NP

N

mary

CC

and

N

jane

V

likes

N

bill

Discriminative Model 2: Lexical Dependencies (C, 1996)

S(saw)

NP(Mary)

Mary

VP(saw)

saw NP(Bill)

Bill

⇒ Head Modifier Label
saw Mary S-VP-NP
saw Bill VP-V-NP
** saw ROOT

◮ The “probability” for this parse tree:

P(S-VP-NP|Mary saw Bill) × P(VP-V-NP|Mary saw Bill)

×P(ROOT|Mary saw Bill)

Results

Model F-measure
D1: SPATTER 84.1

D2 85.5
G1 87.8
G2 89.6
D4 91.1

◮ D1: P(y|x) =
∏n

i=1 P(di|d1 . . . di−1, x)

◮ D2: P(S-VP-NP|Mary saw Bill)

◮ D2 gives some improvements, and is considerably
simpler, but it’s pretty suspect as a probabilistic model

Generative Models 1, 2: Markov Grammars
(C, 1997; Charniak, 1997/1999)

A parse tree is represented as a set of spines and adjunctions:

S

NP

n

Mary

VP

v

eats

NP

d

the

n

cake

PP

p

with

NP

n

almonds

v

VP

S

n

NP

eatsMary d

the

n

NP

cake p

PP

with n

NP

almonds

Markov Grammars (continued)
S

VP

v

eats

P(S-VP-v-eats|ROOT)

◮ Each spine has a separate left/right weighted finite-state
automaton (HMM) at each level of the tree (in this case S, VP)

◮ The automata generate sequences of modifier spines at each
level of the tree

Markov Grammars (continued)
S

VP

v

eats

NP

cake

P(NP-cake|VP-v-eats, RIGHT, ADJACENT)

◮ Each spine has a separate left/right weighted finite-state
automaton (HMM) at each level of the tree (in this case S, VP)

◮ The automata generate sequences of modifier spines at each
level of the tree

Markov Grammars (continued)
S

VP

v

eats

NP

cake

PP

on

P(PP-on|VP-v-eats, RIGHT, !ADJACENT)

◮ Each spine has a separate left/right weighted finite-state
automaton (HMM) at each level of the tree (in this case S, VP)

◮ The automata generate sequences of modifier spines at each
level of the tree

Markov Grammars (continued)
S

VP

v

eats

NP

cake

PP

on

STOP

P(STOP|VP-v-eats, RIGHT, !ADJACENT)

◮ Each spine has a separate left/right weighted finite-state
automaton (HMM) at each level of the tree (in this case S, VP)

◮ The automata generate sequences of modifier spines at each
level of the tree

Markov Grammars (continued)

S

VP

STOP v

eats

NP

cake

PP

on

STOP

◮ Each spine has a separate left/right weighted finite-state
automaton (HMM) at each level of the tree (in this case S, VP)

◮ The automata generate sequences of modifier spines at each
level of the tree

Markov Grammars (continued)

S

VP

STOP v

eats

NP

cake

PP

on

STOP

STOP

◮ Each spine has a separate left/right weighted finite-state
automaton (HMM) at each level of the tree (in this case S, VP)

◮ The automata generate sequences of modifier spines at each
level of the tree

Markov Grammars (continued)
S

NP

Mary

VP

STOP v

eats

NP

cake

PP

on

STOP

STOP

◮ Each spine has a separate left/right weighted finite-state
automaton (HMM) at each level of the tree (in this case S, VP)

◮ The automata generate sequences of modifier spines at each
level of the tree

Markov Grammars (continued)
S

STOP NP

Mary

VP

STOP v

eats

NP

cake

PP

on

STOP

STOP

◮ Each spine has a separate left/right weighted finite-state
automaton (HMM) at each level of the tree (in this case S, VP)

◮ The automata generate sequences of modifier spines at each
level of the tree

Results

Model F-measure
D1: SPATTER 84.1

D2 85.5
G1 87.8
G2 89.6
D4 91.1

◮ D2: P(S-VP-NP|Mary saw Bill)

◮ G1/G2: P(NP-cake|VP-v-eats, RIGHT, ADJACENT, . . .)

◮ Markov grammars are coherent probabilistic models, and
give improvements, but there are many details...

Discriminative Model 3: (McDonald et al, 2005)

liked today* John saw a movie that he

◮ A discriminative model for dependency parsing:

y∗ = arg max
y

∑

r∈y

w · f(x, r)

where each r is a tuple 〈h, m〉 representing a dependency
from modifier m to head h

◮ f(x, r) is a feature vector associated with dependency r, w
is a parameter vector (trained using MIRA, averaged
perceptron, etc.)

◮ A simple, direct model, allows easy incorporation of
features. Very easy to replicate

Discriminative Model 4: a TAG-Based Model
(Carreras, C, and Koo, 2008)

A parse tree is represented as a set of spines and adjunctions:

S

NP

n

Mary

VP

v

eats

NP

d

the

n

cake

PP

p

with

NP

n

almonds

v

VP

S

n

NP

eatsMary d

the

n

NP

cake p

PP

with n

NP

almonds

Discriminative Model 4: a TAG-Based Model
(Carreras, C, and Koo, 2008)

v

VP

S

n

NP

withboys eat a cakethe a

◮ Feature vectors f(x, h, m, σh, σm, POS) where
◮ x is the sentence
◮ h = 3 (index of head word), m = 5 (index of modifier word)
◮ σh and σm are the head and modifier spines
◮ POS is the position being adjoined into (e.g., VP)

Discriminative Model 4: a TAG-Based Model
(Carreras, C, and Koo, 2008)

v

VP

S

n

NP

withboys eat a cakethe acakeeat

◮ Feature vectors f(x, h, m, σh, σm, POS) where
◮ x is the sentence
◮ h = 3 (index of head word), m = 5 (index of modifier word)
◮ σh and σm are the head and modifier spines
◮ POS is the position being adjoined into (e.g., VP)

Discriminative Model 4: a TAG-Based Model
(Carreras, C, and Koo, 2008)

v

VP

S

n

NP

withboys eat a cakethe acakeeatboys with

◮ Feature vectors f(x, h, m, σh, σm, POS) where
◮ x is the sentence
◮ h = 3 (index of head word), m = 5 (index of modifier word)
◮ σh and σm are the head and modifier spines
◮ POS is the position being adjoined into (e.g., VP)

Discriminative Model 4: a TAG-Based Model
(Carreras, C, and Koo, 2008)

v

VP

S

n

NP

withboys eat a cakethe a

v n

◮ Feature vectors f(x, h, m, σh, σm, POS) where
◮ x is the sentence
◮ h = 3 (index of head word), m = 5 (index of modifier word)
◮ σh and σm are the head and modifier spines
◮ POS is the position being adjoined into (e.g., VP)

Discriminative Model 4: a TAG-Based Model
(Carreras, C, and Koo, 2008)

v

VP

S

n

NP

withboys eat a cakethe acakeeat

v n

◮ Feature vectors f(x, h, m, σh, σm, POS) where
◮ x is the sentence
◮ h = 3 (index of head word), m = 5 (index of modifier word)
◮ σh and σm are the head and modifier spines
◮ POS is the position being adjoined into (e.g., VP)

Discriminative Model 4: a TAG-Based Model
(Carreras, C, and Koo, 2008)

v

VP

S

n

NP

withboys eat a cakethe a

NPVP

v

◮ Feature vectors f(x, h, m, σh, σm, POS) where
◮ x is the sentence
◮ h = 3 (index of head word), m = 5 (index of modifier word)
◮ σh and σm are the head and modifier spines
◮ POS is the position being adjoined into (e.g., VP)

Discriminative Model 4: a TAG-Based Model
(Carreras, C, and Koo, 2008)

v

VP

S

n

NP

withboys eat a cakethe acakeeat

NPVP

v

◮ Feature vectors f(x, h, m, σh, σm, POS) where
◮ x is the sentence
◮ h = 3 (index of head word), m = 5 (index of modifier word)
◮ σh and σm are the head and modifier spines
◮ POS is the position being adjoined into (e.g., VP)

Discriminative Model 4: a TAG-Based Model
(Carreras, C, and Koo, 2008)

Trigram dependency features:

v

VP

S

p

PP

boys

cake forkaa

eat withn

NP

Discriminative Model 4: a TAG-Based Model
(Carreras, C, and Koo, 2008)

More trigram dependency features:

v

VP

S

p

PP

boys

cake forkaa

eat with n

NP

Results

Model F-measure
D1: SPATTER 84.1

D2 85.5
G1 87.8
G2 89.6
D4 91.1

◮ D1:

y∗ = arg max
y

n∑

i=1

log P(di|d1 . . . di−1, x)

◮ D4:
y∗ = arg max

y

∑

r∈y

w · f(x, r)

“Hybrid” Discriminative/Generative Model 1:
Word Clusters (Koo, C, Carreras, 2008)

liked today* John saw a movie that he

y∗ = arg max
y

∑

(h,m)∈y

w · f(x, h, m)

◮ Feature vectors f(x, h, m) depend heavily on lexical items,
which are sparse

◮ A semi-supervised method: use unlabeled data to induce
hierarchichal word clusters, then use these within features

Results

Dependency accuracy for a 2nd order parser:

Training Baseline Clusters Improvement
size
1k 81.95 85.33 3.38
2k 85.02 87.54 2.52
4k 87.88 89.67 1.79
8k 89.71 91.37 1.66
16k 91.14 92.22 1.08
32k 92.09 93.21 1.12
All 92.42 93.30 0.88

“Hybrid” Discriminative/Generative Model 2
(Suzuki et al, 2009)

Step 1 Train a CRF-style dependency model on the labeled
examples

y∗ = arg max
y

∑

r∈y

w · f(x, r)

Step 2 Use the model from step 1 to produce parse trees on
unlabeled data, and estimate generative models

P(y, x; θi) for i = 1 . . . k

(typically k ≈ 100)

Step 3 Add new features log P(y, x; θi) for i = 1 . . . k to the
supervised model, and retrain

The Generative Models

◮ The k generative models are derived directly from the
original feature vectors f(x, r)!

◮ First partition the feature vector into k sets of disjoint
features (typically by feature type)

◮ Next, define a naive-bayes model for each partition

Results

Final Thoughts

◮ Advantages of generative models:
◮ Very fast to train
◮ Very useful in semi-supervised approaches
◮ Invaluable as language models in speech recognition,

machine translation
◮ Better than discriminative models with small amounts of

training data? (I’m skeptical about this...)

◮ Advantages of discriminative models:
◮ Very easy to incorporate new features (including features

induced from unlabeled data)
◮ Easy to implement and replicate (no issues of smoothing,

independence assumptions etc. — all you need is the
feature definitions)

