Active & Online Learning

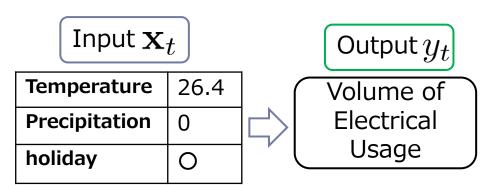
Frequency-aware Truncated methods for Sparse Online Learning

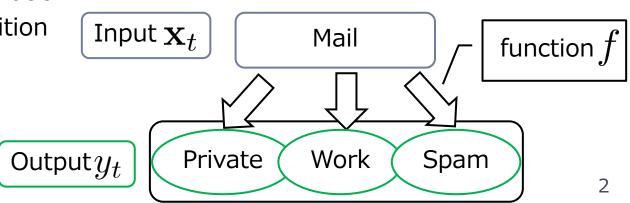
<u>Hidekazu Oiwa</u>, Shin Matsushima, Hiroshi Nakagawa University of Tokyo

$$f(\mathbf{x}_t) = y_t$$

Problem Setting

- Supervised Learning
- Predict output y_t from a given input \mathbf{x}_t
 - Learn appropriate function $f(\cdot)$ by using dataset (\mathbf{x}_t, y_t)
- Examples of Application
 - Regression
 - Precipitation rate Prediction
 - Electrical Usage Prediction
 - Classification
 - Mail Filtering
 - News Categorization
 - Image Recognition





Notation

- Input $\mathbf{x} \in \mathbf{X} \subset \Re^n$
 - Feature: each component of $\mathbf{x} = \{0, 1, 0, \dots, 0, 1\}$

Coach

- Output $y \in \mathbf{Y} \subset \Re$ $y = \begin{cases} 1 & \text{sports article} \\ -1 & \text{Not sports article} \end{cases}$
- Weight vector $\mathbf{w} \in \mathbf{W} \subset \Re^n$
 - Linear prediction
 - ullet Predict the \hat{y} using value of inner product ${f w},{f x}$
 - Truncation: Component of w becomes zero

Predicted value

$$\hat{y} = \langle \mathbf{w}, \mathbf{x} \rangle > 0$$
 sports article

$$\hat{y} = \langle \mathbf{w}, \mathbf{x}
angle < 0$$
 Not sports article

Curling

Optimization Problem

Minimize sum of loss function and regularized term

$$\mathbf{w} = \underset{\mathbf{w}}{\operatorname{arg\,min}} \sum_{t} \left\{ \ell_t(\mathbf{w}) + r_t(\mathbf{w}) \right\}$$

$$t : \text{data id}$$

Loss function

$$\ell_t(\mathbf{w}): \mathbf{W} \to \Re_+$$

Evaluate performance of data fitting

Regularized term

$$r_t(\mathbf{w}): \mathbf{W} \to \Re_+$$

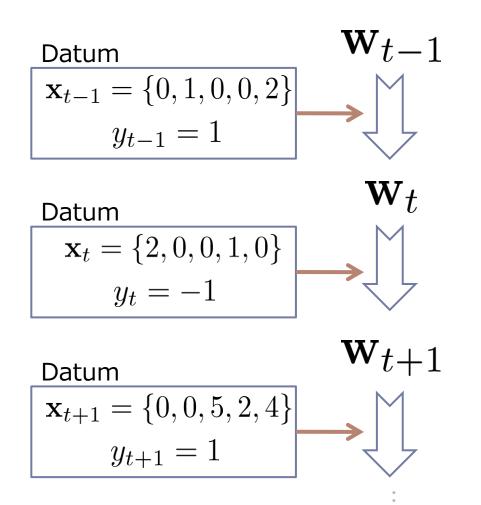
Evaluate complexity of weight vector

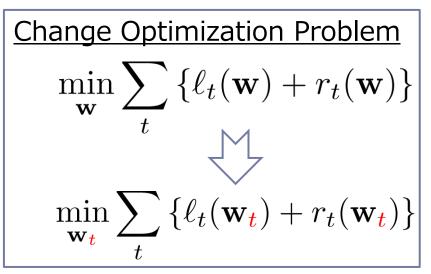
Derive optimal function $f(\cdot)$

Derive optimal \mathbf{w}

Online Learning

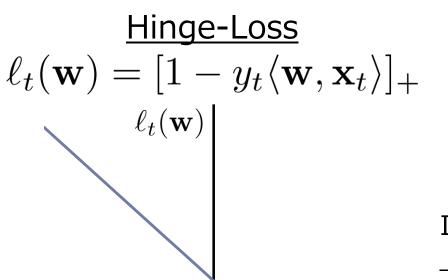
Update \mathbf{W}_t on one piece of data at each round





Loss function
$$\ell_t(\mathbf{w}): \mathbf{W} \to \Re_+$$

- Evaluate prediction accuracy of w
 - Loss function's gradient is proportional to X



In addition,
Squared-Loss etc..

·W

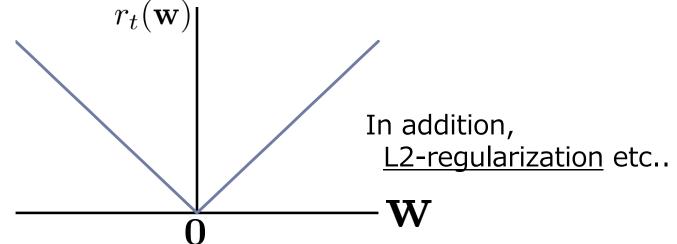
Difference between \hat{y} and y is large \heartsuit Value of loss function is large

Regularized term $r_t(\mathbf{w}): \mathbf{W} \to \Re_+$

Prevent over-fitting of W

L1-regularization (Lasso)

$$r_t(\mathbf{w}) = \lambda \|\mathbf{w}\|_1$$



 λ : parameter between loss minimization and regularization

 $r_t(\cdot)$ is proportional to complexity of ${f W}$

Prevent over-fitting to previous data

Additional Property of Lasso

Lasso can truncate parameters of w

Update formula

$$\mathbf{w}_{t+1} = \arg\min_{\mathbf{w}} \{ \|\mathbf{w} - \mathbf{w}_t\|_2^2 + \|\mathbf{w}\|_1 \}$$

$$\mathbf{w}_t = \{ 3, 1, 2, 1, 0.5, 0.1 \}$$

$$\mathbf{w}_{t+1} = \{ 2.5, 1.5, 0.5, 0.5, 0 \}$$

Make w sparse and so can learn faster

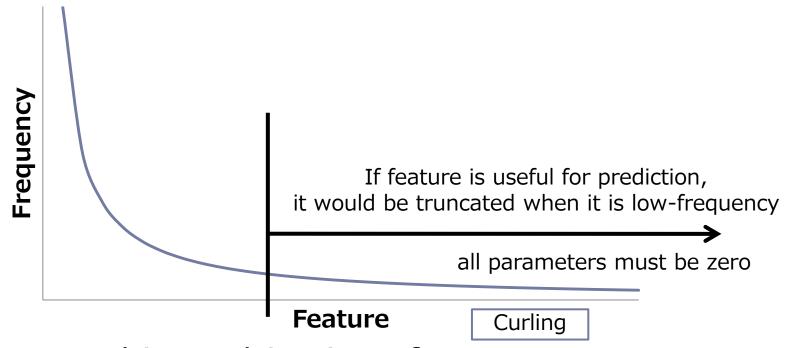
Previous Work

- Online Learning+Lasso
- Forward Backward Splitting (FOBOS) [Duchi et al., 2009]
 - Combine online Learning with Lasso
 - Perform two-step update at each round
 - [Langford et al., 2009] proposed similar method
- Regularized Dual-Averaging methods (RDA) [Xiao, 2009]
 - Dual-Averaging(DA) is optimization method for sequential data [Nesterov, 2009]
 - RDA introduce Lasso into DA

In our research, we propose the extensional method of FOBOS

Disadvantage of Previous Work

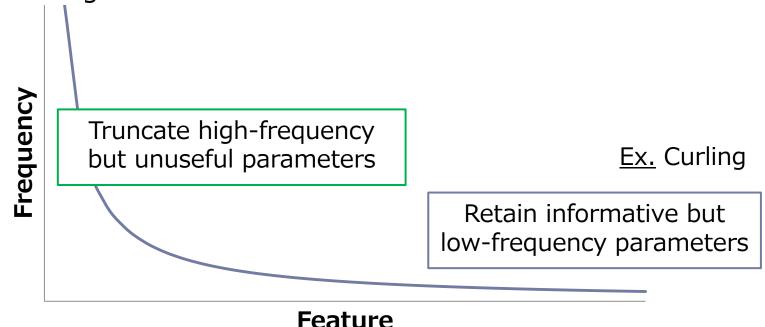
- Low-frequency features tend to be truncated
 - Difficult to use these features for prediction



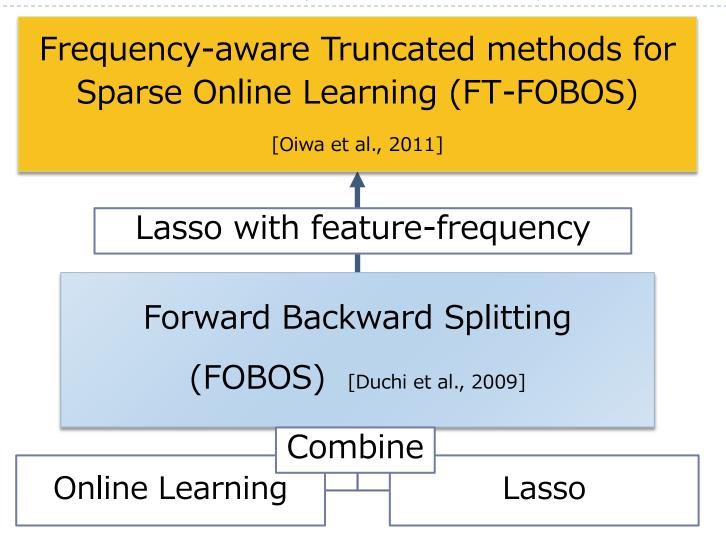
- Cannot achieve objective of Lasso
 - Useful but low-frequency feature would be missed

Proposed method: Intention

- Lasso with feature-frequency
 - Capture low-frequency but informative feature
 - Proposed several work in batch-learning field
 - Ex. <u>TF-IDF</u> (Natural Language Processing)
 - However, these methods cannot be applied in online learning framework



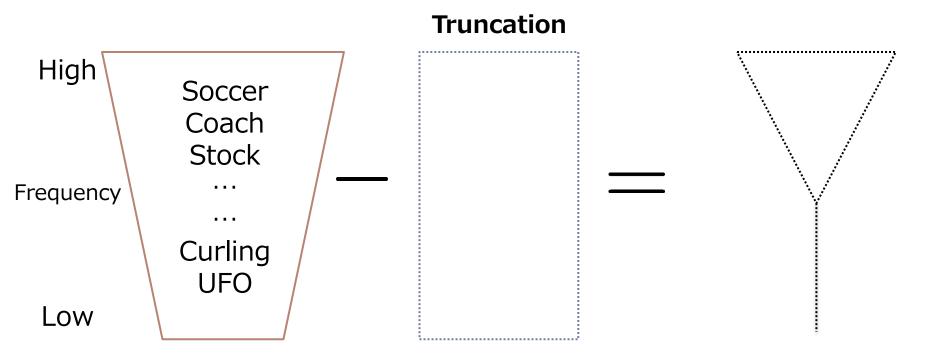
Proposed method (FT-FOBOS)



Proposed method [1/2]

Frequency-aware Truncated FOBOS (FT-FOBOS)

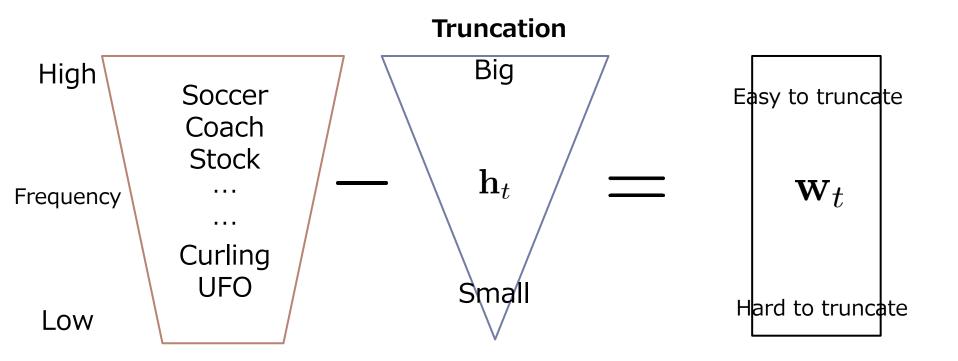
• Introduce h_t which has correlation with featurefrequency into Lasso



Proposed method [1/2]

Frequency-aware Truncated FOBOS (FT-FOBOS)

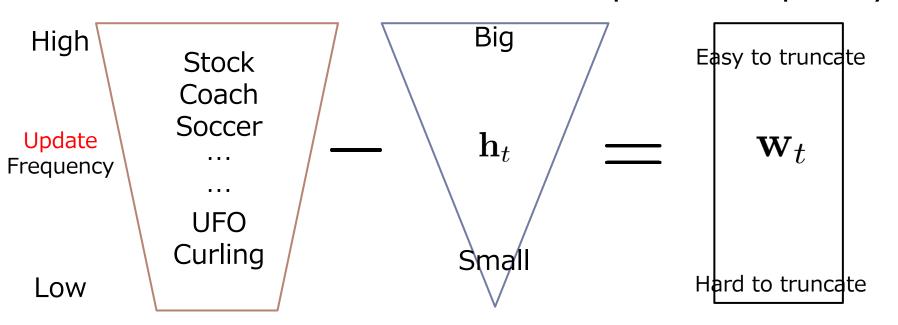
• Introduce h_t which has correlation with featurefrequency into Lasso



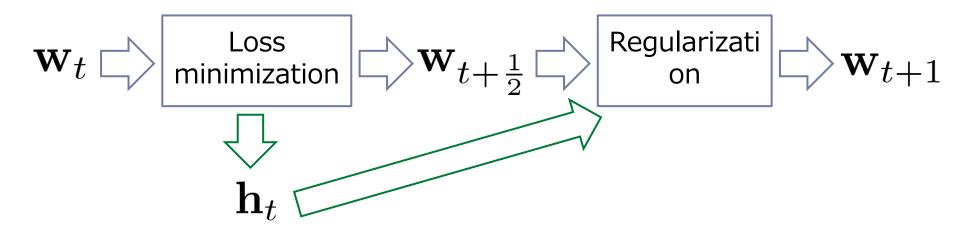
Proposed method [2/2]

Frequency-aware Truncated FOBOS (FT-FOBOS)

- ightharpoonup Bad when simply \mathbf{h}_t is proportional to frequency
 - lacktriangleright Value ranges of $f W_t$ depend more on update-frequency than feature-frequency
- lacktriangle Make lacktriangle as a correlation with update-frequency



Algorithm of FT-FOBOS [1/3]



Loss minimization step

Update \mathbf{w}_t into reverse direction of subgradient $\ell_t(\mathbf{w}_t)$

$$\mathbf{w}_{t+\frac{1}{2}} = \mathbf{w}_t - \eta_t \mathbf{g}_t^{\ell}$$

 $\eta_t>0$: Step size

 $\mathbf{g}_t^\ell \in \partial \ell_t(\mathbf{w}_t)$: Subgradient of loss

Algorithm of FT-FOBOS [2/3]

Define \mathbf{h}_t using constant p > 0

$$h_t^{(i)} = h_{t,p}^{(i)} = \sqrt[p]{\sum_{\tau=1}^{t} \left| \eta_{\tau} g_{\tau}^{\ell,(i)} \right|^p}$$

 $\left|\eta_{ au}g_{ au}^{\ell,(i)}
ight|$: Step size in loss minimization

weight of i component rarely update

only small number of $g_{ au}^{\ell,(i)}$ is non-zero

value of $h_t^{(i)}$ becomes small

 \mathbf{h}_t can be calculated in $O(\mathbf{g}_t^{\ell}$'s nonzero number)

Algorithm of FT-FOBOS [3/3]

Lasso step

$$\mathbf{w}_{t+1} = \arg\min_{\mathbf{w}} \left\{ \frac{1}{2} \|\mathbf{w} - \mathbf{w}_{t+\frac{1}{2}}\| + \eta_{t+\frac{1}{2}} \lambda \|\mathbf{M}_{t} \mathbf{w}\|_{1} \right\}$$

$$s.t. \quad \mathbf{M}_t = \begin{pmatrix} h_t^{(1)} & 0 & \dots & 0 \\ 0 & h_t^{(2)} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & h_t^{(n)} \end{pmatrix}$$

<u>Update formula</u>

$$w_{t+1}^{(i)} = sign(w_t^{(i)} - \eta_t g_t^{\ell,(i)}) \left[|w_t^{(i)} - \eta_t g_t^{\ell,(i)}| - \eta_{t+\frac{1}{2}} \lambda h_t^{(i)} \right]_+$$

 \mathbf{w}_{t+1} can be calculated in $O(\mathbf{g}_t^\ell$'s nonzero number)

Same order as FOBOS

Theoretical Evaluation

- Proof with "Regret"
 - Regret's Definition

$$R_{\ell+r}(T) = \sum_{t=1}^{T} \left\{ \ell_t(\mathbf{w}_t) + r_t(\mathbf{w}_t) \right\} - \inf_{\mathbf{w}} \sum_{t=1}^{T} \left\{ (\ell_t(\mathbf{w}) + r_t(\mathbf{w})) \right\}$$

Cumulative Loss and regularization

Minimal Loss and regularization ex post

- Prove convergence to optimal solution
 - ▶ Regret's Upper Bound is smaller than O(T)
 - Regret per datum converges 0 as data increase
 - Weight vector converges to optimal solution

$$R_{\ell+r}(T) < O(T) \Leftrightarrow \lim_{T \to \infty} \frac{R_{\ell+r}(T)}{T} = 0$$

FT-FOBOS's Regret

 $p \leq 2$ の時は、定数Vで上限を定める

Let \mathbf{h}_t be

$$h_t^{(i)} = \begin{cases} \min\left(h_{t,p}^{(i)}, V\right) & p \le 2\\ h_{t,p}^{(i)} & p > 2 \end{cases} s.t. h_{t,p}^{(i)} = \sqrt[p]{\sum_{\tau=1}^{t} \left|\eta_{\tau} g_{\tau}^{\ell,(i)}\right|^{p}} \end{cases}$$

both loss function and regularized term are convex functions, and they satisfy

$$\forall \mathbf{w}_t \quad \|\mathbf{w}_t - \mathbf{w}^*\| \le D, \|\partial \ell_t(\mathbf{w}_t)\| \le G, \|\partial r_t(\mathbf{w}_t)\| \le G$$

where scalars $\,D,G\,$.

In this case, we can prove

Same order as FOBOS

$$R_{\ell+r}(T) \le 2GD + (D^2/2c + 8G^2c)\sqrt{T} = O(\sqrt{T})$$

where we set a scalar c>0 and stepsize $\eta_t=\eta_{t+\frac{1}{2}}=\frac{c}{\sqrt{t}}$

Experimental Evaluations

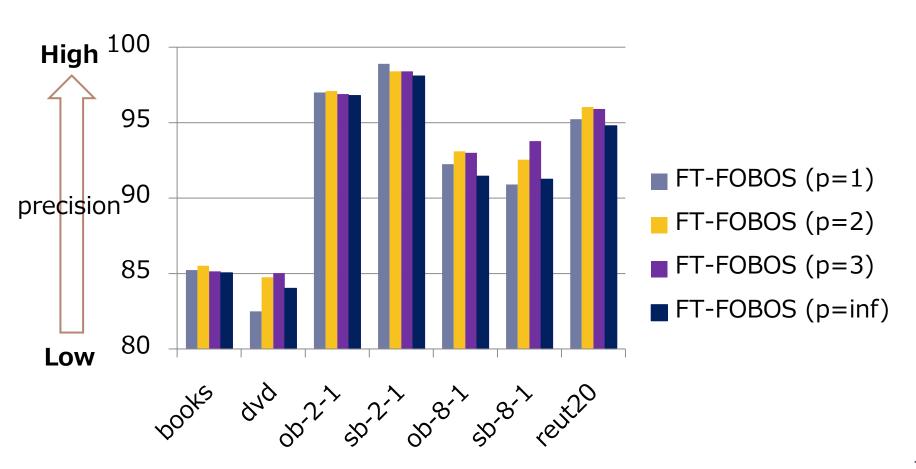
- Seven real dataset experiments
 - Loss function : Hinge-Loss
 - \blacktriangleright 10-fold cross validation for adjusting λ
 - 20 iterations
 - Algorithms : FOBOS, RDA, FT-FOBOS $p=1,2,3,\infty$

Step size :
$$\eta_t = \eta_{t+\frac{1}{2}} = \frac{1}{\sqrt{t}}$$

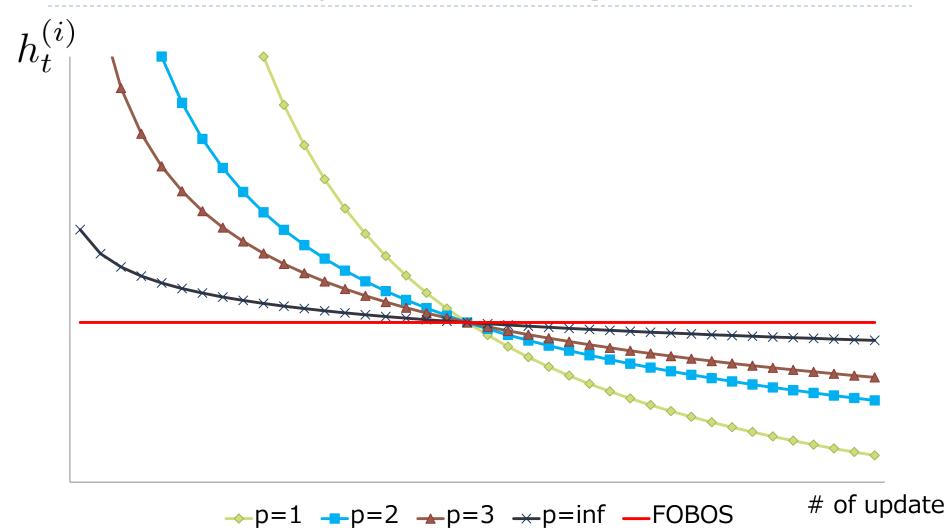
	# of data	# of feature	# of class
books	4,465	332,441	2
dvd	3,586	282,901	2
ob-2-1	1,000	5,942	2
sb-2-1	1,000	6,276	2
ob-8-1	4,000	13,890	8
sb-8-1	4,000	16,282	8
reut20	7,800	34,488	20

Experimental Results among FT-FOBOS

- Compare precision
 - p=2 achieves the best performance

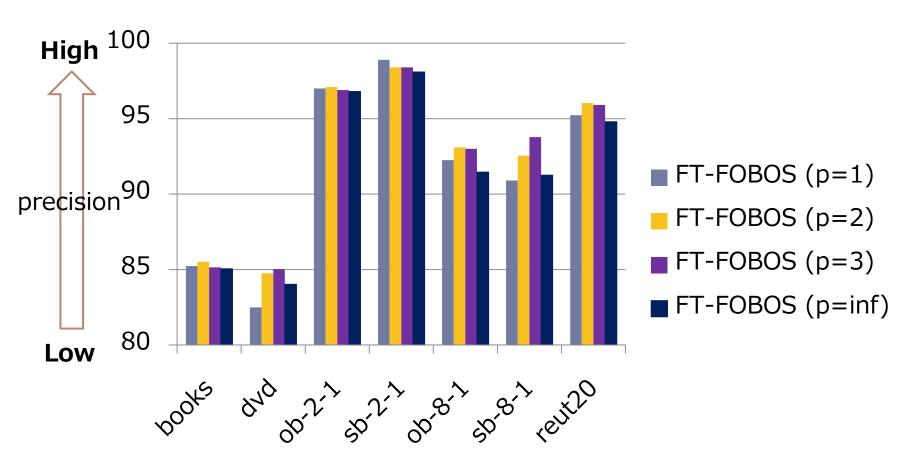


$h_t^{(i)}$'s disparity when change p



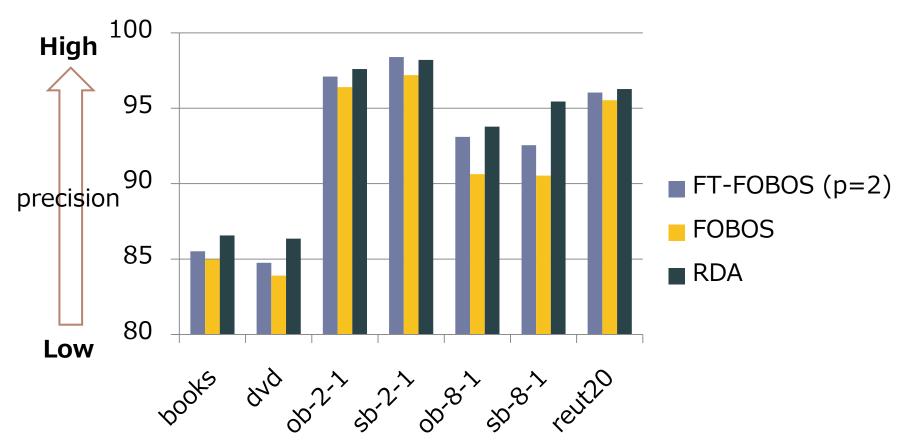
Experimental Results among FT-FOBOS

- Compare precision
 - p=2 achieves the best performance



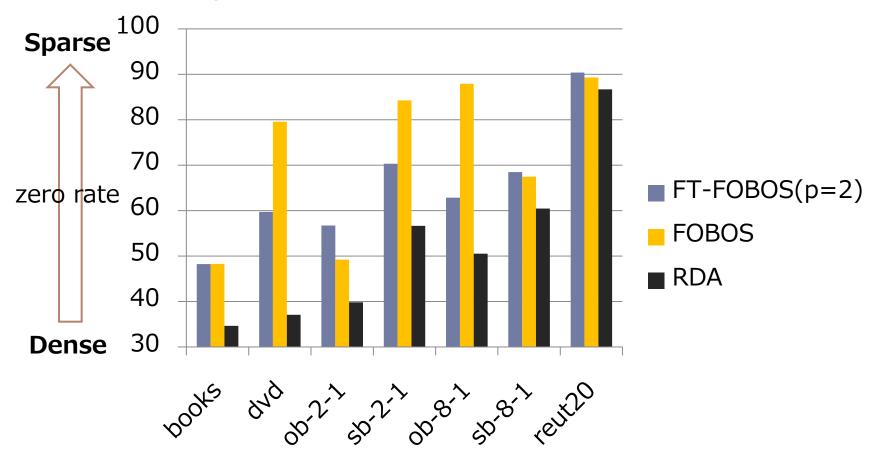
Experimental Results of all algorithms

- Compare precision
 - FT-FOBOS outperforms FOBOS in all datasets
 - RDA is better than FOBOS and FT-FOBOS



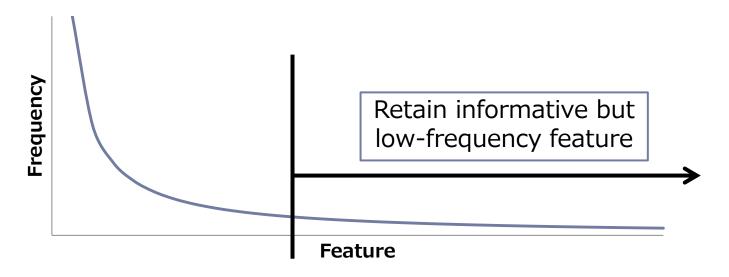
Experimental Results of all algorithms

- Compare sparseness of weight vector
 - FT-FOBOS improve accuracy while obtaining almost same sparseness



Summary

Lasso with Feature Frequency

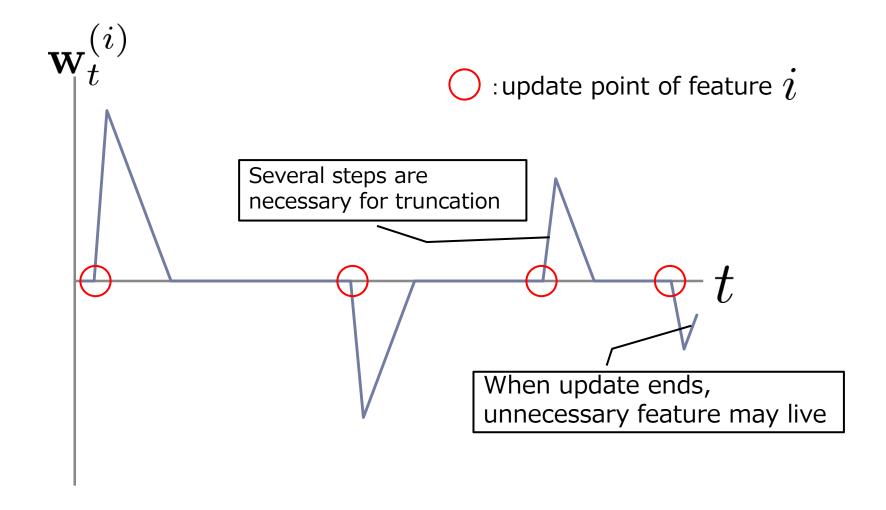


- Prove regret upper bound $O(\sqrt{T})$
- Propose FT-FOBOS with Cumulative Penalty
- Outperform FOBOS in all datasets

Properties of Online Learning

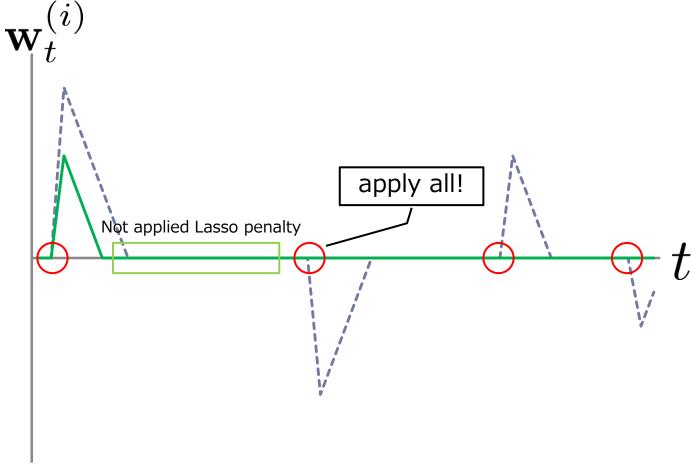
- Be able to run in the condition that only see part of data at a time
 - be able to learn from streaming data
 - don't have to put all data into memory at a time
- Easy to re-learning
 - previously used data are not necessary to re-learn

Additional Problem of FOBOS



Cumulative Penalty [Tsuruoka et al. 2009]

When update, apply all previous truncation



Frequency-aware Truncated methods with Cumulative Penalty

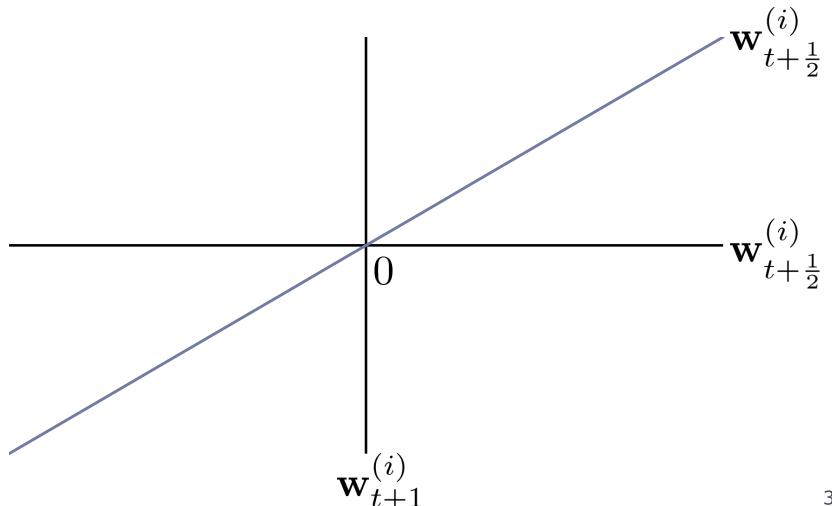
- Combine cumulative penalty framework into FT-FOBOS
 - However, experimental results were not good.

Update formula

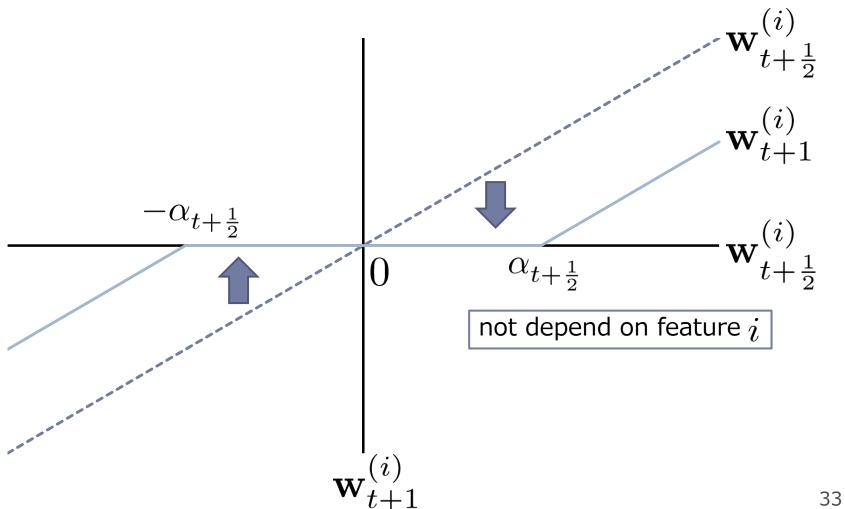
$$w_{t+1}^{(j)} = \begin{cases} \max\left(0, w_{t+1/2}^{(j)} - (h_{t,p}^{(j)} u_t + q_t^{(j)})\right) & w_{t+1/2}^{(j)} \ge 0\\ \min\left(0, w_{t+1/2}^{(j)} + (h_{t,p}^{(j)} u_t - q_t^{(j)})\right) & w_{t+1/2}^{(j)} < 0 \end{cases}$$

$$q_t^{(j)} = q_{t-1}^{(j)} + (w_{t+1}^{(j)} - w_{t+1/2}^{(j)})$$
 $u_n = \lambda \sum_{t=1}^n \eta_{t+1/2}$

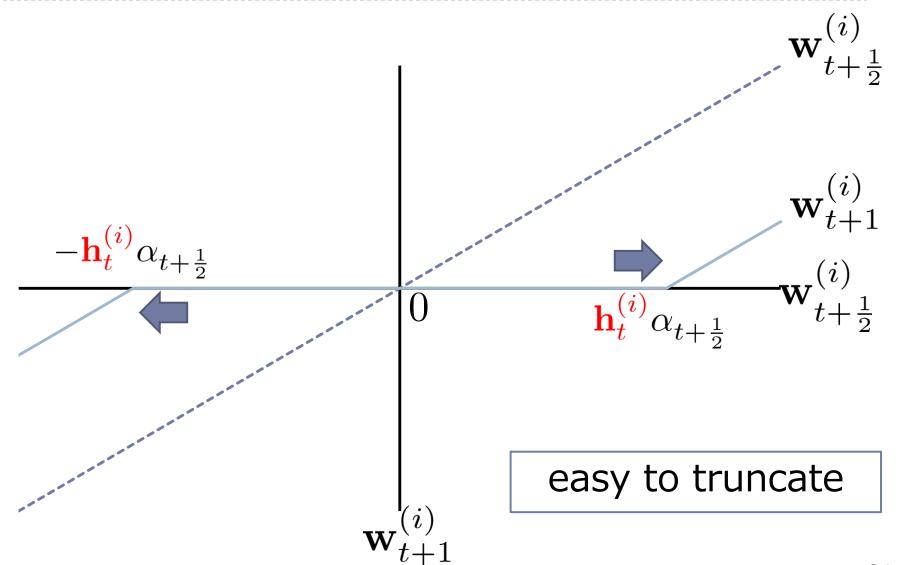
Lasso in FOBOS



Lasso in FOBOS



Lasso in FT-FOBOS ($\mathbf{h}_t^{(i)}$ is big)



Lasso in FT-FOBOS ($\mathbf{h}_t^{(i)}$ is small)

