

Collocational networks and their application to an E-Advanced Learner's Dictionary of Verbs in Science (DicSci)

Araceli Alonso, Chrystel Millon, Geoffrey Williams araceli.alonso; crystel.millon; geoffrey.williams@univ-ubs.fr

Equipe LiCoRN-HCTI, Université de Bretagne-Sud Equipe InfoLex-IULA, Universitat Pompeu Fabra

Outline

- Starting Points
- ■The DicSci An E-Advanced Learner's Dictionary of Verbs in Science
- Building-up an Organic Dictionary
- **■** Collocational Networks: an example
- **Conclusions and Future Remarks**

Starting Points

- **■** the dictionary as an ongoing learning tool for scientists
- **■** the place of science in learner's dictionaries
- the role of verbs in science
- the relationship between verbal and nominal forms
- the relationship between 'specialised' and 'general' words

The DicSci – An E-Advanced Learner's Dictionary of Verbs in Science

- Virtual Dictionary
- Corpus-driven
- **■** Dictionary for Non-native speakers of English
- Dictionary of Verbs
- Dictionary of Patterns
- Dictionary of Science
- Organic Dictionary
- A bottom-up dictionary of verb patterns with corpus-driven thematic and conceptual groupings

Sinclairian Perspective

- Idiom principle (Sinclair 1991)
- Pattern grammar (Hunston & Francis 1999)
- Semantic Prosody (Louw 1993, 2000|2008)
- Collocational phraseological patterning (Gledhill 2000)
- Collocational networks (Williams 1998)
- Collocational resonance (Williams, Hanks)
- Lexical primings (Hoey 2005)
- Norms and exploitaitions and Corpus Pattern Analysis (Hanks 2004)

Methods

■ Collocational Networks (Williams 1998)

Networks of statistically related collocates developed from a core lexical unit

■ Intertextual Collocational Resonance (Williams 2008)

Carrying over of aspects of meaning from one context to another, consciously and subconsciously

Corpus Pattern Analysis (Hanks 2004)

Work-in-progress corpus-driven methodology for mapping meaning onto use in texts

BMC Corpus

SCIENTEXT INITIATIVE

- Open Source
- Size 33 million words
- Fully POS tagged and lemmatised
- Subcategorised for topic and genre

http://scientext.msh-alpes.fr/scientext-site/?article30

http://www.biomedcentral.com

to treat

PDEV – Patrick Hanks

No.	%	Pattern / Implicature	
<u>1</u>	69%	[[Human 1 Institution 1 Animal 1]] treat [[Human 2 Animal 2 Entity Event]] [Adv[Manner]]	conc.
		[[Human 1 Institution 1 Animal 1]] behaves toward [[Human 2 Animal 2 Entity Event]] in the [[Manner]] specified	exploit.
2	17%	[[{Human 1 = Health Professional} {Process = Medical} Drug]] treat [[{Human 2 = Patient} {Animal = Patient} Disease Injury]] [NO ADVL]	conc.
		[[Human 1 = Health Professional]] applies a [[Drug]] or [[Process = Medical]] to [[Human 2 = Patient]] for the purpose of curing the patient's [[Disease Injury]]	exploit.
3	5%	[[Human]] treat [[Inanimate]] (with [[Stuff]] by [[Process]])	conc.
		The chemical or other properties of [[Inanimate]] are improved or otherwise changed by [[Process]] or the application of [[Stuff]]	exploit.
4	5%	[[Human 1]] treat [[Human 2 Self]] {(to [[Eventuality = Good]])}	conc.
		[[Human 1]] gives or pays for [[Eventuality = Good]] as a benefit for [[Human 2 Self]]	exploit.

Concordances to treat

- A more consistent weight increase was achieved from week 8 to week 10.5 in mice **treated** with S. gordonii GP1294, with statistically significant differences compared to animals inoculated with the control strain
- We observed a 16 % increase in heart mass in both sexes after 3-days of isoproterenol treatment compared to mice **treated** with equivolume of saline.
- N-acetylcysteine prevents exacerbations of COPD because it is an antiinflammatory agent and/or antioxidant, it may be difficult to see additional benefit in established exacerbations of COPD when the patients are also treated with prednisone, which has anti-inflammatory actions and the potential to reduce formation of reactive oxygen species from inflammatory cells.
- Control cells were treated with ethanol vehicle.

DicSci

[[Human 1 | Human Group]] **treat** [[Human 2 = Patient | Laboratory Animal = Rat, Mouse | Organism = Cell]] (with [[Drug= Vehicle]])

Implicature

For the purpose of being cured

For getting a cure to a disease

Concordances vehicle

- Measurements were performed using a moving **vehicle** in some of the main streets of the city of Athens (Greece).
- The **vehicle** was moving with a speed of approximately 60 km/ h. The tests were performed in such a way and using the relevant equipment in order to simulate the data calls from an Ambulance vehicle.
- Adsflt, AdLacZ, or vehicle was injected directly into the tumours.

Conceptual classification

- 'Giving Drugs': dissolve, deliver, administer, receive, inject
- Laboratory Animal: rat, mouse, rabbit
- Drug*: Adsflt, AdLacZ*
- **■** Word sense discrimination algorithm (Millon 2011)

Verb classes

Noun classes

Conclusions and Future Remarks

- natural selection of the main cognitive nodes of scientific texts
- **links between lexical units**
- thematic patterns in texts
- **■** differences between general and specialised uses
- sense disambiguation of polysemic words
- semasiologically and onomasiologically organisation
- organic dictionary
- conceptual classification
- microstructure
- collocational resonance

Thank you for your attention!!!

araceli.alonso@univ-ubs.fr chrystel.millon@univ-ubs.fr geoffrey.williams@univ-ubs.fr

http://www.licorn-ubs.com/index_eng.html