
Type Coercion in Watson
Leveraging Community-built Knowledge

Aditya Kalyanpur, Bill Murdock,

James Fan, Chris Welty

IBM Research

Who is Watson?

 Given
– Rich Natural Language Questions

– Over a Broad Domain of Knowledge

 Deliver
– Precise Answers: Determine what is being asked & give precise response

– Fast Response Time: Results in few seconds

– Accurate Confidences: Determine likelihood answer is correct

– Consumable Justifications: Explain why the answer is right

 Automatic Open-Domain Question Answering System

Webby “Person of the Year” 2011

(www.webbyawards.com)

http://www.webbyawards.com

The Jeopardy! Challenge
A compelling and notable way to drive and measure the technology of

automatic Question Answering along 5 Key Dimensions

Broad/Open
Domain

Complex
Language

High Precision

Accurate
Confidence

High
Speed

$600
A map of Europe on this
country's 1997 1,000-lire
coin had such errors as

depicting Denmark as part
of Germany

$400
Break down "Germany" &
get this Sally whom Harry

met on film

$1000
You don't have to pull
the feathers off this

"chilly" pink sparkling
wine originally from

Germany

 It's basically a big kettle with a close-fitting lid, used to cook pot
roasts & stews
 Category: EUROPEAN NATIONALITIES
 Answer:

 Unlucky things happen at Camp Crystal Lake in this 1980

scarefest
 Category: MOVIE CALENDAR
 Answer:

 Wanted for general evil-ness; last seen at the Tower of Barad-

Dur; it's a giant eye, folks. Kinda hard to miss
 Category: LITERARY CHARACTER APB
 Answer:

The type of thing being
asked for is often

indicated but can go
from specific to very

vague

Dutch Oven

Friday the 13th

Sauron
4

Typing in Jeopardy!

Closed Domain Type Checking

• Used in Traditional QA Systems
Based on “Type And Generate” Principle

• Focus on a pre-determined set of interesting types
People, Places, Organizations, Dates

• For these types, run Named Entity Recognizers (NER) over text corpus
People: {“Einstein”, “Sir I. Newton”..}
Places: {“Germany”, “UK”..}
Dates: {“1885”, “3rd April 1715”..}

• At run-time, given a question, detect lexical answer type (LAT) and:
Generate candidates from pre-compiled list of LAT instances

 Limitations

• Highly brittle – QA system breaks down if type not recognized
• Limited Coverage – need to enumerate all relevant types beforehand
• Dependent on quality of NERs used

• Generate candidates without considering answer type (LAT)

Open Domain Type Coercion (TyCor)

• Approach taken in DeepQA

 • Based on “Generate-and-Type” Principle

• Later check whether candidate can be coerced into
LAT • Use a suite of Type-Coercion Algorithms

• Use machine-learning to combine information from TyCors

•Advantages
• More flexible as QA system does not break down if type is

not detected or meaningful
• Much wider type coverage possible using a variety of
sources and analytics for TyCor

Wilhelm Tempel

HMS Paramour

Isaac Newton

Halley’s Comet

Pink Panther

Christiaan Huygens

Peter Sellers

Edmond Halley

…

Candidate Answer Generation

[0.58 0.1 -1.3 … 0.97]

[0.71 0.9 13.4 … 0.72]

[0.12 0.0 2.0 … 0.40]

[0.84 0.8 10.6 … 0.21]

[0.33 0.0 6.3 … 0.83]

[0.21 0.9 11.1 … 0.92]

[0.91 0.0 -8.2 … 0.61]

[0.91 0.0 -1.7 … 0.60]

Evidence
Scoring

How TyCor Fits in DeepQA
IN 1698, THIS COMET
DISCOVERER TOOK A

SHIP CALLED THE
PARAMOUR PINK ON
THE FIRST PURELY

SCIENTIFIC SEA VOYAGE

Related Content
(Structured & Unstructured)

Primary
Search

1) Edmond Halley (0.85)
2) Christiaan Huygens (0.20)
3) Peter Sellers (0.05)

Merging &
Ranking

Evidence
Retrieval

Question
Analysis

Keywords: 1698, comet,
 paramour, pink, …
AnswerType(comet discoverer)
Date(1698)
Took(discoverer, ship)
Called(ship, Paramour Pink)
…

“JFK”

(Cand)

 Problem: Compute type match for candidate w.r.t. LAT
–Both candidate and LAT expressed as Strings

– 4 Steps:
1.EDM: Entity Disambiguation and Matching
2.TR: Type Retrieval
3.PDM: Predicate Disambiguation and Matching
4.TA: Type Alignment

TyCor Framework

EDM: Candidate 
Instance

Wikipedia:John_F_Kennedy_International (0.7)

TR: Instance  Type

PDM: LAT  Type

TA: Compare LAT-type and
Instance-type

“facility”

 (LAT)

Yago:Airport (1.0)

Airport is-a
Facility (1.0)

TyCor

Match!
(0.63)

WN:Facility (0.9)

Helps infer:

• “Ramadan” is a “month”
• “Interpreter” is a “job”
• “Castling” is a “maneuver”
• “Sauron” is an “eye”

EDM

Issue 1: Synonymy
Many different ways to
refer to the same entity
(spellings, aliases,
nicknames, abbreviations)

Issue 2: Polysemy
Sense Disambiguation
depends on context

Fundamental Task in NLP: Map
entity string to meaningful reference

Flight took off
from JFK…

JFK was
assassinated…

Film critics loved
JFK…

“Lincoln”

“Abe Lincoln”

“President

Lincoln”

Using Community-built Knowledge in EDM

For Matching
• Wikipedia redirects (Myanmar ->> Burma)

• Synonyms / aliases extracted from WP Intro
– “IBM’s distinctive culture and product branding has

 given it the nickname Big Blue”

• DBPedia “name” labels (firstName, lastName etc…~100 props)

For Disambiguation
• Wikipedia Disambiguation Pages (wide coverage)

-~150K disambiguation pages in 2008
- E.g. “Java” has >20 Distinct Types

• Measure similarity b/w sense text and entity context (using BOW, LSA etc)

Results
• Evaluation on Wikipedia: Precision: 75%, Recall: 95% (state-of-the-art)

Output: Ranked list of entity resources (Wikipedia URIs)
• Ranking based on: Source, Popularity, Similarity

• Obtain Types for Instances
• Sample Taxonomies Used In DeepQA:

– WordNet
– Wikipedia Lists
– Wikipedia Categories
– Yago Ontology (from DBpedia)
– Auto-Mined Types from Text (Wikipedia Intro)

Type Retrieval (TR)

RECALL PRECISION

• Interesting Points
– Type Systems are linked

• Yago  WordNet

– Wiki-Categories and Lists contain extra information (modifiers)

• Einstein : German-Inventor, Swiss-Vegetarian, Patent-Examiner

• List of “German Cities”

– Automatically Mined Types reflect real world usage
• Fluid -is-a- Liquid (strictly speaking incorrect)

Community-

built

• Predicate (LAT) Disambiguation and Matching
– LAT: star

• Similar in principle to EDM

– EDM – map named entity  instance
– PDM – map generic noun  class/type

PDM

In the northern hemisphere, latitude is
equal to the angle above the horizon of
this star, Alpha Ursae Minoris

This star of "The Practice" played Clint
Eastwood's Secret Service partner in
the film "In the Line of Fire"

• LATTE in DeepQA:
– Map LAT to WordNet Concept(s): Order based on sense ranks

– Pull in LAT Types that are statistically related in DBpedia

–“Brand”  “Product” (0.83)

• Type Matching Problem
– Compare candidate types with LAT types

– Produce a score depending degree of Match

• Various Types of Match Considered

Type Alignment

LAT-Type:

Candidate-Type:
 Airport

LAT-Type:
Air Field

Subclass Match (1.0)

Sibling Match (0.5)

Candidate-Type:
 Aerodrome

Deep LCA Match (0.25)

LAT-Type: TrainStation

Disjoint Types (-1.0)

Airfield

Facility

Putting it all together

• TyCor Score = EDM * TR * PDM * TA

• An-TyCor
- When TA score is -1 (Disjoint Types)  AnTyCor Feature added to model

- Strong negative signal against candidate

- Helps rules out candidates of wrong type (e.g. LAT: Country, Candidate: Einstein)

• Multiple LATs
- When multiple LATs in question with confidences: (L1, L2..Ln)

- Final TyCor Score (weighted-sum) = (L1 * Tyc1) + (L2 * Tyc2) + .. (Ln * Tycn)

• Intermediate Failure
- If any step fails, Tycor Score = 0 (consider smoothing)

- Expose which step failed to final model (EDM-Failure, PDM-Failure…)

• TyCor Algorithm Suite in DeepQA
-14 TyCors Developed (3 that use Wikipedia and DBpedia)

- All TyCors follow 4 key steps

- Each TyCor score is a separate feature in model

- Model learns weights on diff. TyCors: balances/combines type information

Evaluating TyCors on Ground Truth

0 10 20 30 40 50 60 70 80

DBP / YAGO

WP Categories

WP List

Precision

Recall

Benchmark creation:
• Annotated Top 10 Candidates for 1615 Jeopardy! Questions

- Judgement: Does candidate match LAT – Y/N?

• Total <LAT, Candidate> Pairs for Testing: 25,991 (due to multiple LATs)

Evaluating TyCors on end-to-end QA
• Two Watson Configurations:

1. Watson-LITE: Cand. Gen + Merging + Ranking (NO Answer Scoring)

2. Watson-FULL: LITE + All Answer Scoring

50,1

65,6

53,8

67,4

54,7

67,1

54,4

68,6

56,5

69

30

35

40

45

50

55

60

65

70

75

Watson-LITE Watson-FULL

No TyCor

Only WP List

Only WP Categories

Only DBP / YAGO

All 3

• All gains over “No TyCor” are

statistically significant

• Combining all 3 TyCors better than

any one (Net gain: 5-6%)

Overall TyCor Impact
(Experiment done in Nov 2011)

Winner’s Cloud

Summary

• TyCor Framework provides flexible, robust answer typing

• Core Idea: Treat type-match as just another answer scoring feature

• Conceptual Separation of Steps: EDM, Type Retrieval, PDM, Type Alignment

• Each step produces score reflecting uncertainty of mapping

• Scores are features in ML model (with special features for failures)

• Community-built Knowledge useful in TyCor

• Scrape information from Wikipedia

• Lists, Categories, Redirects, Anchor-Links, Intro-text

• Map to DBPedia

• Utilize Alternate names, Type Information, Links to YAGO / WN

• Extend YAGO with Disjoints

• TyCor has significant impact in open-domain QA

• …and Watson won the Jeopardy! challenge

• Beyond Jeopardy!: Watson MD

• Leverage UML-S and other Medical Ontologies in TyCor

THEORY

IMPLEMENTATION

APPLICATION

BACKUP

Toronto vs. Chicago

Its largest airport is named for

a World War II hero; its

second largest, for a World

War II battle

Low because
of weak evidence in

content

Low because
being a US City is not a strong
requirement simply based on

Jeopardy! category

Overall confidence
was below threshold for

both answers

US CITIES

21

Lexical Answer Type (LAT) Distribution

0,00%

0,50%

1,00%

1,50%

2,00%

2,50%

3,00%

h
e

fi
lm

g

ro
u
p

c
a

p
it
a

l
w

o
m

a
n

s
o

n
g

s
in

g
e

r
s
h

o
w

c
o

m
p

o
s
e

r
ti
tl
e

fr

u
it

p
la

n
e

t
th

e
re

p

e
rs

o
n

la
n
g

u
a
g

e

h
o
lid

a
y

c
o

lo
r

p
la

c
e

s
o

n

tr
e

e

lin
e

p
ro

d
u

c
t

b
ir
d

s

a
n
im

a
ls

s
it
e

la
d
y

p
ro

v
in

c
e

d
o
g

s
u

b
s
ta

n
c
e

in

s
e
c
t

w
a
y

fo
u
n

d
e

r
s
e

n
a

to
r

fo
rm

d

is
e

a
s
e

s
o

m
e

o
n

e

m
a

k
e

r
fa

th
e

r
w

o
rd

s

o
b
je

c
t

w
ri
te

r
n

o
v
e

lis
t

h
e
ro

in
e

d
is

h

p
o
s
t

m
o

n
th

v
e

g
e

ta
b

le

s
ig

n

c
o
u
n
tr

ie
s

h
a
t

b
a
y

Our Focus is on reusable NLP technology for analyzing vast volumes of as-is text.
Structured sources (DBs and KBs) provide background knowledge for interpreting the text.

We do NOT attempt to anticipate all

questions and build databases.

In a random sample of 20,000 questions we found
2,500 distinct types*. The most frequent occurring <3% of the time.

The distribution has a very long tail.

And for each these types 1000’s of different things may be asked.

*13% are non-distinct (e.g, it, this, these or NA)

Even going for the head of the tail will
barely make a dent

We do NOT try to build a formal

model of the world

Acquiring Structured Data in Watson

• Obtain web-based (semi) structured resources
– E.g. DBpedia, Yago, Wikipedia Categories, Redirects, Lists

• Extend Ontologies

• Add disjoints – e.g. Disjoint(Country, Person) - Useful to rule out
candidates with incompatible answer type

• Process Raw Structured Data:

• Filter Noise

• Discard noisy Wikipedia Redirects

• e.g. Eliza Doolittle (character) -> Pygmalion (play)

• Normalize Data

• Standardize temporal expressions

• “20th Jan 1950” -> “01-20-1950”, “13th Century” -> “XX-XX-12XX”

• Normalize relation names

• {georss#lat, #latitude #geo-lat} - Latitude

Watson’s Buzz

Learn about the enable at the same time

Have to physically push down identical buzzers

As soon as the clue is read an enable signal does 3 things simultaneously

By listening and anticipating the enable signal, humans can buzz in <5 ms

Watson is not hearing the host and cannot anticipate the enable signal

Equal Footing: Both Humans and Watson

Advantage Humans

Advantage Watson
Watson, although not the fastest, is consistently fast

Assuming Watson can compute an answer and confidence in time (not always quick enough)

Watson does not risk the ¼ sec pre-buzz penalty – waits for enable

Watson uses a confidence-weighted buzzer scheme and will hesitate on less confidence

answers to avoid “tipping and losing” to better players

Activates the hand-held buzzers

Illuminates a visible light strip

Signals Watson

Overall TyCor Impact
(Experiment done in Aug 2009)

61,5%

62,0%

62,5%

63,0%

63,5%

64,0%

64,5%

65,0%

65,5%

66,0%

66,5%

An ensemble of TyCor components

+ ~10%

