Fast and Memory-Efficient Discovery of the Top-k Relevant Subgroups in a Reduced Candidate Space

Henrik Grosskreutz & Daniel Paurat

Introduction

Subgroup Discovery and the Theory of Relevance

The Task of Subgroup Discovery

Input:

- examples, characterized by features
- a target class

Output:

- top-k subgroup descriptions
 - subgroup that are *large* and have a *high target share*

e.g. $quality(sd) = n_{sd} \cdot (p_{sd} - p_0)$

Subgroup description = conjunction of features

Example:

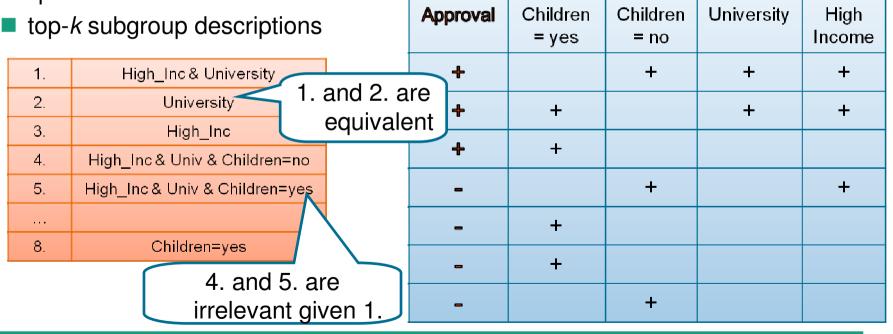
	Approval	Children = yes	Children = no	University	High Income
	+		+	+	+
)	+	+		+	+
'	+	+			
	-		+		+
	-	+			
	-	+			
	-		+		

The Task of Subgroup Discovery

Input:

- examples, characterized by features
- a target class

Output:



The Theory of Relevance

Def: Relevance [Lavrac et al, JLP-99]

- A subgroup is irrelevant if it is dominated
- s is dominated by *t* in DB iff.
 - $\mathsf{TP}(\mathsf{DB},s) \subseteq \mathsf{TP}(\mathsf{DB},t)$
 - $FP(DB,s) \supseteq FP(DB,t)$

Example:

"HighInc&Univ&Child=no" is dominated by "HighInc&Univ"

Approval	Children = yes	Children = no	University	High Income
÷		+	+	+
+	+		+	+
+	+			
-		+		+
-	+			
-	+			
-		+		

Relevant top-k Subgroup Discovery

Lavrac & Gamberger: Relevancy in constraint-based subgroup discovery, 2005

Input:

- a set of examples characterized by features
- a target class

Output:

the k highest-quality relevant subgroup descriptions

Description	Classic sd	Closed sd	Relevantsd
High_Inc & University	1 st	1 st	1 st
University	2 nd		
High_Inc	3rd	2 nd	
Children=yes & High_Inc & University	4 th	3rd	
Children=yes&High_Inc	5 th		
Children=no&High_Inc&University	6 th	4 th	
Children=no & High_Inc	7 th		
Children=yes	8 th	5 th	2 nd

Existing Approaches

... and their limitations

Pruning-based Approaches to Relevant SD

e.g. Lemmerich & Atzmueller: Fast discovery of relevant subgroup patterns, FLAIRS 2010

Idea:

Traverse the space of subgroup descriptions, e.g. using DFS

Keep track of the k best subgroup visited

- Apply pruning
 - Use quality of the k-best subgroup (" θ_k ") as minimum quality threshold

Prune branches whose quality can be derived to be below θ_k

Local relevance check

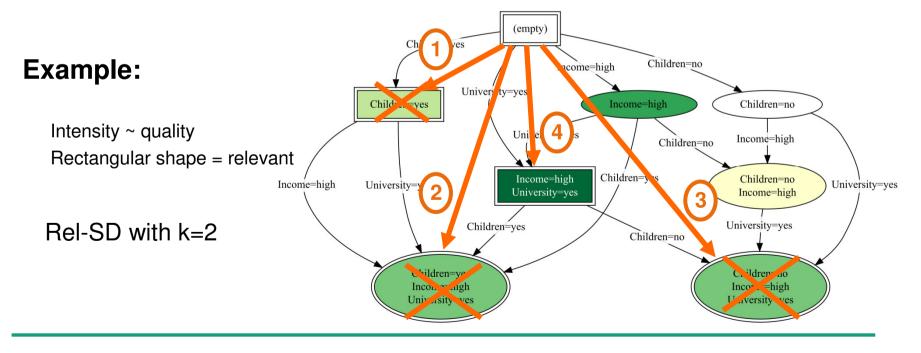
Whenever a new high-quality subgroup is visited, check dominance between the k+1 best subgroups

➔ Output consists of relevant subgroups

Pruning-based Approaches: Limitations

Pruning based on a local relevance check can miss relevant subgroups

→ Problem: local relevance check is not an exact test



Approach based on the Closed-on-the-positives

Garriga et al.: Closed sets for labeled data, JML-08

Proposition: A subgroup description sd is relevant iff.

- It is closed on the positives
- There is no cpos generalization $s_q \subseteq sd$ with same support in the negatives
- Approach:
 - Collect all closed-on-the-positives
 - Remove irrelevant subgroups in a post-processing step

➔ Advantages: exact

cpos can be exponentially smaller than # closed / all sd

➔ Problems: huge memory requirements; no pruning

Summary of the existing Approaches

Pruning-based approach:

doesn't guarantee exact results

C-pos approach:

■ infeasible for large number of c-pos

no pruning

A new Approach

... based on iterative deepening and an efficient relevance check

Efficient relevant subgroup discovery

An efficient algorithm should

- 1. only consider the *closed-on-the-positive* subgroups
- 2. avoid high memory requirements
- 3. apply pruning based on θ_k
 - Requires an exact relevance check at visiting time

An O(k) Relevance Check

Proposition:

For many popular quality functions^{*}, relevance of a closed-on-the-positive *sd* can be checked based only the *higher-quality* relevant generalizations

 $G^* = \{s_q \subseteq sd \mid s_q \text{ is relevant and has } higher quality \text{ than sd} \}$

Hence:

If we are only interested in relevance of *subgroups with quality* > $\theta_{k,}$ and we visit the *cpos* in a **general-to-specific** fashion then relevance can be checked using *only the top-k subgroups visited*

 \rightarrow Memory requirements: *k* subgroups, instead of $O(2^{length(sd)})$

* : in particular, for $q(sd) = n^a (p-p_0)$, with $0 \le a \le 1$

The New Algorithm ID-Rsd

Idea

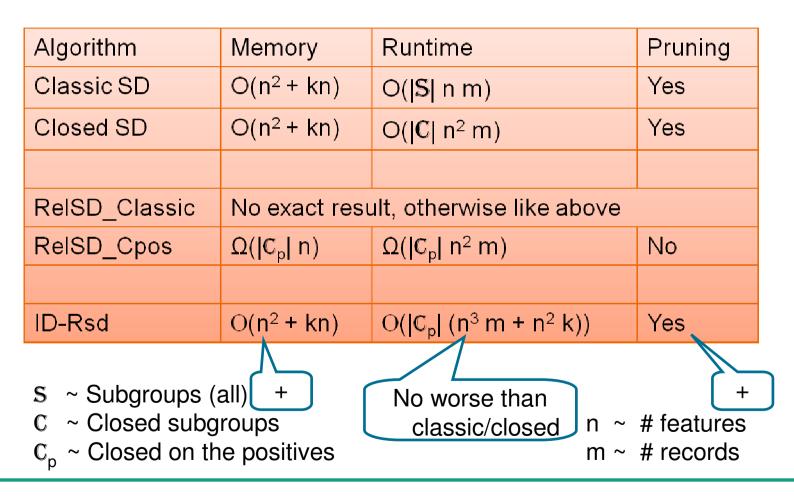
- Perform an iterative deepening
- Only keep track of the best k subgroups visited
- Perform relevance check by comparing with the k best subgroups

Properties:

- Exact solution
- Memory requirements: O(k) subgroups (+ Iterative deepening DFS)
- Max. number of nodes visited is $O(|C_p| \cdot n)$, where $n \sim$ number of features
- Allows pruning based on θ_k

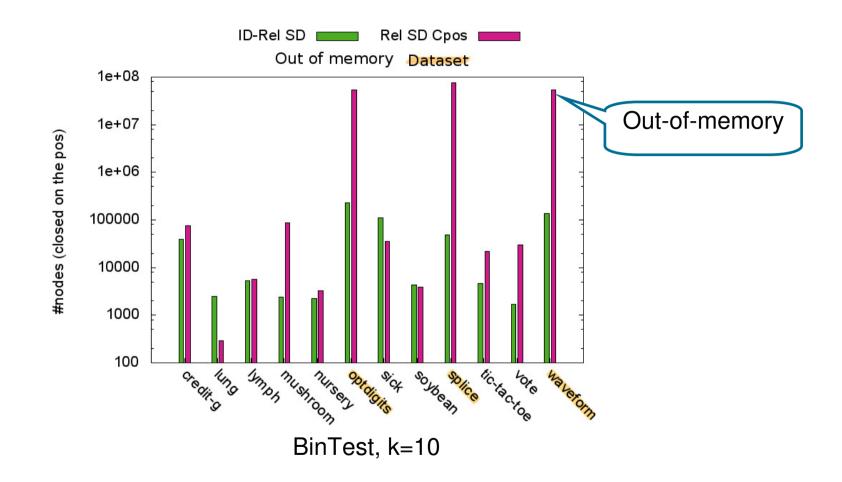
Depending on shape of search space

Comparison with existing Approaches



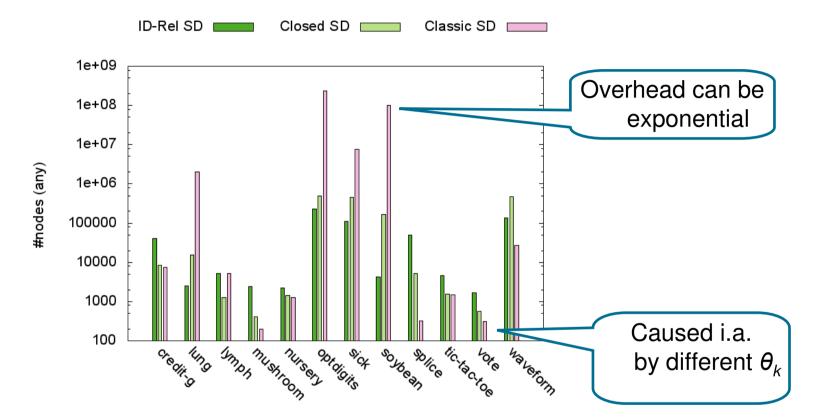
Empirical Evaluation

Comparison with the Closed-on-the-positives Approach



Overall: lower memory requirements, lower number of nodes & much faster

Comparison with Classic & Closed SD Approaches



	ID-Rsd	ClassicSD	ClosedSD	Cpos-Rsd
Total runtime	118 sec	2717 sec	286 sec	?

Summary

Summary

Relevant SD yields more valuable patterns than classic SD

- ID-Rsd
 - First exact Rsd approach with polynomial memory requirements
 - Much faster than C-pos approach
 - Competitive with exhaustive classic/closed SD approaches

Thank you very much for your attention!

