
Introduction
Our Algorithms

Algorithms’ Evaluation
Conclusions and Future Works

Minimum Neighbor Distance Estimators of
Intrinsic Dimension

G. Lombardi, A. Rozza, C. Ceruti, E. Casiraghi, and P. Campadelli
{lombardi,rozza,ceruti,casiraghi,campadelli}@dsi.unimi.it
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Motivation

Many real life signals are high dimensional, but...

...the number of their ‘useful’ degrees of freedom low;

often the data are assumed drawn from a low-dimensional
manifold mapped in a high dimensional space (plus noise):

x = ψ(z)+ν, x ∈ <D , z ∼M ≡ <d , ψ : <d → <D , ν ∼ N

Problem definition

Consider a dataset XN = {xi = ψ(zi )}Ni=1 sampled from a
manifold M ≡ <d and embedded in <D through a map ψ;

assume the zi sampled from M by means of a smooth pdf f ;

assume the embedding defined by ψ to be proper;

our aim is to estimate the intrinsic dimensionality d of M by
means of the samples XN ⊂ <D .
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Applications

Dimensionality reduction: First step for dimensionality reduction
techniques (that generally require d as parameter).

Manifold learning: First step for manifold learning techniques.

Parameter estimation: Estimates the number of eigenvalues to be
retained, the number of dimensions for partial
whitening algorithms, . . .
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Problems arising with dimensionality

Curse of dimensionality: The number of samples N required for
manifold learning grows exponentially with d ;

Empty space: If D is high enough, splitting the space with a
regular grid leaves most of the ‘boxes’ empty;

Lack of geometry: If D increases, geometry “disappears” and
statistical properties arise; e.g. compression of norms.

Gabriele Lombardi MiND algorithms 5/20



Introduction
Our Algorithms

Algorithms’ Evaluation
Conclusions and Future Works

Problem Definition
Related Works
Our Approach

Problems arising with dimensionality

Curse of dimensionality: The number of samples N required for
manifold learning grows exponentially with d ;

Empty space: If D is high enough, splitting the space with a
regular grid leaves most of the ‘boxes’ empty;

Lack of geometry: If D increases, geometry “disappears” and
statistical properties arise; e.g. compression of norms.

Gabriele Lombardi MiND algorithms 5/20



Introduction
Our Algorithms

Algorithms’ Evaluation
Conclusions and Future Works

Problem Definition
Related Works
Our Approach

Problems arising with dimensionality

Curse of dimensionality: The number of samples N required for
manifold learning grows exponentially with d ;

Empty space: If D is high enough, splitting the space with a
regular grid leaves most of the ‘boxes’ empty;

Lack of geometry: If D increases, geometry “disappears” and
statistical properties arise; e.g. compression of norms.

Gabriele Lombardi MiND algorithms 5/20



Introduction
Our Algorithms

Algorithms’ Evaluation
Conclusions and Future Works

Problem Definition
Related Works
Our Approach

Problems arising with dimensionality

Curse of dimensionality: The number of samples N required for
manifold learning grows exponentially with d ;

Empty space: If D is high enough, splitting the space with a
regular grid leaves most of the ‘boxes’ empty;

Lack of geometry: If D increases, geometry “disappears” and
statistical properties arise; e.g. compression of norms.

Gabriele Lombardi MiND algorithms 5/20



Introduction
Our Algorithms

Algorithms’ Evaluation
Conclusions and Future Works

Problem Definition
Related Works
Our Approach

Dimensionality estimation algorithms

Global/local

Global: The i.d. is estimated for the whole dataset.

Local: The i.d. is estimated for each point.

Linear/nonlinear

Linear: Assumes M linearly embedded in <D .

Nonlinear: Assumes the embedding proper (may be non-linear).

Geometrical/statistical

Geometrical: Uses geometric informations such as tangent space
estimation (e.g. Tensor Voting Framework).

Statistical: Uses statistics on measures (e.g. Maximum
Likelihood Estimation based on distances).
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Some state of the art techniques

PCA: Linear technique based on the estimation of maximal
variance directions and thresholding.

kNN Graph: K-Nearest Neighbors Graph based technique,
computes E [L(X)/Nα] where L(X) is a graph length
measure, α = (d ′ − γ)/d ′ (1 ≤ γ < d), and
α = (d ′ − γ)/d ′; the limit with N →∞ of this
quantity is finite and non-zero only for d ′ = d .

Correlation Dimension: Based on the assumption that the number
of samples covered by a sphere with radius r grows
proportionally to rd . An asymptotic smoothed
version of this algorithm was proposed by Hein.

Maximum Likelihood Estimation: Based on the maximization of
likelihood for the probability distribution of
neighboring distances with dependent variable d .
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Some considerations

Statistics about distances

Statistics are preferable in high dimensional spaces;

norm compression depends on intrinsic dimensionality;

the i.d. can be estimated exploiting the norm compression;

the real pdf is difficult to be estimated, but simulation helps.

Locality

Can be approximated by the kNN graph;

consistent local statistics can be defined by means of the
normalized k Nearest Neighbors distances;

given k neighboring points, the closest ones are less affected
by the curvature of the manifold M.
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Our approach

Exploited pdf related to distances

To reduce the bias due to manifold
curvature, we extract just the first
neighbor distance normalized by the
(k+1)-th distance;

only N distances are available (one per point), but a robust
estimator is defined;

a maximum likelihood solution can be determined.

Exploiting the norms compression effect

real and synthetic pdfs are compared via KL divergence;

locally uniform distribution is the limit in case of smooth pdf.
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Local uniformity

Local pdf

Denoting with Bd(0, 1) the unit ball, we define the ε-local pdf as:

fε(z) =
f (εz)χBd (0,1)(z)∫
t∈Bd (0,1)

f (εt)dt

Theorem 1

Given {εi} → 0+, fε(z) describes a sequence of pdf having the
unit d-dimensional ball as support; such sequence converges
uniformly to the uniform distribution Bd in the ball Bd(0, 1).
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A log-likelihood function

First neighbor distance

Being Vr = rdV1, the pdf for the first NN distance g is:

g(r ; k , d) = kdrd−1(1− rd)k−1

Given the set X̄k+1 containing the k + 1 NN of xi , its
normalized minimum neighbor distance is defined as:

ρ(xi ) = min
xj∈X̄k+1

‖xi − xj‖
‖xi − x̂‖

, x̂ = argmax
x∈X̄k+1

‖xi − x‖

euclidean distances converge to geodetic ones when N →∞;

given the x smoothly distributed on M, the distribution of ρ
converges to g(r ; k, d).
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Log-likelihood

Denote with g̃(xi ; k, d) the function g applied to ρ(xi );

we compute the log-likelihood ll(d) = log(g̃(xi ; k, d)):

ll(d) =
∑

xi∈XN

log g̃(xi ; k , d) = N log k + N log d +

(d − 1)
∑

xi∈XN

log ρ(xi ) + (k − 1)
∑

xi∈XN

log
(
1− ρd(xi )

)

MiNDMLk, MiNDMLi, MiNDML1

One estimate for d is obtained solving ∂ll
∂d = 0:

N

d
+
∑

xi∈XN

(
log ρ(xi )− (k − 1)

ρd(xi ) log ρ(xi )

1− ρd(xi )

)
= 0

Notice that choosing k = 1, we obtain the MLE algorithm.
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ρd(xi ) log ρ(xi )

1− ρd(xi )

)
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pdf comparison

Call ĝ(r ; k) an estimate of g(r ; k , d) computed with ρ(xi );

d̂ is obtained maximizing the Kullback-Leibler divergence:

d̂ = argmin
1≤d≤D

∫ 1

0

ĝ(r ; k) log

(
ĝ(r ; k)

g(r ; k , d)

)
dr

we draw N samples from the d-dimensional uniform ball:

y = u
1
d

‖ȳ‖ ȳ, ȳ ∼ N (·|0d , 1) , u ∼ U(0, 1)

we compute ρ over X and Y obtaining r̂ and řd ;
estimates ĝ and ǧd can be computed as follows:

ĝ(r̂i ; k) =
1/(N − 1)

2ρ̂(r̂i )
ǧd(r̂i ; k) =

1/N

2ρ̌d(r̂i )

with ρ̂(r̂i ) and ρ̌d(r̂i ) NN distances for r̂i in r̂ and řd .
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ǧd(r̂i ; k) =

1/N

2ρ̌d(r̂i )

with ρ̂(r̂i ) and ρ̌d(r̂i ) NN distances for r̂i in r̂ and řd .
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ĝ(r ; k)

g(r ; k , d)

)
dr

we draw N samples from the d-dimensional uniform ball:

y = u
1
d
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MiNDKL

We estimate the KL div by means of the Wang’s algorithma;

The estimate of KL(ĝ , ǧd) becomes:

K̂L(ĝ , ǧd) =
1

N

N∑
i=1

log
ĝ(r̂i ; k)

ǧd(r̂i ; k)

Using this KL approximation, d can be estimated as:

d̂ = argmin
d∈{1..D}

(
log

N

N − 1
+

1

N

N∑
i=1

log
ρ̂(r̂i )

ρ̌d(r̂i )

)

The proposed estimator is consistent, that is limN→∞ d̂ = d .

a
“A nearest-neighbor approach to estimating divergence between continuous random vector”
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Experimental Setting
Results

Tests were performed on both synthetic and real datasets;

the Hein’s generatora was used for the synthetic datasets;

the real datasets are ISOMAP, MNIST, and Santa Fe.

a
“Intrinsic dimensionality estimation of submanifolds in Euclidean space”

Dataset Name d D Description

Syntethic

M1 10 11 Uniformly sampled sphere linearly embedded.
M2 3 5 Affine space.
M3 4 6 Concentrated figure, confusable with a 3d one.
M4 4 8 Non-linear manifold.
M5 2 3 2-d Helix
M6 6 36 Non-linear manifold.
M7 2 3 Swiss-Roll.
M8 12 72 Non-linear manifold.
M9 20 20 Affine space.
M10a 10 11 Uniformly sampled hypercube.
M10b 17 18 Uniformly sampled hypercube.
M10c 24 25 Uniformly sampled hypercube.
M11 2 3 Möebius band 10-times twisted.
M12 20 20 Isotropic multivariate Gaussian.
M13 1 13 Curve.

Real
MFaces 3 4096 ISOMAP face dataset.
MMNIST1 8 − 11 784 MNIST database (digit 1).
MSantaFe 9 50 Santa Fe dataset (version D2).
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Experimental Setting

Algorithms comparison

State-of-the-art techniques and our algorithms were tested;

The following parameters were used for testing:
Method Synthetic Real

PCA Threshold = 0.025 Threshold = 0.0025
CD None None

MLE k1 = 6 k2 = 20 k1 = 3 k2 = 8
kNNG1 k1 = 6, k2 = 20, γ = 1, M = 1, N = 10 k1 = 3, k2 = 8, γ = 1, M = 1, N = 10

kNNG2 k1 = 6, k2 = 20, γ = 1, M = 10, N = 1 k1 = 3, k2 = 8, γ = 1, M = 10, N = 1
MiNDML1 k = 1 k = 1

MiNDMLk k = 10 k = 5
MiNDMLi k = 10 k = 5

MiNDKL k = 10 k = 5

For comparison we computed the Mean Percentage Error:

MPE =
100

#M
∑
M

|d̂M − dM|
dM
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Results

Synthetic datasets
Dataset d PCA kNNG1 kNNG2 CD MLE Hein MiNDML1 MiNDMLk MiNDMLi MiNDKL

M13 1 4.00 1.00 1.01 1.07 1.00 1.00 1.00 1.00 1.00 1.00
M5 2 3.00 1.96 2.00 1.98 1.96 2.00 1.97 1.97 2.00 2.00
M7 2 3.00 1.93 1.98 1.94 1.97 2.00 1.98 1.96 2.00 2.00
M11 2 3.00 1.96 2.01 2.23 2.30 2.00 1.97 1.97 2.00 2.00
M2 3 3.00 2.85 2.93 2.88 2.87 3.00 2.93 2.88 3.00 3.00
M3 4 4.00 3.80 4.22 3.16 3.82 4.00 3.89 3.84 4.00 4.25
M4 4 8.00 4.08 4.06 3.85 3.98 4.00 3.95 3.93 4.00 4.10
M6 6 12.00 6.53 13.99 5.91 6.45 5.95 5.91 6.17 6.00 6.65
M1 10 11.00 9.07 9.39 9.09 9.06 9.50 9.41 9.23 9.00 10.30
M10a 10 10.00 8.35 9.00 8.04 8.22 8.75 8.68 8.38 8.25 9.40
M8 12 24.00 14.19 8.29 10.91 13.69 12.00 13.35 13.53 13.50 16.60
M10b 17 17.00 12.85 15.58 12.09 12.77 13.45 13.59 13.02 13.00 15.90
M9 20 20.00 14.87 17.07 13.60 14.54 15.15 15.49 14.90 15.00 18.10
M12 20 20.00 16.50 14.58 11.24 15.67 15.00 16.91 16.19 16.00 19.05
M10c 24 24.00 17.26 23.68 15.48 16.80 17.70 18.10 17.24 17.15 22.50

MPE 50.67 11.20 16.23 15.38 12.03 7.65 8.32 10.02 9.14 6.26

Real datasets
Dataset d PCA kNNG1 kNNG2 CD MLE Hein MiNDML1 MiNDMLk MiNDMLi MiNDKL

MFaces 3 21.00 3.60 4.32 3.37 4.05 3.00 3.52 3.59 4.00 3.90
MMNIST1 8-11 11.80 10.37 9.58 6.96 10.29 8.00 11.33 10.02 9.45 11.00
MSanta Fe 9 18.00 7.28 7.43 4.39 7.16 6.00 6.31 6.78 7.00 7.60
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Conclusions

To estimate the i.d. is a difficult task in case of small sample
size, high dimension, and non-linearly embedded manifolds;

statistic-based techniques are largely adopted for this purpose;

we propose novel algorithms for the estimation of the i.d.;

our algorithms are robust to the choice of k and to the high
dimensionality of the datasets.

Future Works

Relax the assumption of smoothness for the pdf f ;

define a local estimator, useful for multi-manifold learning
problems having different intrinsic dimensions.
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Any questions?
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