Minimum Neighbor Distance Estimators of Intrinsic Dimension

G. Lombardi, A. Rozza, C. Ceruti, E. Casiraghi, and P. Campadelli {lombardi,rozza,ceruti,casiraghi,campadelli}@dsi.unimi.it

Università degli Studi di Milano

1/20

Outline

Introduction

- Problem Definition
- Related Works
- Our Approach

2 Our Algorithms

- Theoretical Background
- Maximum Likelihood Approaches
- pdf Comparison Approach
- 3 Algorithms' Evaluation
 - Datasets
 - Experimental Setting
 - Results

< 67 ▶

Problem Definition Related Works Our Approach

Motivation

- Many real life signals are high dimensional, but...
- ...the number of their 'useful' degrees of freedom low;
- often the data are assumed drawn from a low-dimensional manifold mapped in a high dimensional space (plus noise):
 x = ψ(z)+ν, x ∈ ℜ^D, z ~ M ≡ ℜ^d, ψ : ℜ^d → ℜ^D, ν ~ N

- Consider a dataset X_N = {x_i = ψ(z_i)}^N_{i=1} sampled from a manifold M ≡ R^d and embedded in R^D through a map ψ;
- assume the z_i sampled from *M* by means of a smooth pdf f;
- ullet assume the embedding defined by ψ to be proper;
- our aim is to estimate the intrinsic dimensionality d of M by means of the samples X_N ⊂ ℜ^D.

Problem Definition Related Works Our Approach

Motivation

- Many real life signals are high dimensional, but...
- ...the number of their 'useful' degrees of freedom low;
- often the data are assumed drawn from a low-dimensional manifold mapped in a high dimensional space (plus noise):
 x = ψ(z)+ν, x ∈ ℜ^D, z ~ M ≡ ℜ^d, ψ : ℜ^d → ℜ^D, ν ~ N

- Consider a dataset X_N = {x_i = ψ(z_i)}^N_{i=1} sampled from a manifold M ≡ R^d and embedded in R^D through a map ψ;
- assume the z_i sampled from *M* by means of a smooth pdf f;
- ullet assume the embedding defined by ψ to be proper;
- our aim is to estimate the intrinsic dimensionality d of M by means of the samples X_N ⊂ ℜ^D.

Problem Definition Related Works Our Approach

Motivation

- Many real life signals are high dimensional, but...
- ...the number of their 'useful' degrees of freedom low;
- often the data are assumed drawn from a low-dimensional manifold mapped in a high dimensional space (plus noise): $m_{res} = m_{res}^{res} m_{res}^{res} = m_{res}^{res} m_{res}^{re$

$$\mathbf{x} = \psi(\mathbf{z}) + \nu, \qquad \mathbf{x} \in \Re^D, \mathbf{z} \sim \mathcal{M} \equiv \Re^d, \psi : \Re^d \to \Re^D, \nu \sim \mathcal{N}$$

- Consider a dataset X_N = {x_i = ψ(z_i)}^N_{i=1} sampled from a manifold M ≡ R^d and embedded in R^D through a map ψ;
- assume the z_i sampled from *M* by means of a smooth pdf f;
- ullet assume the embedding defined by ψ to be proper;
- our aim is to estimate the intrinsic dimensionality d of M by means of the samples X_N ⊂ ℜ^D.

Problem Definition Related Works Our Approach

Motivation

- Many real life signals are high dimensional, but...
- ...the number of their 'useful' degrees of freedom low;
- often the data are assumed drawn from a low-dimensional manifold mapped in a high dimensional space (plus noise):
 x = ψ(z)+ν, x ∈ ℜ^D, z ~ M ≡ ℜ^d, ψ : ℜ^d → ℜ^D, ν ~ Λ

- Consider a dataset X_N = {x_i = ψ(z_i)}^N_{i=1} sampled from a manifold M ≡ ℜ^d and embedded in ℜ^D through a map ψ;
- assume the z_i sampled from \mathcal{M} by means of a smooth pdf f;
- assume the embedding defined by ψ to be proper;
- our aim is to estimate the intrinsic dimensionality d of \mathcal{M} by means of the samples $\mathbf{X}_N \subset \Re^D$.

Problem Definition Related Works Our Approach

Motivation

- Many real life signals are high dimensional, but...
- ...the number of their 'useful' degrees of freedom low;
- often the data are assumed drawn from a low-dimensional manifold mapped in a high dimensional space (plus noise):
 x = ψ(z)+ν, x ∈ ℝ^D, z ~ M ≡ ℝ^d, ψ : ℝ^d → ℝ^D, ν ~ N

- Consider a dataset X_N = {x_i = ψ(z_i)}^N_{i=1} sampled from a manifold M ≡ R^d and embedded in R^D through a map ψ;
- assume the z_i sampled from \mathcal{M} by means of a smooth pdf f;
- assume the embedding defined by ψ to be proper;
- our aim is to estimate the intrinsic dimensionality d of \mathcal{M} by means of the samples $\mathbf{X}_N \subset \Re^D$.

Problem Definition Related Works Our Approach

Motivation

- Many real life signals are high dimensional, but...
- ...the number of their 'useful' degrees of freedom low;
- often the data are assumed drawn from a low-dimensional manifold mapped in a high dimensional space (plus noise):
 x = ψ(z)+ν, x ∈ ℜ^D, z ~ M ≡ ℜ^d, ψ : ℜ^d → ℜ^D, ν ~ Λ

- Consider a dataset X_N = {x_i = ψ(z_i)}^N_{i=1} sampled from a manifold M ≡ R^d and embedded in R^D through a map ψ;
- assume the z_i sampled from \mathcal{M} by means of a smooth pdf f;
- assume the embedding defined by ψ to be proper;
- our aim is to estimate the intrinsic dimensionality d of \mathcal{M} by means of the samples $\mathbf{X}_N \subset \Re^D$.

Problem Definition Related Works Our Approach

Motivation

- Many real life signals are high dimensional, but...
- ...the number of their 'useful' degrees of freedom low;
- often the data are assumed drawn from a low-dimensional manifold mapped in a high dimensional space (plus noise):
 x = ψ(z)+ν, x ∈ ℜ^D, z ~ M ≡ ℜ^d, ψ : ℜ^d → ℜ^D, ν ~ Λ

- Consider a dataset X_N = {x_i = ψ(z_i)}^N_{i=1} sampled from a manifold M ≡ R^d and embedded in R^D through a map ψ;
- assume the z_i sampled from *M* by means of a smooth pdf f;
- \bullet assume the embedding defined by ψ to be proper;
- our aim is to estimate the intrinsic dimensionality d of \mathcal{M} by means of the samples $\mathbf{X}_N \subset \Re^D$.

Problem Definition Related Works Our Approach

Applications

Dimensionality reduction: First step for dimensionality reduction techniques (that generally require *d* as parameter).

Manifold learning: First step for manifold learning techniques. Parameter estimation: Estimates the number of eigenvalues to be retained, the number of dimensions for partial whitening algorithms, ...

Problem Definition Our Algorithms **Related Works** Algorithms' Evaluation **Our Approach** Conclusions and Future Works

Applications

Manifold learning: First step for manifold learning techniques.

Our Algorithms Algorithms' Evaluation Conclusions and Future Works Problem Definition Related Works Our Approach

Applications

Dimensionality reduction: First step for dimensionality reduction techniques (that generally require *d* as parameter).
Manifold learning: First step for manifold learning techniques.
Parameter estimation: Estimates the number of eigenvalues to be retained, the number of dimensions for partial whitening algorithms, ...

Problem Definition Related Works Our Approach

Problems arising with dimensionality

Curse of dimensionality: The number of samples N required for manifold learning grows exponentially with d;

Empty space: If *D* is high enough, splitting the space with a regular grid leaves most of the 'boxes' empty;

Lack of geometry: If *D* increases, geometry "disappears" and statistical properties arise; e.g. compression of norms.

Problem Definition Related Works Our Approach

Problems arising with dimensionality

Curse of dimensionality: The number of samples N required for manifold learning grows exponentially with d;

Empty space: If D is high enough, splitting the space with a regular grid leaves most of the 'boxes' empty;

Lack of geometry: If *D* increases, geometry "disappears" and statistical properties arise; e.g. compression of norms.

Problem Definition Related Works Our Approach

Problems arising with dimensionality

Curse of dimensionality: The number of samples N required for manifold learning grows exponentially with d;

Empty space: If *D* is high enough, splitting the space with a regular grid leaves most of the 'boxes' empty;

Lack of geometry: If *D* increases, geometry "disappears" and statistical properties arise; e.g. compression of norms.

Problem Definition Related Works Our Approach

Problems arising with dimensionality

Curse of dimensionality: The number of samples N required for manifold learning grows exponentially with d;Empty space: If D is high enough, splitting the space with a regular grid leaves most of the 'boxes' empty;

Lack of geometry: If *D* increases, geometry "disappears" and statistical properties arise; e.g. compression of norms.

Problem Definition Related Works Our Approach

Dimensionality estimation algorithms

Global/local

Global: The i.d. is estimated for the whole dataset.

Local: The i.d. is estimated for each point.

Linear/nonlinear

Linear: Assumes \mathcal{M} linearly embedded in \mathfrak{R}^D .

Nonlinear: Assumes the embedding proper (may be non-linear).

Geometrical/statistical

Geometrical: Uses geometric informations such as tangent space estimation (e.g. Tensor Voting Framework).

Statistical: Uses statistics on measures (e.g. Maximum Likelihood Estimation based on distances).

Problem Definition Related Works Our Approach

Dimensionality estimation algorithms

Global/local

Global: The i.d. is estimated for the whole dataset.

Local: The i.d. is estimated for each point.

Linear/nonlinear

Linear: Assumes \mathcal{M} linearly embedded in \Re^D . Nonlinear: Assumes the embedding proper (may be non-linear).

Geometrical/statistical

Geometrical: Uses geometric informations such as tangent space estimation (e.g. Tensor Voting Framework).

Statistical: Uses statistics on measures (e.g. Maximum Likelihood Estimation based on distances).

Problem Definition Related Works Our Approach

Dimensionality estimation algorithms

Global/local

Global: The i.d. is estimated for the whole dataset.

Local: The i.d. is estimated for each point.

Linear/nonlinear

Linear: Assumes \mathcal{M} linearly embedded in \mathfrak{R}^D .

Nonlinear: Assumes the embedding proper (may be non-linear).

Geometrical/statistical

Geometrical: Uses geometric informations such as tangent space estimation (e.g. Tensor Voting Framework).

Statistical: Uses statistics on measures (e.g. Maximum Likelihood Estimation based on distances).

Problem Definition Related Works Our Approach

Some state of the art techniques

PCA: Linear technique based on the estimation of maximal variance directions and thresholding. computes $\mathbb{E}[L(\mathbf{X})/N^{\alpha}]$ where $L(\mathbf{X})$ is a graph length Introduction Our Algorithms

Algorithms' Evaluation

Conclusions and Future Works

Problem Definition Related Works Our Approach

Some state of the art techniques

kNN Graph: K-Nearest Neighbors Graph based technique, computes $\mathbb{E} \left[L(\mathbf{X}) / N^{\alpha} \right]$ where $L(\mathbf{X})$ is a graph length measure, $\alpha = (d' - \gamma)/d'$ (1 < γ < d), and $\alpha = (d' - \gamma)/d'$; the limit with $N \to \infty$ of this quantity is finite and non-zero only for d' = d.

Our Algorithms Algorithms' Evaluation Conclusions and Future Works Problem Definition Related Works Our Approach

Some state of the art techniques

computes $\mathbb{E}[L(\mathbf{X})/N^{\alpha}]$ where $L(\mathbf{X})$ is a graph length Correlation Dimension: Based on the assumption that the number of samples covered by a sphere with radius r grows proportionally to r^d . An asymptotic smoothed version of this algorithm was proposed by Hein.

Our Algorithms Algorithms' Evaluation Conclusions and Future Works Problem Definition Related Works Our Approach

Some state of the art techniques

computes $\mathbb{E}[L(\mathbf{X})/N^{\alpha}]$ where $L(\mathbf{X})$ is a graph length Maximum Likelihood Estimation: Based on the maximization of likelihood for the probability distribution of neighboring distances with dependent variable d.

Problem Definition Related Works Our Approach

Some considerations

Statistics about distances

- Statistics are preferable in high dimensional spaces;
- norm compression depends on intrinsic dimensionality;
- the i.d. can be estimated exploiting the norm compression;
- the real pdf is difficult to be estimated, but simulation helps.

Locality

- Can be approximated by the kNN graph;
- consistent local statistics can be defined by means of the normalized k Nearest Neighbors distances;
- given k neighboring points, the closest ones are less affected by the curvature of the manifold *M*.

Introduction Our Algorithms

Algorithms' Evaluation

Conclusions and Future Works

Problem Definition Related Works Our Approach

Some considerations

Statistics about distances

- Statistics are preferable in high dimensional spaces;
- norm compression depends on intrinsic dimensionality;
- the i.d. can be estimated exploiting the norm compression;
- the real pdf is difficult to be estimated, but simulation helps.

Locality

- Can be approximated by the kNN graph;
- consistent local statistics can be defined by means of the normalized k Nearest Neighbors distances;
- given k neighboring points, the closest ones are less affected by the curvature of the manifold *M*.

Our Algorithms Algorithms' Evaluation Conclusions and Future Works Problem Definition Related Works Our Approach

Some considerations

Statistics about distances

- Statistics are preferable in high dimensional spaces;
- norm compression depends on intrinsic dimensionality;
- the i.d. can be estimated exploiting the norm compression;
- the real pdf is difficult to be estimated, but simulation helps.

Locality

- Can be approximated by the kNN graph;
- consistent local statistics can be defined by means of the normalized k Nearest Neighbors distances;
- given k neighboring points, the closest ones are less affected by the curvature of the manifold *M*.

Our Algorithms Algorithms' Evaluation Conclusions and Future Works Problem Definition Related Works Our Approach

Some considerations

Statistics about distances

- Statistics are preferable in high dimensional spaces;
- norm compression depends on intrinsic dimensionality;
- the i.d. can be estimated exploiting the norm compression;
- the real pdf is difficult to be estimated, but simulation helps.

Locality

- Can be approximated by the kNN graph;
- consistent local statistics can be defined by means of the normalized k Nearest Neighbors distances;
- given k neighboring points, the closest ones are less affected by the curvature of the manifold *M*.

Our Algorithms Algorithms' Evaluation Conclusions and Future Works Problem Definition Related Works Our Approach

Some considerations

Statistics about distances

- Statistics are preferable in high dimensional spaces;
- norm compression depends on intrinsic dimensionality;
- the i.d. can be estimated exploiting the norm compression;
- the real pdf is difficult to be estimated, but simulation helps.

Locality

- Can be approximated by the kNN graph;
- consistent local statistics can be defined by means of the normalized k Nearest Neighbors distances;
- given k neighboring points, the closest ones are less affected by the curvature of the manifold *M*.

Our Algorithms Algorithms' Evaluation Conclusions and Future Works Problem Definition Related Works Our Approach

Some considerations

Statistics about distances

- Statistics are preferable in high dimensional spaces;
- norm compression depends on intrinsic dimensionality;
- the i.d. can be estimated exploiting the norm compression;
- the real pdf is difficult to be estimated, but simulation helps.

Locality

- Can be approximated by the kNN graph;
- consistent local statistics can be defined by means of the normalized k Nearest Neighbors distances;
- given k neighboring points, the closest ones are less affected by the curvature of the manifold \mathcal{M} .

Our Algorithms Algorithms' Evaluation Conclusions and Future Works Problem Definition Related Works Our Approach

Some considerations

Statistics about distances

- Statistics are preferable in high dimensional spaces;
- norm compression depends on intrinsic dimensionality;
- the i.d. can be estimated exploiting the norm compression;
- the real pdf is difficult to be estimated, but simulation helps.

Locality

- Can be approximated by the kNN graph;
- consistent local statistics can be defined by means of the normalized *k* Nearest Neighbors distances;
- given k neighboring points, the closest ones are less affected by the curvature of the manifold \mathcal{M} .

Our Algorithms Algorithms' Evaluation Conclusions and Future Works Problem Definition Related Works Our Approach

Our approach

Exploited pdf related to distances

۲

To reduce the bias due to manifold curvature, we extract just the first neighbor distance normalized by the (k+1)-th distance;

• only *N* distances are available (one per point), but a robust estimator is defined;

• a maximum likelihood solution can be determined.

- real and synthetic pdfs are compared via KL divergence;
- Iocally uniform distribution is the limit in case of smooth pdf

Our Algorithms Algorithms' Evaluation Conclusions and Future Works Problem Definition Related Works Our Approach

Our approach

Exploited pdf related to distances

To reduce the bias due to manifold curvature, we extract just the first neighbor distance normalized by the (k+1)-th distance;

• only *N* distances are available (one per point), but a robust estimator is defined;

a maximum likelihood solution can be determined.

- real and synthetic pdfs are compared via KL divergence.
- Iocally uniform distribution is the limit in case of smooth pdf

Our Algorithms Algorithms' Evaluation Conclusions and Future Works Problem Definition Related Works Our Approach

Our approach

Exploited pdf related to distances

To reduce the bias due to manifold curvature, we extract just the first neighbor distance normalized by the (k+1)-th distance;

• only *N* distances are available (one per point), but a robust estimator is defined;

• a maximum likelihood solution can be determined.

- real and synthetic pdfs are compared via KL divergence;
- Iocally uniform distribution is the limit in case of smooth pdf

Problem Definition **Our Algorithms Related Works** Algorithms' Evaluation **Our Approach** Conclusions and Future Works

Our approach

- real and synthetic pdfs are compared via KL divergence;
- locally uniform distribution is the limit in case of smooth pdf.

Our Algorithms Algorithms' Evaluation Conclusions and Future Works Problem Definition Related Works Our Approach

Our approach

Exploited pdf related to distances

To reduce the bias due to manifold curvature, we extract just the first neighbor distance normalized by the (k+1)-th distance;

 only N distances are available (one per point), but a robust estimator is defined;

a maximum likelihood solution can be determined.

- real and synthetic pdfs are compared via KL divergence;
- locally uniform distribution is the limit in case of smooth pdf.

Theoretical Background Maximum Likelihood Approaches pdf Comparison Approach

Local uniformity

Local pdf

Denoting with $\mathcal{B}_d(\mathbf{0}, 1)$ the unit ball, we define the ϵ -local pdf as:

$$f_{\epsilon}(\mathsf{z}) = \frac{f(\epsilon \mathsf{z}) \chi_{\mathcal{B}_{d}(\mathbf{0},1)}(\mathsf{z})}{\int_{\mathsf{t} \in \mathcal{B}_{d}(\mathbf{0},1)} f(\epsilon \mathsf{t}) d\mathsf{t}}$$

Theorem 1

Given $\{\epsilon_i\} \to 0^+$, $f_{\epsilon}(\mathbf{z})$ describes a sequence of pdf having the unit *d*-dimensional ball as support; such sequence converges uniformly to the uniform distribution \mathbf{B}_d in the ball $\mathcal{B}_d(\mathbf{0}, 1)$.

Theoretical Background Maximum Likelihood Approaches pdf Comparison Approach

Local uniformity

Local pdf

Denoting with $\mathcal{B}_d(\mathbf{0}, 1)$ the unit ball, we define the ϵ -local pdf as:

$$f_{\epsilon}(\mathsf{z}) = \frac{f(\epsilon \mathsf{z}) \chi_{\mathcal{B}_{d}(\mathbf{0},1)}(\mathsf{z})}{\int_{\mathsf{t} \in \mathcal{B}_{d}(\mathbf{0},1)} f(\epsilon \mathsf{t}) d\mathsf{t}}$$

Theorem 1

Given $\{\epsilon_i\} \to 0^+$, $f_{\epsilon}(\mathbf{z})$ describes a sequence of pdf having the unit *d*-dimensional ball as support; such sequence converges uniformly to the uniform distribution \mathbf{B}_d in the ball $\mathcal{B}_d(\mathbf{0}, 1)$.

・ロト ・日本 ・モート ・モート

Theoretical Background Maximum Likelihood Approaches pdf Comparison Approach

A log-likelihood function

First neighbor distance

• Being $V_r = r^d V_1$, the pdf for the first NN distance g is:

$$g(r; k, d) = k dr^{d-1} (1 - r^d)^{k-1}$$

 Given the set X_{k+1} containing the k + 1 NN of x_i, its normalized minimum neighbor distance is defined as:

$$\rho(\mathbf{x}_i) = \min_{\mathbf{x}_j \in \bar{\mathbf{X}}_{k+1}} \frac{\|\mathbf{x}_i - \mathbf{x}_j\|}{\|\mathbf{x}_i - \hat{\mathbf{x}}\|}, \qquad \hat{\mathbf{x}} = \underset{\mathbf{x} \in \bar{\mathbf{X}}_{k+1}}{\operatorname{argmax}} \|\mathbf{x}_i - \mathbf{x}\|$$

- euclidean distances converge to geodetic ones when $N
 ightarrow \infty;$
- given the x smoothly distributed on *M*, the distribution of ρ converges to g(r; k, d).

Theoretical Background Maximum Likelihood Approaches pdf Comparison Approach

A log-likelihood function

First neighbor distance

• Being $V_r = r^d V_1$, the pdf for the first NN distance g is:

 $g(r; k, d) = k dr^{d-1} (1 - r^d)^{k-1}$

 Given the set X
 k+1 containing the k + 1 NN of x_i, its normalized minimum neighbor distance is defined as:

$$\rho(\mathbf{x}_i) = \min_{\mathbf{x}_j \in \bar{\mathbf{X}}_{k+1}} \frac{\|\mathbf{x}_i - \mathbf{x}_j\|}{\|\mathbf{x}_i - \hat{\mathbf{x}}\|}, \qquad \hat{\mathbf{x}} = \operatorname*{argmax}_{\mathbf{x} \in \bar{\mathbf{X}}_{k+1}} \|\mathbf{x}_i - \mathbf{x}\|$$

- euclidean distances converge to geodetic ones when $N
 ightarrow \infty;$
- given the x smoothly distributed on *M*, the distribution of ρ converges to g(r; k, d).

Theoretical Background Maximum Likelihood Approaches pdf Comparison Approach

A log-likelihood function

First neighbor distance

• Being $V_r = r^d V_1$, the pdf for the first NN distance g is:

$$g(r; k, d) = k dr^{d-1} (1 - r^d)^{k-1}$$

 Given the set X_{k+1} containing the k + 1 NN of x_i, its normalized minimum neighbor distance is defined as:

$$\rho(\mathbf{x}_i) = \min_{\mathbf{x}_j \in \bar{\mathbf{X}}_{k+1}} \frac{\|\mathbf{x}_i - \mathbf{x}_j\|}{\|\mathbf{x}_i - \hat{\mathbf{x}}\|}, \qquad \hat{\mathbf{x}} = \underset{\mathbf{x} \in \bar{\mathbf{X}}_{k+1}}{\operatorname{argmax}} \|\mathbf{x}_i - \mathbf{x}\|$$

- euclidean distances converge to geodetic ones when $N \to \infty$;
- given the x smoothly distributed on *M*, the distribution of ρ converges to g(r; k, d).

Theoretical Background Maximum Likelihood Approaches pdf Comparison Approach

A log-likelihood function

First neighbor distance

• Being $V_r = r^d V_1$, the pdf for the first NN distance g is:

$$g(r; k, d) = k dr^{d-1} (1 - r^d)^{k-1}$$

 Given the set X_{k+1} containing the k + 1 NN of x_i, its normalized minimum neighbor distance is defined as:

$$\rho(\mathbf{x}_i) = \min_{\mathbf{x}_j \in \bar{\mathbf{X}}_{k+1}} \frac{\|\mathbf{x}_i - \mathbf{x}_j\|}{\|\mathbf{x}_i - \hat{\mathbf{x}}\|}, \qquad \hat{\mathbf{x}} = \underset{\mathbf{x} \in \bar{\mathbf{X}}_{k+1}}{\operatorname{argmax}} \|\mathbf{x}_i - \mathbf{x}\|$$

- euclidean distances converge to geodetic ones when $N o \infty$;
- given the x smoothly distributed on *M*, the distribution of ρ converges to g(r; k, d).

Theoretical Background Maximum Likelihood Approaches pdf Comparison Approach

Log-likelihood

- Denote with $\tilde{g}(\mathbf{x}_i; k, d)$ the function g applied to $\rho(\mathbf{x}_i)$;
- we compute the log-likelihood $II(d) = \log(\tilde{g}(\mathbf{x}_i; k, d))$:

$$\begin{split} \mathcal{I}(d) &= \sum_{\mathbf{x}_i \in \mathbf{X}_N} \log \tilde{g}(\mathbf{x}_i; k, d) = N \log k + N \log d + \\ & (d-1) \sum_{\mathbf{x}_i \in \mathbf{X}_N} \log \rho(\mathbf{x}_i) + (k-1) \sum_{\mathbf{x}_i \in \mathbf{X}_N} \log \left(1 - \rho^d(\mathbf{x}_i)\right) \end{split}$$

MiND_{MLk}, MiND_{MLi}, MiND_{ML1}

• One estimate for d is obtained solving $\frac{\partial ll}{\partial d} = 0$:

$$\frac{N}{d} + \sum_{\mathbf{x}_i \in \mathbf{X}_N} \left(\log \rho(\mathbf{x}_i) - (k-1) \frac{\rho^d(\mathbf{x}_i) \log \rho(\mathbf{x}_i)}{1 - \rho^d(\mathbf{x}_i)} \right) = 1$$

• Notice that choosing k = 1, we obtain the MLE algorithm

Theoretical Background Maximum Likelihood Approaches pdf Comparison Approach

Log-likelihood

- Denote with $\tilde{g}(\mathbf{x}_i; k, d)$ the function g applied to $\rho(\mathbf{x}_i)$;
- we compute the log-likelihood $II(d) = \log(\tilde{g}(\mathbf{x}_i; k, d))$:

$$\begin{split} ll(d) &= \sum_{\mathbf{x}_i \in \mathbf{X}_N} \log \tilde{g}(\mathbf{x}_i; k, d) = N \log k + N \log d + \\ & (d-1) \sum_{\mathbf{x}_i \in \mathbf{X}_N} \log \rho(\mathbf{x}_i) + (k-1) \sum_{\mathbf{x}_i \in \mathbf{X}_N} \log \left(1 - \rho^d(\mathbf{x}_i)\right) \end{split}$$

MiND_{MLk}, MiND_{MLi}, MiND_{ML1}

• One estimate for d is obtained solving $\frac{\partial ll}{\partial d} = 0$:

$$\frac{N}{d} + \sum_{\mathbf{x}_i \in \mathbf{X}_{H}} \left(\log \rho(\mathbf{x}_i) - (k-1) \frac{\rho^d(\mathbf{x}_i) \log \rho(\mathbf{x}_i)}{1 - \rho^d(\mathbf{x}_i)} \right) = 0$$

Notice that choosing k = 1, we obtain the MLE algorithm.

Theoretical Background Maximum Likelihood Approaches pdf Comparison Approach

Log-likelihood

- Denote with $\tilde{g}(\mathbf{x}_i; k, d)$ the function g applied to $\rho(\mathbf{x}_i)$;
- we compute the log-likelihood $II(d) = \log(\tilde{g}(\mathbf{x}_i; k, d))$:

$$ll(d) = \sum_{\mathbf{x}_i \in \mathbf{X}_N} \log \tilde{g}(\mathbf{x}_i; k, d) = N \log k + N \log d + (d-1) \sum_{\mathbf{x}_i \in \mathbf{X}_N} \log \rho(\mathbf{x}_i) + (k-1) \sum_{\mathbf{x}_i \in \mathbf{X}_N} \log (1 - \rho^d(\mathbf{x}_i))$$

MiND_{MLk}, MiND_{MLi}, MiND_{ML1}

• One estimate for d is obtained solving $\frac{\partial II}{\partial d} = 0$:

$$\frac{N}{d} + \sum_{\mathbf{x}_i \in \mathbf{X}_N} \left(\log \rho(\mathbf{x}_i) - (k-1) \frac{\rho^d(\mathbf{x}_i) \log \rho(\mathbf{x}_i)}{1 - \rho^d(\mathbf{x}_i)} \right) = 0$$

• Notice that choosing k = 1, we obtain the MLE algorithm.

Theoretical Background Maximum Likelihood Approaches pdf Comparison Approach

Log-likelihood

- Denote with $\tilde{g}(\mathbf{x}_i; k, d)$ the function g applied to $\rho(\mathbf{x}_i)$;
- we compute the log-likelihood $II(d) = \log(\tilde{g}(\mathbf{x}_i; k, d))$:

$$ll(d) = \sum_{\mathbf{x}_i \in \mathbf{X}_N} \log \tilde{g}(\mathbf{x}_i; k, d) = N \log k + N \log d + (d-1) \sum_{\mathbf{x}_i \in \mathbf{X}_N} \log \rho(\mathbf{x}_i) + (k-1) \sum_{\mathbf{x}_i \in \mathbf{X}_N} \log (1 - \rho^d(\mathbf{x}_i))$$

MiND_{MLk}, MiND_{MLi}, MiND_{ML1}

• One estimate for d is obtained solving $\frac{\partial II}{\partial d} = 0$:

$$\frac{N}{d} + \sum_{\mathbf{x}_i \in \mathbf{X}_N} \left(\log \rho(\mathbf{x}_i) - (k-1) \frac{\rho^d(\mathbf{x}_i) \log \rho(\mathbf{x}_i)}{1 - \rho^d(\mathbf{x}_i)} \right) = 0$$

• Notice that choosing k = 1, we obtain the MLE algorithm.

Theoretical Background Maximum Likelihood Approaches pdf Comparison Approach

pdf comparison

Call ĝ(r; k) an estimate of g(r; k, d) computed with ρ(x_i);
 d̂ is obtained maximizing the Kullback-Leibler divergence:

$$\hat{d} = \underset{1 \le d \le D}{\operatorname{argmin}} \int_{0}^{1} \hat{g}(r; k) \log \left(\frac{\hat{g}(r; k)}{g(r; k, d)} \right) dr$$

we draw N samples from the d-dimensional uniform ball: y = ^{u¹/_d} y
, y
~ N(·|0_d, 1), u ~ U(0, 1)
we compute ρ over X and Y obtaining r
 and r
 d;
estimates g
 and g
 d can be computed as follows:

$$\hat{g}(\hat{r}_i;k) = rac{1/(N-1)}{2\hat{
ho}(\hat{r}_i)} \qquad \check{g}_d(\hat{r}_i;k) = rac{1/N}{2\check{
ho}_d(\hat{r}_i)}$$

with $\hat{
ho}(\hat{r}_i)$ and $\check{
ho}_d(\hat{r}_i)$ NN distances for \hat{r}_i in \hat{r} and \check{r}_d

Theoretical Background Maximum Likelihood Approaches pdf Comparison Approach

pdf comparison

Call ĝ(r; k) an estimate of g(r; k, d) computed with ρ(x_i);
 d̂ is obtained maximizing the Kullback-Leibler divergence:

$$\hat{d} = \underset{1 \le d \le D}{\operatorname{argmin}} \int_0^1 \hat{g}(r; k) \log \left(\frac{\hat{g}(r; k)}{g(r; k, d)} \right) dr$$

we draw N samples from the d-dimensional uniform ball: y = ^{u¹/_d}/_{||y||} y
, y
~ N(·|0_d, 1), u ~ U(0, 1)
we compute ρ over X and Y obtaining r
 and r
 d;
estimates g
 and g
 d can be computed as follows:

$$\hat{g}(\hat{r}_i;k) = rac{1/(N-1)}{2\hat{
ho}(\hat{r}_i)} \qquad \check{g}_d(\hat{r}_i;k) = rac{1/N}{2\check{
ho}_d(\hat{r}_i)}$$

with $\hat{
ho}(\hat{r}_i)$ and $\check{
ho}_d(\hat{r}_i)$ NN distances for \hat{r}_i in \hat{r} and \check{r}_d .

Theoretical Background Maximum Likelihood Approaches pdf Comparison Approach

pdf comparison

Call ĝ(r; k) an estimate of g(r; k, d) computed with ρ(x_i);
d̂ is obtained maximizing the Kullback-Leibler divergence:

$$\hat{d} = \underset{1 \le d \le D}{\operatorname{argmin}} \int_{0}^{1} \hat{g}(r; k) \log \left(\frac{\hat{g}(r; k)}{g(r; k, d)} \right) dk$$

• we draw N samples from the d-dimensional uniform ball:

$$\mathbf{y} = rac{u\hat{\sigma}}{\|ar{\mathbf{y}}\|} \, ar{\mathbf{y}}, \qquad ar{\mathbf{y}} \sim \mathcal{N}\left(\cdot | \mathbf{0}_d, 1\right), \qquad u \sim U(0, 1)$$

we compute ρ over X and Y obtaining r̂ and r_d;
estimates ĝ and ğ_d can be computed as follows:

$$\hat{g}(\hat{r}_i;k) = rac{1/(N-1)}{2\hat{
ho}(\hat{r}_i)} \qquad \check{g}_d(\hat{r}_i;k) = rac{1/N}{2\check{
ho}_d(\hat{r}_i)}$$

with $\hat{
ho}(\hat{r}_i)$ and $\check{
ho}_d(\hat{r}_i)$ NN distances for \hat{r}_i in \hat{r} and \check{r}_d

Theoretical Background Maximum Likelihood Approaches pdf Comparison Approach

pdf comparison

Call ĝ(r; k) an estimate of g(r; k, d) computed with ρ(x_i);
d̂ is obtained maximizing the Kullback-Leibler divergence:

$$\hat{d} = \underset{1 \le d \le D}{\operatorname{argmin}} \int_{0}^{1} \hat{g}(r; k) \log \left(\frac{\hat{g}(r; k)}{g(r; k, d)} \right) dr$$

- we draw *N* samples from the *d*-dimensional uniform ball: $\mathbf{y} = \frac{u^{\frac{1}{d}}}{\|\mathbf{\bar{y}}\|} \mathbf{\bar{y}}, \quad \mathbf{\bar{y}} \sim \mathcal{N}(\cdot | \mathbf{0}_d, 1), \quad u \sim U(0, 1)$
- we compute ρ over X and Y obtaining r̂ and ř_d;
 estimates ĝ and ğ_d can be computed as follows:

$$\hat{g}(\hat{r}_i;k) = rac{1/(N-1)}{2\hat{
ho}(\hat{r}_i)}$$
 $\check{g}_d(\hat{r}_i;k) = rac{1/N}{2\check{
ho}_d(\hat{r}_i)}$

with $\hat{\rho}(\hat{r}_i)$ and $\check{\rho}_d(\hat{r}_i)$ NN distances for \hat{r}_i in $\hat{\mathbf{r}}$ and $\check{\mathbf{r}}_d$.

Theoretical Background Maximum Likelihood Approaches pdf Comparison Approach

pdf comparison

Call ĝ(r; k) an estimate of g(r; k, d) computed with ρ(x_i);
d̂ is obtained maximizing the Kullback-Leibler divergence:

$$\hat{d} = \underset{1 \le d \le D}{\operatorname{argmin}} \int_{0}^{1} \hat{g}(r; k) \log \left(\frac{\hat{g}(r; k)}{g(r; k, d)} \right) dr$$

- we draw N samples from the d-dimensional uniform ball: $\mathbf{y} = \frac{u^{\frac{1}{d}}}{\|\mathbf{\bar{y}}\|} \mathbf{\bar{y}}, \quad \mathbf{\bar{y}} \sim \mathcal{N}(\cdot | \mathbf{0}_d, 1), \quad u \sim U(0, 1)$ • we compute ρ over X and Y obtaining $\hat{\mathbf{r}}$ and $\check{\mathbf{r}}_d$;
- estimates \hat{g} and \check{g}_d can be computed as follows:

$$\hat{g}(\hat{r}_i;k) = rac{1/(N-1)}{2\hat{
ho}(\hat{r}_i)} \qquad \check{g}_d(\hat{r}_i;k) = rac{1/N}{2\check{
ho}_d(\hat{r}_i)}$$

with $\hat{\rho}(\hat{r}_i)$ and $\check{\rho}_d(\hat{r}_i)$ NN distances for \hat{r}_i in $\hat{\mathbf{r}}$ and $\check{\mathbf{r}}_d$.

Theoretical Background Maximum Likelihood Approaches pdf Comparison Approach

$\mathtt{MiND}_{\mathtt{KL}}$

We estimate the KL div by means of the Wang's algorithm^a;
The estimate of KL(ĝ, ğ_d) becomes:

$$\hat{\mathcal{KL}}(\hat{g}, \check{g}_d) = \frac{1}{N} \sum_{i=1}^N \log \frac{\hat{g}(\hat{r}_i; k)}{\check{g}_d(\hat{r}_i; k)}$$

• Using this *KL* approximation, *d* can be estimated as:

$$\hat{d} = \operatorname*{argmin}_{d \in \{1..D\}} \left(\log \frac{N}{N-1} + \frac{1}{N} \sum_{i=1}^{N} \log \frac{\hat{\rho}(\hat{r}_i)}{\check{\rho}_d(\hat{r}_i)} \right)$$

- The proposed estimator is consistent, that is $\lim_{N\to\infty} \hat{d} = d$.
- ^a "A nearest-neighbor approach to estimating divergence between continuous random vector"

э

Theoretical Background Maximum Likelihood Approaches pdf Comparison Approach

$\mathtt{MiND}_{\mathtt{KL}}$

- We estimate the KL div by means of the Wang's algorithm^a;
- The estimate of $KL(\hat{g}, \check{g}_d)$ becomes:

$$\hat{\mathcal{KL}}(\hat{g},\check{g}_d) = \frac{1}{N} \sum_{i=1}^N \log \frac{\hat{g}(\hat{r}_i;k)}{\check{g}_d(\hat{r}_i;k)}$$

• Using this KL approximation, d can be estimated as:

$$\hat{d} = \underset{d \in \{1...D\}}{\operatorname{argmin}} \left(\log \frac{N}{N-1} + \frac{1}{N} \sum_{i=1}^{N} \log \frac{\hat{\rho}(\hat{r}_i)}{\check{\rho}_d(\hat{r}_i)} \right)$$

• The proposed estimator is consistent, that is $\lim_{N\to\infty} \hat{d} = d$.

^a "A nearest-neighbor approach to estimating divergence between continuous random vector"

э

Theoretical Background Maximum Likelihood Approaches pdf Comparison Approach

$\mathtt{MiND}_{\mathtt{KL}}$

- We estimate the KL div by means of the Wang's algorithm^a;
- The estimate of $KL(\hat{g}, \check{g}_d)$ becomes:

$$\hat{\mathcal{KL}}(\hat{g},\check{g}_d) = rac{1}{N}\sum_{i=1}^N \log rac{\hat{g}(\hat{r}_i;k)}{\check{g}_d(\hat{r}_i;k)}$$

• Using this KL approximation, d can be estimated as:

$$\hat{d} = \operatorname*{argmin}_{d \in \{1..D\}} \left(\log \frac{N}{N-1} + \frac{1}{N} \sum_{i=1}^{N} \log \frac{\hat{\rho}(\hat{r}_i)}{\check{\rho}_d(\hat{r}_i)} \right)$$

• The proposed estimator is consistent, that is $\lim_{N\to\infty} \hat{d} = d$.

э

^a "A nearest-neighbor approach to estimating divergence between continuous random vector"

Theoretical Background Maximum Likelihood Approaches pdf Comparison Approach

${\tt MiND}_{\rm KL}$

- We estimate the KL div by means of the Wang's algorithm^a;
- The estimate of $KL(\hat{g}, \check{g}_d)$ becomes:

$$\hat{\mathcal{KL}}(\hat{g},\check{g}_d) = rac{1}{N}\sum_{i=1}^N \log rac{\hat{g}(\hat{r}_i;k)}{\check{g}_d(\hat{r}_i;k)}$$

• Using this KL approximation, d can be estimated as:

$$\hat{d} = \operatorname*{argmin}_{d \in \{1..D\}} \left(\log \frac{N}{N-1} + \frac{1}{N} \sum_{i=1}^{N} \log \frac{\hat{\rho}(\hat{r}_i)}{\check{\rho}_d(\hat{r}_i)} \right)$$

• The proposed estimator is consistent, that is $\lim_{N\to\infty} \hat{d} = d$.

э

^a "A nearest-neighbor approach to estimating divergence between continuous random vector"

Datasets Experimental Setting Results

• Tests were performed on both synthetic and real datasets;

the Hein's generator^a was used for the synthetic datasets;
the real datasets are ISOMAP, MNIST, and Santa Fe.

"Intrinsic dimensionality estimation of submanifolds in Euclidean space"

	\mathcal{M}_1		
	\mathcal{M}_2		
	\mathcal{M}_3	4	
	\mathcal{M}_4	4	
	\mathcal{M}_5		
	\mathcal{M}_6		
	\mathcal{M}_7		
	\mathcal{M}_8		
	\mathcal{M}_9		
	\mathcal{M}_{10a}		
	\mathcal{M}_{10b}		
	\mathcal{M}_{10c}	24	
	\mathcal{M}_{11}		
	\mathcal{M}_{12}		
	\mathcal{M}_{13}		
	$\mathcal{M}_{\mathrm{Faces}}$		
Real	$\mathcal{M}_{\mathrm{MNIST1}}$		
	$\mathcal{M}_{\mathrm{SantaFe}}$		Santa Fe dataset (version D2).

Gabriele Lombardi

MiND algorithms

Datasets Experimental Setting Results

• Tests were performed on both synthetic and real datasets;

- the Hein's generator^a was used for the synthetic datasets;
- the real datasets are ISOMAP, MNIST, and Santa Fe.

^a "Intrinsic dimensionality estimation of submanifolds in Euclidean space"

Dataset	Name	d	D	Description				
	\mathcal{M}_1	10	11	Uniformly sampled sphere linearly embedded.				
	\mathcal{M}_2	3	5	Affine space.				
	\mathcal{M}_3	4	6	Concentrated figure, confusable with a 3d one.				
	\mathcal{M}_4	4	8	Non-linear manifold.				
	\mathcal{M}_5	2	3	2-d Helix				
	\mathcal{M}_6	6	36	Non-linear manifold.				
	\mathcal{M}_7	2	3	Swiss-Roll.				
Syntethic	\mathcal{M}_8	12	72	Non-linear manifold.				
	\mathcal{M}_9	20	20	Affine space.				
	\mathcal{M}_{10a}	10	11	Uniformly sampled hypercube.				
	\mathcal{M}_{10b}	17	18	Uniformly sampled hypercube.				
	\mathcal{M}_{10c}	24	25	Uniformly sampled hypercube.				
	\mathcal{M}_{11}	2	3	Möebius band 10-times twisted.				
	\mathcal{M}_{12}	20	20	Isotropic multivariate Gaussian.				
	\mathcal{M}_{13}	1	13	Curve.				
	\mathcal{M}_{Faces}	3	4096	ISOMAP face dataset.				
Real	\mathcal{M}_{MNIST1}	8 - 11	784	MNIST database (digit 1).				
	$\mathcal{M}_{\text{SantaFe}}$	9	50	Santa Fe dataset (version D2).				

Gabriele Lombardi

Datasets Experimental Setting Results

• Tests were performed on both synthetic and real datasets;

the Hein's generator^a was used for the synthetic datasets;

• the real datasets are ISOMAP, MNIST, and Santa Fe.

" "Intrinsic dimensionality estimation of submanifolds in Euclidean space"

Dataset	Name	d	D	Description			
	\mathcal{M}_1	10	11	Uniformly sampled sphere linearly embedded.			
	\mathcal{M}_2	3	5	Affine space.			
	\mathcal{M}_3	4	6	Concentrated figure, confusable with a 3d one.			
	\mathcal{M}_4	4	8	Non-linear manifold.			
	\mathcal{M}_5	2	3	2-d Helix			
	\mathcal{M}_6	6	36	Non-linear manifold.			
	\mathcal{M}_7	2	3	Swiss-Roll.			
Syntethic	\mathcal{M}_8	12	72	Non-linear manifold.			
	\mathcal{M}_9	20	20	Affine space.			
	\mathcal{M}_{10a}	10	11	Uniformly sampled hypercube.			
	\mathcal{M}_{10b}	17	18	Uniformly sampled hypercube.			
	\mathcal{M}_{10c}	24	25	Uniformly sampled hypercube.			
	\mathcal{M}_{11}	2	3	Möebius band 10-times twisted.			
	M_{12}	20	20	Isotropic multivariate Gaussian.			
	\mathcal{M}_{13}	1	13	Curve.			
	\mathcal{M}_{Faces}	3	4096	ISOMAP face dataset.			
Real	\mathcal{M}_{MNIST1}	8 - 11	784	MNIST database (digit 1).			
	$\mathcal{M}_{\text{SantaFe}}$	9	50	Santa Fe dataset (version D2).			

Gabriele Lombardi

Datasets Experimental Setting Results

Experimental Setting

Algorithms comparison

- State-of-the-art techniques and our algorithms were tested;
- The following parameters were used for testing:

Method	Synthetic	Real			
PCA	Threshold $= 0.025$	Threshold = 0.0025			
CD	None	None			
MLE	$k_1 = 6 \ k_2 = 20$	$k_1 = 3 \ k_2 = 8$			
kNNG ₁	$k_1 = 6, k_2 = 20, \gamma = 1, M = 1, N = 10$	$k_1 = 3, k_2 = 8, \gamma = 1, M = 1, N = 10$			
kNNG ₂	$k_1 = 6, k_2 = 20, \gamma = 1, M = 10, N = 1$	$k_1 = 3, k_2 = 8, \gamma = 1, M = 10, N = 1$			
MiND _{ML1}	k = 1	k = 1			
MiND _{MLk}	k = 10	k = 5			
MiND _{MLi}	k = 10	k = 5			
MiND _{KL}	k = 10	k = 5			

• For comparison we computed the Mean Percentage Error:

$$MPE = \frac{100}{\#\mathcal{M}} \sum_{\mathcal{M}} \frac{|\hat{d}_{\mathcal{M}} - d_{\mathcal{M}}|}{d_{\mathcal{M}}}$$

< 🗇 🕨 <

Datasets Experimental Setting Results

Experimental Setting

Algorithms comparison

- State-of-the-art techniques and our algorithms were tested;
- The following parameters were used for testing:

Method	Synthetic	Real			
PCA	Threshold $= 0.025$	Threshold = 0.0025			
CD	None	None			
MLE	$k_1 = 6 \ k_2 = 20$	$k_1 = 3 \ k_2 = 8$			
kNNG ₁	$k_1 = 6, k_2 = 20, \gamma = 1, M = 1, N = 10$	$k_1 = 3, k_2 = 8, \gamma = 1, M = 1, N = 10$			
kNNG ₂	$k_1 = 6, k_2 = 20, \gamma = 1, M = 10, N = 1$	$k_1 = 3, k_2 = 8, \gamma = 1, M = 10, N = 1$			
MiND _{ML1}	k = 1	k = 1			
MiND _{MLk}	k = 10	k = 5			
MiND _{MLi}	k = 10	k = 5			
MiND _{KL}	k = 10	k = 5			

• For comparison we computed the Mean Percentage Error:

$$\mathtt{MPE} = \frac{100}{\#\mathcal{M}} \sum_{\mathcal{M}} \frac{|\hat{d}_{\mathcal{M}} - d_{\mathcal{M}}|}{d_{\mathcal{M}}}$$

< 17 <

Datasets Experimental Setting Results

Results

	- ,											
Dataset	d	PCA	kNNG1	kNNG ₂	CD	MLE	Hein	MiND _{ML1}	MiND _{MLk}	MiND _{MLi}	MiND _{KL}	
\mathcal{M}_{13}	1	4.00	1.00	1.01	1.07	1.00	1.00	1.00	1.00	1.00	1.00	
\mathcal{M}_5	2	3.00	1.96	2.00	1.98	1.96	2.00	1.97	1.97	2.00	2.00	
\mathcal{M}_7	2	3.00	1.93	1.98	1.94	1.97	2.00	1.98	1.96	2.00	2.00	
\mathcal{M}_{11}	2	3.00	1.96	2.01	2.23	2.30	2.00	1.97	1.97	2.00	2.00	
\mathcal{M}_2	3	3.00	2.85	2.93	2.88	2.87	3.00	2.93	2.88	3.00	3.00	
\mathcal{M}_3	4	4.00	3.80	4.22	3.16	3.82	4.00	3.89	3.84	4.00	4.25	
\mathcal{M}_4	4	8.00	4.08	4.06	3.85	3.98	4.00	3.95	3.93	4.00	4.10	
\mathcal{M}_6	6	12.00	6.53	13.99	5.91	6.45	5.95	5.91	6.17	6.00	6.65	
\mathcal{M}_1	10	11.00	9.07	9.39	9.09	9.06	9.50	9.41	9.23	9.00	10.30	
\mathcal{M}_{10a}	10	10.00	8.35	9.00	8.04	8.22	8.75	8.68	8.38	8.25	9.40	
\mathcal{M}_8	12	24.00	14.19	8.29	10.91	13.69	12.00	13.35	13.53	13.50	16.60	
\mathcal{M}_{10b}	17	17.00	12.85	15.58	12.09	12.77	13.45	13.59	13.02	13.00	15.90	
\mathcal{M}_9	20	20.00	14.87	17.07	13.60	14.54	15.15	15.49	14.90	15.00	18.10	
\mathcal{M}_{12}	20	20.00	16.50	14.58	11.24	15.67	15.00	16.91	16.19	16.00	19.05	
\mathcal{M}_{10c}	24	24.00	17.26	23.68	15.48	16.80	17.70	18.10	17.24	17.15	22.50	
MPE		50.67	11.20	16.23	15.38	12.03	7.65	8.32	10.02	9.14	6.26	

Synthetic datasets

Real datasets

Dataset	d	PCA	kNNG ₁	kNNG ₂	CD	MLE	Hein	MiND _{ML1}	MiND _{MLk}	MiND _{MLi}	MiND _{KL}
\mathcal{M}_{Faces}	3	21.00	3.60	4.32	3.37	4.05	3.00	3.52	3.59	4.00	3.90
\mathcal{M}_{MNIST1}	8-11	11.80	10.37	9.58	6.96	10.29	8.00	11.33	10.02	9.45	11.00
$\mathcal{M}_{\text{Santa Fe}}$	9	18.00	7.28	7.43	4.39	7.16	6.00	6.31	6.78	7.00	7.60

Gabriele Lombardi M

< □ > < □ > < □ > < □ > < □ > .

Datasets Experimental Setting Results

Results

æ

・ロト ・回ト ・ヨト ・ヨト

Conclusions

- To estimate the i.d. is a difficult task in case of small sample size, high dimension, and non-linearly embedded manifolds;
- statistic-based techniques are largely adopted for this purpose;
- we propose novel algorithms for the estimation of the i.d.;
- our algorithms are robust to the choice of k and to the high dimensionality of the datasets.

Future Works

- Relax the assumption of smoothness for the pdf f;
- define a local estimator, useful for multi-manifold learning problems having different intrinsic dimensions.

æ

Conclusions

• To estimate the i.d. is a difficult task in case of small sample size, high dimension, and non-linearly embedded manifolds;

statistic-based techniques are largely adopted for this purpose;

- we propose novel algorithms for the estimation of the i.d.;
- our algorithms are robust to the choice of *k* and to the high dimensionality of the datasets.

Future Works

- Relax the assumption of smoothness for the pdf f;
- define a local estimator, useful for multi-manifold learning problems having different intrinsic dimensions.

æ

Conclusions

- To estimate the i.d. is a difficult task in case of small sample size, high dimension, and non-linearly embedded manifolds;
- statistic-based techniques are largely adopted for this purpose;
- we propose novel algorithms for the estimation of the i.d.;
- our algorithms are robust to the choice of *k* and to the high dimensionality of the datasets.

Future Works

- Relax the assumption of smoothness for the pdf f;
- define a local estimator, useful for multi-manifold learning problems having different intrinsic dimensions.

æ

<ロ> (日) (日) (日) (日) (日)

Conclusions

- To estimate the i.d. is a difficult task in case of small sample size, high dimension, and non-linearly embedded manifolds;
- statistic-based techniques are largely adopted for this purpose;
- we propose novel algorithms for the estimation of the i.d.;
- our algorithms are robust to the choice of k and to the high dimensionality of the datasets.

Future Works

- Relax the assumption of smoothness for the pdf f;
- define a local estimator, useful for multi-manifold learning problems having different intrinsic dimensions.

æ

Conclusions

- To estimate the i.d. is a difficult task in case of small sample size, high dimension, and non-linearly embedded manifolds;
- statistic-based techniques are largely adopted for this purpose;
- we propose novel algorithms for the estimation of the i.d.;
- our algorithms are robust to the choice of k and to the high dimensionality of the datasets.

Future Works

- Relax the assumption of smoothness for the pdf f;
- define a local estimator, useful for multi-manifold learning problems having different intrinsic dimensions.

3

Conclusions

- To estimate the i.d. is a difficult task in case of small sample size, high dimension, and non-linearly embedded manifolds;
- statistic-based techniques are largely adopted for this purpose;
- we propose novel algorithms for the estimation of the i.d.;
- our algorithms are robust to the choice of k and to the high dimensionality of the datasets.

Future Works

- Relax the assumption of smoothness for the pdf *f*;
- define a local estimator, useful for multi-manifold learning problems having different intrinsic dimensions.

3

Any questions?

æ

・ロン ・四と ・ヨン ・ヨン