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● Differences between subgroups of
multivariate dataset is a challenging
problem

● We study this problem in context of
supervised scenario

● Our emphasis is to highlight the
differences between two subgroups
of multivariate data while
maintaining the class discrimination



Real Life Examples

❖ Overview

Introduction and
Motivation
❖ Real Life
Examples

❖ Challenges

❖ Existing
Approaches

❖ Need for
Constrained Models

❖ Goals

❖ Contributions

Preliminaries

Proposed
Framework

Results

Conclusion

Constrained Logistic Regression for Discriminative Pattern Mining ECML-PKDD 2011 – 4

● Identifying survival behavior of
cancer patients across different
racial groups spreading across
various geographical locations

● Comparing gender discrimination in
jobs across different divisions of an
organization

● Bias in loan approval to applicants
among various branches of banks
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● Need to understand the kind of
changes

● How to detect and model such
changes

● Difficult to quantify model based
differences between datasets

● More complex the model learning,
more tedious to generate
comparable models
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● Prior approaches detected differences in datasets

✦ Based on probability distributions between
individual attributes (like KL divergence, KS-test)

✦ Based on support level of attribute-value
combinations ( like Contrast sets [2], Subgroup
discovery [6], Emerging Pattern mining [4])

● Related change detection [7] and change mining [9]
approaches

● Need for an approach that considers the underlying
class distribution while estimating the difference
between the datasets
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● Differences in multivariate data distributions based
on model vary from previous approaches

● Directly obtaining classification models for difference
analysis pose questions like

✦ Which model can accurately represent the data?

✦ Which model to choose among models with
similar accuracy?

● Choosing maximum margin classifier model for
comparison won’t work

● Number of potential models increase in non-linearly
separable case
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● Quantify the change between datasets as the
change in underlying class distributions

● Model based class distribution difference instead of
data dependent measures

● For the task of discriminative pattern mining

✦ The methods for modeling the data should go
beyond optimizing a standard prediction metric

✦ And should simultaneously identify and model
the differences between two multivariate data
distributions.
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● Developed a measure of the distance
between two data distributions using the
difference between predictive models.

● Developed a constrained version of logistic
regression algorithm that can capture the
proposed distance measure.

● Experimental justification from results that
proposed method quantitatively capture the
difference in data distributions
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Notation Description
L Objective function
C Regularization factor
wk kth component of weight vector w
Wj jth weight vector
ε Constraint on weight values
µ Mean
σ Standard deviation

● Differential features:features which are more
important in one dataset but less important in the
other dataset with respect to classification
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● Logistic Regression for binary classification

● log Pr(y=+1|~x)
Pr(y=−1|~x) =

∑l
k=0wkxk

● LR learn weights by maximizing the
log-likelihood of

● L (~w) =
∑n

i=1 log Pr (y = yi|~xi) =
∑n

i=1 log g (yizi)
● Newton’s method iteratively updates the

weights using the following update
equation :

● ~w(t+1) = ~w(t) −
[

∂2L
∂ ~w∂ ~w

]−1
∂L
∂ ~w
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● Final minimization problem with objective
function

● L = −
∑n

i=1 log g (yizi) +
C
2

∑l
k=1w

2
k

●
∂L
∂wk

= −
∑n

i=1 yixikg (−yizi) + Cwk

●
∂2L

∂wk∂wk

= −
∑n

i=1 x
2
ikg (−yizi) + C

● Regularization factor C included to reduce
over fitting and large parameter estimation

● Regression coefficients signifies each
feature’s importance in classification
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● Supervised Distribution Difference (SDD) is
defined as the change in the classification
criteria in terms of measuring the deviation
in classification boundary while classifying
as accurately as possible.

● SDD( ~wA, ~wB) =
√

∑

k (wA
k − wB

k )
2
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● The regularization factor C for combined dataset D is
obtained using 10-fold cross validation (CV)

● The complete model R on D is obtained using best
regularization factor C

● Similarly LR model for D1 and D2 are obtained
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● Enforce constraints on LR by restricting weight
vectors

argmin L = −
∑n

i=1
log g (yizi) +

C
2

∑l
k=1

w2

k subject to
constraints |Rk − wk| ≤ ε

● A scaled modified Newton step replaces the
unconstrained Newton step [3]

● (Z(w))−2 ∂L
∂w

= 0
● A solution to the linear system is used to obtain

solution of modified Newton step
● ε is the deviation we allow from individual

components of weight vector
● We satisfy above equation using a constrained

optimization approach on LR model
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● Calculate lower,upper bounds using ε

● Obtain weight vector using constrained
optimization

● Model found is within τ accuracy(set to
0.15) of LR model

● If model not found, gradually increase ε

and repeat above process until suitable
model is found

● For smooth transition of models, ε is varied
as percentage of R weight vector i.e.,
ε← a×R
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● Constrained LR core piece is constrained
minimization with box constraints

● LR essentially performs an unconstrained
optimization

● The convergence proof for the termination
of constrained optimization is similar to the
one given in [3].
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● Two datasets generated using Gaussian distribution
with predefined (µ, σ)

● Number of attributes are kept 10 in both the
datasets

● Maximum class separating features are kept
different in each dataset.

✦ These differential features identify the major
components responsible for difference in
classification criteria

● Rest of the attributes in both the dataset are
generated with similar (µ, σ)
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● A data oriented technique to generate datasets
obtained by different processes introduced in [5]

● Two datasets differing purely based on data
characteristics might differ in class distribution (as in
this case)

● NM.Fnum denote a dataset with N million tuples
generated by classification function num

● D = 1M.F1, D1 = D ∪ 0.05M.F4,
D2 = 0.5M.F1, D3 = 1M.F2, and D4 = 1M.F4
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● Five UCI datasets [1] were used in the
experiments

● The binary datasets are represented by
triplet (dataset, attributes, instances)

● Datasets are (blood, 5, 748), (liver, 6, 345),
(diabetes, 8, 768), (gamma, 11, 19020),
and (heart, 22, 267)
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Feature LR Constrained LR
1 -3.3732 -0.8015
2 -0.8693 0
3 -1.2061 -0.0158
4 -1.6274 0
5 5.0797 0.9244
6 1.2014 0.4258
7 0.0641 0.0306
8 -0.5393 0.1123
9 -3.5901 0

10 0.7765 0.0455

● Difference in individual weight vectors for two datasets for
both LR and Constrained LR

● Bold features are top 3 differential features in order (1,5
and 6)
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● Constrained LR able to distinguish most differential
features in correct order

● LR only able to identify two highly differential
features but noisy features distort ranking
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Table 1: The distances of all four datasets by con-
strained LR and Ganti’s method [5]

Dataset Ranking Ganti’s Method [5] SDD
D1 2 0.0689 0.00579
D2 1 0.0022 0.004408
D3 3 1.2068 0.022201
D4 4 1.4819 0.070124

● Relative ranking among datasets depicting
difference between datasets is same.

● Only ranking can be compared and not distances
● Our method is able to distinguish datasets with

varying degree of dissimilarity
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● Another way to capture differing data
distribution [8]

● Create random subsamples of D of the
size p

● p is varied as 10%, 20%, ..., 100%, with a
stepsize of 10%

● For real world datasets, stratified sampling
is suggested wherever class imbalance
exists

● We expect the calculated distance between
D and Dp to decrease as p increases
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● Synthetic datasets are large and we observe a
significant change in the class distribution even at
small sampling levels

● The distance is still small and as expected
decreases monotonically
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● SDD metric is significant only for 10-20% samples
● More than 20% samples in these datasets resemble

class distribution of whole dataset
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● We developed a novel constrained
logistic regression framework which
captures the difference between
two multivariate datasets based on
the proposed distance metric.

● In this work, we considered popular
linear classifier LR

● Future directions include applying
kernel approaches and
incorporating non-linear classifiers
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THANK YOU

Contact Info:
rajulanand@wayne.edu
reddy@cs.wayne.edu
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