Minimum Neighbor Distance Estimators of Intrinsic Dimension

G. Lombardi, A. Rozza, C. Ceruti, E. Casiraghi, and P. Campadelli \{lombardi,rozza,ceruti,casiraghi,campadelli\}@dsi.unimi.it

Università degli Studi di Milano

Outline

(1) Introduction

- Problem Definition
- Related Works
- Our Approach
(2) Our Algorithms
- Theoretical Background
- Maximum Likelihood Approaches
- pdf Comparison Approach
(3) Algorithms' Evaluation
- Datasets
- Experimental Setting
- Results

4 Conclusions and Future Works

Introduction

Motivation

- Many real life signals are high dimensional, but...
- ...the number of their 'useful' degrees of freedom low;
- often the data are assumed drawn from a low-dimensional manifold mapped in a high dimensional space (plus noise):

Problem definition

Introduction
Our Algorithms Algorithms' Evaluation
Conclusions and Future Works

Motivation

- Many real life signals are high dimensional, but.
- ...the number of their 'useful' degrees of freedom low;
- often the data are assumed drawn from a low-dimensional manifold mapped in a high dimensional space (plus noise): $\mathbf{x}=\psi(\mathbf{z})+\nu, \quad \mathbf{x} \in \Re^{D}, \mathbf{z} \sim \mathcal{M} \equiv \Re^{d}, \psi: \Re^{d} \rightarrow \Re^{D}$,

Problem definition

Motivation

- Many real life signals are high dimensional, but.
- ...the number of their 'useful' degrees of freedom low;
- often the data are assumed drawn from a low-dimensional manifold mapped in a high dimensional space (plus noise):

$$
\mathbf{x}=\psi(\mathbf{z})+\nu, \quad \mathbf{x} \in \Re^{D}, \mathbf{z} \sim \mathcal{M} \equiv \Re^{d}, \psi: \Re^{d} \rightarrow \Re^{D}, \nu \sim \mathcal{N}
$$

Problem definition

Problem definition

- Consider a dataset $\mathbf{X}_{N}=\left\{\mathbf{x}_{i}=\psi\left(\mathbf{z}_{i}\right)\right\}_{i=1}^{N}$ sampled from a manifold $\mathcal{M} \equiv \Re^{d}$ and embedded in \Re^{D} through a map ψ;
- assume the \mathbf{z}_{i} sampled from \mathcal{M} by means of a smooth pdf f;
- assume the embedding defined by ψ to be proper;
- our aim is to estimate the intrinsic dimensionality d of \mathcal{M} by means of the samples $X_{N} \subset \Re^{D}$

Introduction
Our Algorithms Algorithms' Evaluation Conclusions and Future Works

Problem definition

- Consider a dataset $\mathbf{X}_{N}=\left\{\mathbf{x}_{i}=\psi\left(\mathbf{z}_{i}\right)\right\}_{i=1}^{N}$ sampled from a manifold $\mathcal{M} \equiv \Re^{d}$ and embedded in $\Re^{D^{d}}$ through a map ψ;
- assume the \mathbf{z}_{i} sampled from $\boldsymbol{\mathcal { M }}$ by means of a smooth pdf f;
- assume the embedding defined by ψ to be proper;
- our aim is to estimate the intrinsic dimensionality d of \mathcal{M} by means of the samples $\mathbf{X}_{N} \subset \Re^{D}$

Introduction
Our Algorithms Algorithms' Evaluation Conclusions and Future Works

Problem definition

- Consider a dataset $\mathbf{X}_{N}=\left\{\mathbf{x}_{i}=\psi\left(\mathbf{z}_{i}\right)\right\}_{i=1}^{N}$ sampled from a manifold $\mathcal{M} \equiv \Re^{d}$ and embedded in \Re^{D} through a map ψ;
- assume the \mathbf{z}_{i} sampled from \mathcal{M} by means of a smooth pdf f;
- assume the embedding defined by ψ to be proper;
- our aim is to estimate the intrinsic dimensionality d of \mathcal{M} by means of the samples $X_{N} \subset \Re^{D}$

Introduction
Our Algorithms

Motivation

Problem definition

- Consider a dataset $\mathbf{X}_{N}=\left\{\mathbf{x}_{i}=\psi\left(\mathbf{z}_{i}\right)\right\}_{i=1}^{N}$ sampled from a manifold $\mathcal{M} \equiv \Re^{d}$ and embedded in \Re^{D} through a map ψ;
- assume the \mathbf{z}_{i} sampled from \mathcal{M} by means of a smooth pdf f;
- assume the embedding defined by ψ to be proper;
- our aim is to estimate the intrinsic dimensionality d of $\boldsymbol{\mathcal { M }}$ by means of the samples $\mathbf{X}_{N} \subset \Re^{D}$.

Introduction
Our Algorithms Algorithms' Evaluation Conclusions and Future Works

Applications

Dimensionality reduction: First step for dimensionality reduction techniques (that generally require d as parameter).
Manifold learning: First step for manifold learning techniques.
Parameter estimation: Estimates the number of eigenvalues to be retained, the number of dimensions for partial whitening algorithms,

Introduction
Our Algorithms Algorithms' Evaluation Conclusions and Future Works

Problem Definition

Related Works
Our Approach

Applications

Dimensionality reduction: First step for dimensionality reduction techniques (that generally require d as parameter)

Manifold learning: First step for manifold learning techniques.
Parameter estimation: Estimates the number of eigenvalues to be retained, the number of dimensions for partial whitening algorithms,

Introduction

Applications

Dimensionality reduction: First step for dimensionality reduction techniques (that generally require d as parameter). Manifold learning: First step for manifold learning techniques.
Parameter estimation: Estimates the number of eigenvalues to be retained, the number of dimensions for partial whitening algorithms, ...

Introduction
Our Algorithms

Problems arising with dimensionality

Curse of dimensionality: The number of samples N required for manifold learning grows exponentially with d;
Empty space: If D is high enough, splitting the space with a regular grid leaves most of the 'boxes' empty;
Lack of geometry: If D increases, geometry "disappears" and
statistical properties arise; e.g. compression of norms

Introduction
Our Algorithms

Problems arising with dimensionality

Curse of dimensionality: The number of samples N required for manifold learning grows exponentially with d;
Empty space: If D is high enough, splitting the space with a regular grid leaves most of the 'boxes' empty;
Lack of geometry: If D increases, geometry "disappears" and statistical properties arise; e.g. compression of norms.

Introduction
Our Algorithms

Problems arising with dimensionality

> Curse of dimensionality: The number of samples N required for manifold learning grows exponentially with d;

> Empty space: If D is high enough, splitting the space with a regular grid leaves most of the 'boxes' empty;
> Lack of geometry: If D increases, geometry "disappears" and statistical properties arise; e.g. compression of norms.

Introduction
Our Algorithms Algorithms' Evaluation Conclusions and Future Works

Problem Definition
Related Works
Our Approach

Problems arising with dimensionality

Curse of dimensionality: The number of samples N required for

 manifold learning grows exponentially with d;Empty space: If D is high enough, splitting the space with a regular grid leaves most of the 'boxes' empty;
Lack of geometry: If D increases, geometry "disappears" and statistical properties arise; e.g. compression of norms.

Dimensionality estimation algorithms

Global/local

Global: The i.d. is estimated for the whole dataset.
Local: The i.d. is estimated for each point.

Linear/nonlinear

Linear: Assumes \mathcal{M} linearly embedded in \Re^{D}
Nonlinear: Assumes the embedding proper (may be non-linear)

Geometrical
 statistical

Geometrical: Uses geometric informations such as tangent space estimation (e.g. Tensor Voting Framework).
Statistical: Uses statistics on measures (e.g. Maximum Likelihood Estimation based on distances)

Dimensionality estimation algorithms

Global/local
\square
Global: The i.d. is estimated for the whole dataset Local: The i.d. is estimated for each point

Linear/nonlinear

Linear: Assumes $\boldsymbol{\mathcal { M }}$ linearly embedded in \Re^{D}.
Nonlinear: Assumes the embedding proper (may be non-linear).

Geometrical/statistical

Geometrical: Uses geometric informations such as tangent space estimation (e.g. Tensor Voting Framework).
Statistical: Uses statistics on measures (e.g. Maximum Likelihood Estimation based on distances)

Dimensionality estimation algorithms

Globa/local
Global: The i.d. is estimated for the whole dataset.
Local: The i.d. is estimated for each point.

Linear/nonlinear
Linear: Assumes \mathcal{M} linearly embedded in \Re^{D}
Nonlinear: Assumes the embedding proper (may be non-linear)

Geometrical/statistical

Geometrical: Uses geometric informations such as tangent space estimation (e.g. Tensor Voting Framework).
Statistical: Uses statistics on measures (e.g. Maximum Likelihood Estimation based on distances).

Some state of the art techniques

PCA: Linear technique based on the estimation of maximal variance directions and thresholding.

Some state of the art techniques

PCA: Linear technique based on the estimation of maximal

variance directions and thresholding.
kNN Graph: K-Nearest Neighbors Graph based technique, computes $\mathbb{E}\left[L(\mathbf{X}) / N^{\alpha}\right]$ where $L(\mathbf{X})$ is a graph length measure, $\alpha=\left(d^{\prime}-\gamma\right) / d^{\prime}(1 \leq \gamma<d)$, and $\alpha=\left(d^{\prime}-\gamma\right) / d^{\prime}$; the limit with $N \rightarrow \infty$ of this quantity is finite and non-zero only for $d^{\prime}=d$.

Some state of the art techniques

PCA: Linear technique based on the estimation of maximal variance directions and thresholding.
kNN Graph: K-Nearest Neighbors Graph based technique,

quantity is finite and non-zero only for $d^{\prime}=d$.
Correlation Dimension: Based on the assumption that the number of samples covered by a sphere with radius r grows proportionally to r^{d}. An asymptotic smoothed version of this algorithm was proposed by Hein.
Maximum Likelihood Estimation: Based on the maximization of
likelihood for the probability distribution of
neighboring distances with dependent variable d

Some state of the art techniques

Introduction
Our Algorithms

Some considerations

Statistics about distances

- Statistics are preferable in high dimensional spaces;
- norm compression depends on intrinsic dimensionality;
- the i.d. can be estimated exploiting the norm compression;
o the real pdf is difficult to be estimated, but simulation helps

Locality

Introduction
Our Algorithms Algorithms' Evaluation Conclusions and Future Works

Some considerations

Statistics about distances

- Statistics are preferable in high dimensional spaces;
- norm compression depends on intrinsic dimensionality;
- the i.d. can be estimated exploiting the norm compression;
- the real pdf is difficult to be estimated, but simulation helps.

Locality

Introduction
Our Algorithms Algorithms' Evaluation Conclusions and Future Works

Some considerations

Statistics about distances

- Statistics are preferable in high dimensional spaces;
- norm compression depends on intrinsic dimensionality;
- the i.d. can be estimated exploiting the norm compression;
- the real pdf is difficult to be estimated, but simulation helps.

Locality

Introduction
Our Algorithms Algorithms' Evaluation Conclusions and Future Works

Some considerations

Statistics about distances

- Statistics are preferable in high dimensional spaces;
- norm compression depends on intrinsic dimensionality;
- the id can be estimated exnloiting the norm compression;
- the real pdf is difficult to be estimated, but simulation helps.

Locality

Introduction

Some considerations

Statistics about distances

Locality

- Can be approximated by the kNN graph;
- consistent local statistics can be defined by means of the normalized k Nearest Neighbors distances;
- given k neighboring points, the closest ones are less affected by the curvature of the manifold \mathcal{M}.

Introduction
Our Algorithms Algorithms' Evaluation Conclusions and Future Works

Some considerations

Statistics about distances

Locality

- Can be approximated by the kNN graph;
- consistent local statistics can be defined by means of the normalized k Nearest Neighbors distances;
- given k neighboring points, the closest ones are less affected by the curvature of the manifold \mathcal{M}.

Introduction
Our Algorithms

Some considerations

Statistics about distances

Locality

- Can be approximated by the kNN graph;
- consistent local statistics can be defined by means of the normalized k Nearest Neighbors distances;
- given k neighboring points, the closest ones are less affected by the curvature of the manifold $\boldsymbol{\mathcal { M }}$.

Our approach

Exploited pdf related to distances

To reduce the bias due to manifold curvature, we extract just the first neighbor distance normalized by the (k+1)-th distance;

- only N distances are available (one per point), but a robust estimator is defined; - a maximum l:1, l:1hood solution can be determined.

Exploiting the norms compression effect

Our approach

Exploited pdf related to distances

- only N distances are available (one per point), but a robust estimator is defined;
- a maximum likelihood solution can be determined.

Exploiting the norms compression effect

Our approach

Exploited pdf related to distances

- only N distances are available (one per point), but a robust estimator is defined;
- a maximum likelihood solution can be determined.

Exploiting the norms compression effect

Our approach

Exploited pof related to distances

Exploiting the norms compression effect

- real and synthetic pdfs are compared via KL divergence;
- locally uniform distribution is the limit in case of smooth pdf.

Our approach

Exploited pof related to distances

Exploiting the norms compression effect

- real and synthetic pdfs are compared via KL divergence;
- locally uniform distribution is the limit in case of smooth pdf.

Local uniformity

Local pdf

Denoting with $\mathcal{B}_{d}(\mathbf{0}, 1)$ the unit ball, we define the ϵ-local pdf as:

$$
f_{\epsilon}(\mathbf{z})=\frac{f(\epsilon \mathbf{z}) \chi_{\mathcal{B}_{d}(0,1)}(\mathbf{z})}{\int_{\mathbf{t} \in \mathcal{B}_{d}(0,1)} f(\epsilon \mathbf{t}) d \mathbf{t}}
$$

Theorem 1

Given $\left\{\epsilon_{i}\right\} \rightarrow 0^{+}, f_{\epsilon}(z)$ describes a sequence of pdf having the unit d-dimensional ball as support; such sequence converges uniformly to the uniform distribution B_{d} in the ball $\mathcal{B}_{d}(0,1)$

Local uniformity

Local pdf

Denoting with $\mathcal{B}_{d}(\mathbf{0}, 1)$ the unit ball, we define the ϵ-local pdf as:

$$
f_{\epsilon}(\mathbf{z})=\frac{f(\epsilon \mathbf{z}) \chi_{\mathcal{B}_{d}(\mathbf{0}, 1)}(\mathbf{z})}{\int_{\mathbf{t} \in \mathcal{B}_{d}(\mathbf{0}, 1)} f(\epsilon \mathbf{t}) d \mathbf{t}}
$$

Theorem 1

Given $\left\{\epsilon_{i}\right\} \rightarrow 0^{+}, f_{\epsilon}(\mathbf{z})$ describes a sequence of pdf having the unit d-dimensional ball as support; such sequence converges uniformly to the uniform distribution \mathbf{B}_{d} in the ball $\mathcal{B}_{d}(\mathbf{0}, 1)$.

A log-likelihood function

First neighbor distance

- Being $V_{r}=r^{d} V_{1}$, the pdf for the first NN distance g is:

$$
g(r ; k, d)=k d r^{d-1}\left(1-r^{d}\right)^{k-1}
$$

- Given the set $\overline{\mathbf{X}}_{k+1}$ containing the $k+1$ NN of \mathbf{x}_{i}, its normalized minimum neighbor distance is defined as:

- euclidean distances converge to geodetic ones when $N \rightarrow \infty$;
- given the x smoothly distributed on 11 , the distribution of p converges to $g(r ; k, d)$.

A log-likelihood function

First neighbor distance

- Being $V_{r}=r^{d} V_{1}$, the pdf for the first NN distance g is:

- Given the set $\overline{\mathbf{X}}_{k+1}$ containing the $k+1$ NN of \mathbf{x}_{i}, its normalized minimum neighbor distance is defined as:

$$
\rho\left(\mathbf{x}_{i}\right)=\min _{\mathbf{x}_{j} \in \overline{\mathbf{X}}_{k+1}} \frac{\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|}{\left\|\mathbf{x}_{i}-\hat{\mathbf{x}}\right\|}, \quad \hat{\mathbf{x}}=\underset{\mathbf{x} \in \overline{\mathbf{X}}_{k+1}}{\operatorname{argmax}}\left\|\mathbf{x}_{i}-\mathbf{x}\right\|
$$

- euclidean distances converge to geodetic ones when $N \rightarrow \infty$;
- given the \mathbf{x} smoothly distributed on \mathcal{M}, the distribution of ρ converges to $g(r ; k, d)$.

A log-likelihood function

First neighbor distance

- Being $V_{r}=r^{d} V_{1}$, the pdf for the first NN distance g is

- Given the set $\overline{\mathbf{X}}_{k+1}$ containing the $k+1$ NN of \mathbf{x}_{i}, its normalized minimum neighbor distance is defined as:

- euclidean distances converge to geodetic ones when $N \rightarrow \infty$;
- given the x smoothly distributed on \mathcal{M}, the distribution of ρ converges to $g(r ; k, d)$

A log-likelihood function

First neighbor distance

- Being $V_{r}=r^{d} V_{1}$, the pdf for the first NN distance g is:

- Given the set $\overline{\mathbf{X}}_{k+1}$ containing the $k+1$ NN of \mathbf{x}_{i}, its normalized minimum neighbor distance is defined as:

- euclidean distances converge to geodetic ones when $N \rightarrow \infty$;
- given the \mathbf{x} smoothly distributed on $\boldsymbol{\mathcal { M }}$, the distribution of ρ converges to $g(r ; k, d)$.

Log-likelihood

- Denote with $\tilde{g}\left(\mathbf{x}_{i} ; k, d\right)$ the function g applied to $\rho\left(\mathbf{x}_{i}\right)$;
- we compute the \log-likelihood $I I(d)=\log \left(\tilde{g}\left(\mathbf{x}_{i} ; k, d\right)\right)$:

MiND MLK, MiND MLi, MiND MLi

Log-likelihood

- Denote with $\tilde{g}\left(\mathbf{x}_{i} ; k, d\right)$ the function g applied to $\rho\left(\mathbf{x}_{i}\right)$;
- we compute the \log-likelihood $\Pi(d)=\log \left(\tilde{g}\left(\mathbf{x}_{i} ; k, d\right)\right)$:

$$
\begin{aligned}
\|(d)= & \sum_{\mathbf{x}_{i} \in \mathbf{x}_{N}} \log \tilde{g}\left(\mathbf{x}_{i} ; k, d\right)=N \log k+N \log d+ \\
& (d-1) \sum_{\mathbf{x}_{i} \in \mathbf{X}_{N}} \log \rho\left(\mathbf{x}_{i}\right)+(k-1) \sum_{\mathbf{x}_{i} \in \mathbf{X}_{N}} \log \left(1-\rho^{d}\left(\mathbf{x}_{i}\right)\right)
\end{aligned}
$$

Log-likelihood

- Denote with $\tilde{g}\left(\mathbf{x}_{i} ; k, d\right)$ the function g applied to $\rho\left(\mathbf{x}_{i}\right)$;
- we compute the \log-likelihood $I(d)=\log \left(\tilde{g}\left(\mathbf{x}_{i} ; k, d\right)\right)$:

$$
\begin{aligned}
\|(d)= & \sum_{\mathbf{x}_{i} \in \mathbf{x}_{N}} \log \tilde{g}\left(\mathbf{x}_{i} ; k, d\right)=N \log k+N \log d+ \\
& (d-1) \sum_{\mathbf{x}_{i} \in \mathbf{X}_{N}} \log \rho\left(\mathbf{x}_{i}\right)+(k-1) \sum_{\mathbf{x}_{i} \in \mathbf{X}_{N}} \log \left(1-\rho^{d}\left(\mathbf{x}_{i}\right)\right)
\end{aligned}
$$

$M_{i N D}^{\text {MLk }}$, MiND $_{\text {MLi }}$, MiND $_{\text {ML1 }}$

- One estimate for d is obtained solving $\frac{\partial \|}{\partial d}=0$:

$$
\frac{N}{d}+\sum_{\mathbf{x}_{i} \in \mathbf{X}_{N}}\left(\log \rho\left(\mathbf{x}_{i}\right)-(k-1) \frac{\rho^{d}\left(\mathbf{x}_{i}\right) \log \rho\left(\mathbf{x}_{i}\right)}{1-\rho^{d}\left(\mathbf{x}_{i}\right)}\right)=0
$$

- Notice that choosing $k=1$, we obtain the MLE algorithm.

Log-likelihood

- Denote with $\tilde{g}\left(\mathbf{x}_{i} ; k, d\right)$ the function g applied to $\rho\left(\mathbf{x}_{i}\right)$;
- we compute the \log-likelihood $\Pi(d)=\log \left(\tilde{g}\left(\mathbf{x}_{i} ; k, d\right)\right)$:

$$
\begin{aligned}
\|(d)= & \sum_{\mathbf{x}_{i} \in \mathbf{X}_{N}} \log \tilde{g}\left(\mathbf{x}_{i} ; k, d\right)=N \log k+N \log d+ \\
& (d-1) \sum_{\mathbf{x}_{i} \in \mathbf{X}_{N}} \log \rho\left(\mathbf{x}_{i}\right)+(k-1) \sum_{\mathbf{x}_{i} \in \mathbf{X}_{N}} \log \left(1-\rho^{d}\left(\mathbf{x}_{i}\right)\right)
\end{aligned}
$$

$M_{i N D_{M L k}}, M_{i N D}^{M L i}, M i N D_{\text {ML1 }}$

- One estimate for d is obtained solving $\frac{\partial \|}{\partial d}=0$:

$$
\frac{N}{d}+\sum_{\mathbf{x}_{i} \in \mathbf{x}_{N}}\left(\log \rho\left(\mathbf{x}_{i}\right)-(k-1) \frac{\rho^{d}\left(\mathbf{x}_{i}\right) \log \rho\left(\mathbf{x}_{i}\right)}{1-\rho^{d}\left(\mathbf{x}_{i}\right)}\right)=0
$$

- Notice that choosing $k=1$, we obtain the MLE algorithm.

Introduction

pdf comparison

- Call $\hat{g}(r ; k)$ an estimate of $g(r ; k, d)$ computed with $\rho\left(\mathbf{x}_{i}\right)$;
- d is obtained maximizing the Kullback-Leibler divergence:

- we draw N samples from the d-dimensional uniform ball: $\mathbf{y}=\frac{u^{d}}{\|_{\mathrm{y}} \mathrm{l}} \overline{\mathbf{y}} . \quad \overline{\mathbf{y}} \sim \mathcal{N}\left(. \mid \mathbf{0}_{d}, 1\right) . \quad \| \sim U(0,1)$
- we compute ρ over X and Y obtaining \hat{r} and \check{r}_{d};
- estimates \hat{g} and \check{g}_{d} can be computed as follows:

with $\hat{\rho}\left(\hat{r}_{i}\right)$ and $\breve{\rho}_{d}\left(\hat{r}_{i}\right)$ NN distances for \hat{r}_{i} in \hat{r} and \breve{r}_{d}

pdf comparison

- Call $\hat{g}(r ; k)$ an estimate of $g(r ; k, d)$ computed with $\rho\left(\mathbf{x}_{i}\right)$
- \hat{d} is obtained maximizing the Kullback-Leibler divergence:

$$
\hat{d}=\underset{1 \leq d \leq D}{\operatorname{argmin}} \int_{0}^{1} \hat{g}(r ; k) \log \left(\frac{\hat{g}(r ; k)}{g(r ; k, d)}\right) d r
$$

- we draw N samples from the d-dimensional uniform ball:

- we compute ρ over \mathbf{X} and \mathbf{Y} obtaining $\hat{\mathbf{r}}$ and $\check{\mathbf{r}}_{d}$;
- estimates \hat{g} and \mathscr{g}_{d} can be computed as follows:

with $\hat{\rho}\left(\hat{r}_{i}\right)$ and $\check{\rho}_{d}\left(\hat{r}_{i}\right)$ NN distances for \hat{r}_{i} in \hat{r} and \check{r}_{d}.

pdf comparison

- Call $\hat{g}(r ; k)$ an estimate of $g(r ; k, d)$ computed with $\rho\left(\mathbf{x}_{i}\right)$;
- \hat{d} is obtained maximizing the Kullback-Leibler divergence:

- we draw N samples from the d-dimensional uniform ball:

$$
\mathbf{y}=\frac{u^{\frac{1}{d}}}{\|\overline{\mathbf{y}}\|} \overline{\mathbf{y}}, \quad \overline{\mathbf{y}} \sim \mathcal{N}\left(\cdot \mid \mathbf{0}_{d}, 1\right), \quad u \sim U(0,1)
$$

- we compute ρ over \mathbf{X} and \mathbf{Y} obtaining $\hat{\mathbf{r}}$ and \check{r}_{d}; - estimates \hat{g} and \check{g}_{d} can be computed as follows:

with $\hat{\rho}\left(\hat{r}_{i}\right)$ and $\check{\rho}_{d}\left(\hat{r}_{i}\right)$ NN distances for \hat{r}_{i} in \hat{r} and \check{r}_{d}

Introduction

pdf comparison

- Call $\hat{g}(r ; k)$ an estimate of $g(r ; k, d)$ computed with $\rho\left(\mathbf{x}_{i}\right)$;
- \hat{d} is obtained maximizing the Kullback-Leibler divergence:

- we draw N samples from the d-dimensional uniform ball:

- we compute ρ over \mathbf{X} and \mathbf{Y} obtaining $\hat{\mathbf{r}}$ and $\check{\mathbf{r}}_{d}$;
- estimates \hat{g} and \check{g}_{d} can be computed as follows:

with $\hat{\rho}\left(\hat{r}_{i}\right)$ and $\check{\rho}_{d}\left(\hat{r}_{i}\right)$ NN distances for \hat{r}_{i} in \hat{r} and \check{r}_{d}

pdf comparison

- Call $\hat{g}(r ; k)$ an estimate of $g(r ; k, d)$ computed with $\rho\left(\mathbf{x}_{i}\right)$;
- \hat{d} is obtained maximizing the Kullback-Leibler divergence:

- we draw N samples from the d-dimensional uniform ball:

- estimates \hat{g} and \check{g}_{d} can be computed as follows:

$$
\hat{g}\left(\hat{r}_{i} ; k\right)=\frac{1 /(N-1)}{2 \hat{\rho}\left(\hat{r}_{i}\right)} \quad \check{g}_{d}\left(\hat{r}_{i} ; k\right)=\frac{1 / N}{2 \check{\rho}_{d}\left(\hat{r}_{i}\right)}
$$

with $\hat{\rho}\left(\hat{r}_{i}\right)$ and $\check{\rho}_{d}\left(\hat{r}_{i}\right)$ NN distances for \hat{r}_{i} in $\hat{\mathbf{r}}$ and $\check{\mathbf{r}}_{d}$.

Introduction

MiND ${ }_{\text {KL }}$

- We estimate the KL div by means of the Wang's algorithm ${ }^{\text {a }}$;
- The estimate of $K L\left(\hat{g}, \check{g}_{d}\right)$ becomes:

- Using this $K L$ approximation, d can be estimated as:

- The proposed estimator is consistent, that is $\lim _{N \rightarrow \infty} d=d$

[^0]
MiND ${ }_{\text {KL }}$

- We estimate the KL div by means of the Wang's algorithm ${ }^{\text {a }}$;
- The estimate of $K L\left(\hat{g}, \check{g}_{d}\right)$ becomes:

$$
\hat{K} L\left(\hat{g}, \check{g}_{d}\right)=\frac{1}{N} \sum_{i=1}^{N} \log \frac{\hat{g}\left(\hat{r}_{i} ; k\right)}{\breve{g}_{d}\left(\hat{r}_{i} ; k\right)}
$$

- Using this KL approximation, d can be estimated as:

- The proposed estimator is consistent, that is $\lim _{N \rightarrow \infty} d=d$

[^1]
MiND ${ }_{\text {KL }}$

- We estimate the KL div by means of the Wang's algorithm ${ }^{\text {a }}$;
- The estimate of $K L\left(\hat{g}, \check{g}_{d}\right)$ becomes:

$$
\hat{K} L\left(\hat{g}, \check{g}_{d}\right)=\frac{1}{N} \sum_{i=1}^{N} \log \frac{\hat{g}\left(\hat{r}_{i} ; k\right)}{\check{g}_{d}\left(\hat{r}_{i} ; k\right)}
$$

- Using this $K L$ approximation, d can be estimated as:

$$
\hat{d}=\underset{d \in\{1 . . D\}}{\operatorname{argmin}}\left(\log \frac{N}{N-1}+\frac{1}{N} \sum_{i=1}^{N} \log \frac{\hat{\rho}\left(\hat{r}_{i}\right)}{\check{\rho}_{d}\left(\hat{r}_{i}\right)}\right)
$$

- The proposed estimator is consistent, that is $\lim _{N \rightarrow \infty} \hat{d}=d$.

[^2]
MiND ${ }_{K L}$

- We estimate the KL div by means of the Wang's algorithm ${ }^{\text {a }}$;
- The estimate of $K L\left(\hat{g}, \check{g}_{d}\right)$ becomes:

$$
\hat{K} L\left(\hat{g}, \check{g}_{d}\right)=\frac{1}{N} \sum_{i=1}^{N} \log \frac{\hat{g}\left(\hat{r}_{i} ; k\right)}{\check{g}_{d}\left(\hat{r}_{i} ; k\right)}
$$

- Using this $K L$ approximation, d can be estimated as:

$$
\hat{d}=\underset{d \in\{1 . . D\}}{\operatorname{argmin}}\left(\log \frac{N}{N-1}+\frac{1}{N} \sum_{i=1}^{N} \log \frac{\hat{\rho}\left(\hat{r}_{i}\right)}{\check{\rho}_{d}\left(\hat{r}_{i}\right)}\right)
$$

- The proposed estimator is consistent, that is $\lim _{N \rightarrow \infty} \hat{d}=d$.

[^3]Introduction

- Tests were performed on both synthetic and real datasets;
- the Hein's generator ${ }^{a}$ was used for the synthetic datasets; - the real datasets are ISOMAP, MNIST, and Santa Fe.
a "Intrinsic dimensionality estimation of submanifolds in Euclidean space"

Dataset	Name	d	D	Description
Syntethic	$\begin{aligned} & \mathcal{M}_{1} \\ & \mathcal{M}_{2} \end{aligned}$	$\begin{gathered} 10 \\ 3 \end{gathered}$	$\begin{gathered} 11 \\ 5 \end{gathered}$	Uniformly sampled sphere linearly embedded. Affine space.
	\mathcal{M}_{3}	4	6	Concentrated figure, confusable with a 3 d one.
	\mathcal{M}_{4}	4	8	Non-linear manifold.
	M_{5}	2	3	2-d Helix
	\mathcal{M}_{6}	6	36	Non-linear manifold.
	\mathcal{M}_{7}	2	3	Swiss-Roll.
	\mathcal{M}_{8}	12	72	Non-linear manifold.
	M_{9}	20	20	Affine space.
	$\mathcal{M}_{10 a}$	10	11	Uniformly sampled hypercube.
	$\mathcal{M}_{10 b}$	17	18	Uniformly sampled hypercube.
	$\mathcal{M}_{10 c}$	24	25	Uniformly sampled hypercube.
	\wedge_{11}	2	3	Möebius band 10-times twisted.
	\mathcal{M}_{12}	20	20	Isotropic multivariate Gaussian.
	\mathcal{M}_{13}	1	13	Curve.
Real	$\mathcal{M}_{\text {Faces }}$	3	4096	ISOMAP face dataset.
	Mmisti	8-11	784	MNIST database (digit 1).
	$\mathcal{M}_{\text {SantaFe }}$	9	50	Santa Fe dataset (version D2).

- Tests were performed on both synthetic and real datasets;

- the Hein's generator ${ }^{a}$ was used for the synthetic datasets;
- the real datasets are ISOMAP, MNIST, and Santa Fe
a "Intrinsic dimensionality estimation of submanifolds in Euclidean space"

Dataset	Name	d	D	Description
Syntethic	$\begin{aligned} & \mathcal{M}_{1} \\ & \mathcal{M}_{2} \end{aligned}$	$\begin{gathered} 10 \\ 3 \\ \hline \end{gathered}$	$\begin{gathered} \hline 11 \\ 5 \\ \hline \end{gathered}$	Uniformly sampled sphere linearly embedded. Affine space.
	$\begin{gathered} \mathcal{M}_{3} \\ \mathcal{M}_{4} \end{gathered}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & \hline 6 \\ & 8 \end{aligned}$	Concentrated figure, confusable with a 3d one. Non-linear manifold.
	\mathcal{M}_{5}	2	3	2-d Helix
	\mathcal{M}_{6}	6	36	Non-linear manifold.
	\mathcal{M}_{7}	2	3	Swiss-Roll.
	\mathcal{M}_{8}	12	72	Non-linear manifold.
	\mathcal{M}_{9}	20	20	Affine space.
	$\mathcal{M}_{10 a}$	10	11	Uniformly sampled hypercube.
	$\mathcal{M}_{10 b}$	17	18	Uniformly sampled hypercube.
	$\boldsymbol{M}_{10 c}$	24	25	Uniformly sampled hypercube.
	\mathcal{M}_{11}	2	3	Möebius band 10-times twisted.
	\mathcal{M}_{12}	20	20	Isotropic multivariate Gaussian.
	\mathcal{M}_{13}	1	13	Curve.
Real	$\mathcal{M}_{\text {Faces }}$	3	4096	ISOMAP face dataset.
	$\mathcal{M}_{\text {MNIST1 }}$	8-11	784	MNIST database (digit 1).
	$\mathcal{M}_{\text {SantaFe }}$	9	50	Santa Fe dataset (version D2).

- Tests were performed on both synthetic and real datasets;
 \square

- the real datasets are ISOMAP, MNIST, and Santa Fe.

Dataset	Name	d	D	Description
Syntethic	$\begin{aligned} & \mathcal{M}_{1} \\ & \mathcal{M}_{2} \end{aligned}$	$\begin{gathered} 10 \\ 3 \end{gathered}$	$\begin{gathered} \hline 11 \\ 5 \end{gathered}$	Uniformly sampled sphere linearly embedded. Affine space.
	$\begin{aligned} & \mathcal{M}_{3} \\ & \mathcal{M}_{4} \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	$\begin{aligned} & \hline 6 \\ & 8 \end{aligned}$	Concentrated figure, confusable with a $3 d$ one. Non-linear manifold.
	\mathcal{M}_{5}	2	3	2-d Helix
	\mathcal{M}_{6}	6	36	Non-linear manifold.
	\mathcal{M}_{7}	2	3	Swiss-Roll.
	\mathcal{M}_{8}	12	72	Non-linear manifold.
	\mathcal{M}_{9}	20	20	Affine space.
	$\mathcal{M}_{10 a}$	10	11	Uniformly sampled hypercube.
	$\mathcal{M}_{10}{ }^{\text {b }}$	17	18	Uniformly sampled hypercube.
	$\boldsymbol{\mathcal { M }}_{10}{ }^{\text {c }}$	24	25	Uniformly sampled hypercube.
	\mathcal{M}_{11}	2	3	Möebius band 10-times twisted.
	\mathcal{M}_{12}	20	20	Isotropic multivariate Gaussian.
	\mathcal{M}_{13}	1	13	Curve.
Real	$\mathcal{M}_{\text {Faces }}$	3	4096	ISOMAP face dataset.
	$\boldsymbol{\mathcal { M }}_{\text {MNIST1 }}$	8-11	784	MNIST database (digit 1).
	$\mathcal{M}_{\text {SantaFe }}$	9	50	Santa Fe dataset (version D2).

Experimental Setting

Algorithms comparison

- State-of-the-art techniques and our algorithms were tested;
- The following parameters were used for testing:

Method	Synthetic	Real
PCA	Threshold $=0.025$	Threshold $=0.0025$
CD	None	None
MLE^{2}	$k_{1}=6 k_{2}=20$	$k_{1}=3 k_{2}=8$
kNNG_{1}	$k_{1}=6, k_{2}=20, \gamma=1, M=1, N=10$	$k_{1}=3, k_{2}=8, \gamma=1, M=1, N=10$
kNNG_{2}	$k_{1}=6, k_{2}=20, \gamma=1, M=10, N=1$	$k_{1}=3, k_{2}=8, \gamma=1, M=10, N=1$
MiND $_{\text {ML1 }}$	$k=1$	$k=1$
MiND $_{\text {MLL }}$	$k=10$	$k=5$
MiND $_{\text {MLi }}$	$k=10$	$k=5$
MiND $_{\text {KL }}$	$k=10$	$k=5$

- For comparison we computed the Mean Percentage Error:

Experimental Setting

Algorithms comparison

- State-of-the-art techniques and our algorithms were tested;
- The following parameters were used for testing:

Method	Synthetic	Real
$\begin{gathered} \hline \hline \mathrm{PCA} \\ \mathrm{CD} \end{gathered}$	$\text { Threshold }=0.025$ None	$\text { Threshold }=0.0025$ None
$\begin{gathered} \hline \text { MLE } \\ \mathrm{kNNG}_{1} \end{gathered}$	$\begin{gathered} k_{1}=6 \quad k_{2}=20 \\ k_{1}=6, k_{2}=20, \gamma=1, M=1, N=10 \end{gathered}$	$\begin{gathered} k_{1}=3 k_{2}=8 \\ k_{1}=3, k_{2}=8, \gamma=1, M=1, N=10 \end{gathered}$
$\begin{gathered} \mathrm{kNNG}_{2} \\ \mathrm{MiND}_{\mathrm{ML} 1} \end{gathered}$	$\begin{gathered} k_{1}=6, k_{2}=20, \gamma=1, M=10, N=1 \\ k=1 \end{gathered}$	$\begin{gathered} k_{1}=3, k_{2}=8, \gamma=1, M=10, N=1 \\ k=1 \end{gathered}$
$\begin{aligned} & \text { MiND }_{\text {MLk }} \\ & \text { MiND }_{\text {MLi }} \end{aligned}$	$\begin{aligned} & k=10 \\ & k=10 \end{aligned}$	$\begin{aligned} & k=5 \\ & k=5 \end{aligned}$
MiND ${ }_{\text {KL }}$	$k=10$	$k=5$

- For comparison we computed the Mean Percentage Error:

$$
\text { MPE }=\frac{100}{\# \boldsymbol{\mathcal { M }}} \sum_{\mathcal{M}} \frac{\left|\hat{d}_{\mathcal{M}}-d_{\mathcal{M}}\right|}{d_{\mathcal{M}}}
$$

Results

Synthetic datasets

Dataset	d	PCA	kNNG_{1}	kNNG_{2}	CD	MLE	Hein	MiND ${ }_{\text {ML1 }}$	MiND ${ }_{\text {MLK }}$	MiND ${ }_{\text {MLi }}$	$\mathrm{MiND}_{\text {KL }}$
\mathcal{M}_{13}	1	4.00	1.00	1.01	1.07	1.00	1.00	1.00	1.00	1.00	1.00
\mathcal{M}_{5}	2	3.00	1.96	2.00	1.98	1.96	2.00	1.97	1.97	2.00	2.00
\mathcal{M}_{7}	2	3.00	1.93	1.98	1.94	1.97	2.00	1.98	1.96	2.00	2.00
\mathcal{M}_{11}	2	3.00	1.96	2.01	2.23	2.30	2.00	1.97	1.97	2.00	2.00
\mathcal{M}_{2}	3	3.00	2.85	2.93	2.88	2.87	3.00	2.93	2.88	3.00	3.00
\mathcal{M}_{3}	4	4.00	3.80	4.22	3.16	3.82	4.00	3.89	3.84	4.00	4.25
\mathcal{M}_{4}	4	8.00	4.08	4.06	3.85	3.98	4.00	3.95	3.93	4.00	4.10
\mathcal{M}_{6}	6	12.00	6.53	13.99	5.91	6.45	5.95	5.91	6.17	6.00	6.65
\mathcal{M}_{1}	10	11.00	9.07	9.39	9.09	9.06	9.50	9.41	9.23	9.00	10.30
$\mathcal{M}_{10 a}$	10	10.00	8.35	9.00	8.04	8.22	8.75	8.68	8.38	8.25	9.40
\mathcal{M}_{8}	12	24.00	14.19	8.29	10.91	13.69	12.00	13.35	13.53	13.50	16.60
$\mathcal{M}_{10}{ }^{\text {b }}$	17	17.00	12.85	15.58	12.09	12.77	13.45	13.59	13.02	13.00	15.90
\mathcal{M}_{9}	20	20.00	14.87	17.07	13.60	14.54	15.15	15.49	14.90	15.00	18.10
\mathcal{M}_{12}	20	20.00	16.50	14.58	11.24	15.67	15.00	16.91	16.19	16.00	19.05
\mathcal{M}_{10}	24	24.00	17.26	23.68	15.48	16.80	17.70	18.10	17.24	17.15	22.50
MPE		50.67	11.20	16.23	15.38	12.03	7.65	8.32	10.02	9.14	6.26

Real datasets

Dataset	d	PCA	kNNG $_{1}$	kNNG $_{2}$	CD	MLE	Hein	MiND $_{\text {ML1 }}$	MiND $_{\text {MLk }}$	MiND $_{\text {MLi }}$	MiND $_{\text {KL }}$
$\mathcal{M}_{\text {Faces }}$	3	21.00	3.60	4.32	3.37	4.05	3.00	3.52	3.59	4.00	3.90
$\mathcal{M}_{\text {MNIST1 }}$	$8-11$	11.80	10.37	9.58	6.96	10.29	8.00	11.33	10.02	9.45	11.00
$\boldsymbol{M}_{\text {Santa Fe }}$	9	18.00	7.28	7.43	4.39	7.16	6.00	6.31	6.78	7.00	$\mathbf{7 . 6 0}$

Introduction

Conclusions and Future Works

Results

Conclusions

- To estimate the i.d. is a difficult task in case of small sample size, high dimension, and non-linearly embedded manifolds;
- statistic-based techniques are largely adopted for this purpose;
- we propose novel algorithms for the estimation of the i.d.;
- our aloorithms are robust to the choice of k and to the high dimensionality of the datasets.

Future Works

Conclusions

- To estimate the i.d. is a difficult task in case of small sample size, high dimension, and non-linearly embedded manifolds;
- statistic-based techniques are largely adopted for this purpose;
- we propose novel algorithms for the estimation of the i.d.;
- our algorithms are robust to the choice of k and to the high dimensionality of the datasets.

Future Works

Conclusions

- To estimate the i.d. is a difficult task in case of small sample size, high dimension, and non-linearly embedded manifolds;
- statistic-based techniaues are largely adonted for this nurnose
- we propose novel algorithms for the estimation of the i.d.;
- our algorithms are robust to the choice of k and to the high dimensionality of the datasets.

Future Works

Conclusions

- To estimate the i.d. is a difficult task in case of small sample size, high dimension, and non-linearly embedded manifolds;
- statistic-based techniques are largely adonted for this nurnose
- we propose novel algorithms for the estimation of the i.d.;
- our algorithms are robust to the choice of k and to the high dimensionality of the datasets.

Future Works

Conclusions

Future Works

- Relax the assumption of smoothness for the pdf f;
- define a local estimator, useful for multi-manifold learning problems having different intrinsic dimensions.

Conclusions

Future Works

- Relax the assumption of smoothness for the pdf f;
- define a local estimator, useful for multi-manifold learning problems having different intrinsic dimensions.

Any questions?

[^0]: ${ }^{a}$ "A nearest-neighbor approach to estimating divergence between continuous random vector"

[^1]: ${ }^{a}$ "A nearest-neighbor approach to estimating divergence between continuous random vector"

[^2]: a "A nearest-neighbor approach to estimating divergence between continuous random vector"

[^3]: a "A nearest-neighbor approach to estimating divergence between continuous random vector"

