Discriminative Experimental Design

Yu Zhang and Dit-Yan Yeung

Department of Computer Science and Engineering
The Hong Kong University of Science and Technology

ECML PKDD 2011

Outline

(1) Introduction
(2) Notations
(3) Discriminative Experimental Design
(4) Experiments
(5) Conclusion

Active Learning

Active Learning

- Active learning selects unlabeled data points to query some oracle.

Active Learning

- Active learning selects unlabeled data points to query some oracle.
- Existing active learning methods: uncertainty sampling (SVM Active Learning), query-by-committee, representative sampling (Transductive Experimental Design).

Active Learning

- Active learning selects unlabeled data points to query some oracle.
- Existing active learning methods: uncertainty sampling (SVM Active Learning), query-by-committee, representative sampling (Transductive Experimental Design).

```
Input: Labeled data set \mathcal{L}\mathrm{ ; Unlabeled data set }\mathcal{U}
Output: Learning model
Step 1: Train a learning model based on }\mathcal{L}\mathrm{ ;
Step 2:
For t=1,\ldots, tmax
    2.1: Select an unlabeled data set }\mathcal{S}\mathrm{ from }\mathcal{U}\mathrm{ based
        on some unlabeled data selection criterion;
    2.2: Query an oracle to label }\mathcal{S}\mathrm{ ;
    2.3: L}\leftarrow\mathcal{L}\cup\mathcal{S},\mathcal{U}\leftarrow\mathcal{U}\\mathcal{S}
    2.4: Re-train the learning model based on \mathcal{L}
```


Our Contribution

Our Contribution

- Some methods are complementary.

Our Contribution

- Some methods are complementary.
- SVM Active Learning: Use of discriminative information; Selection of one point in an iteration

Our Contribution

- Some methods are complementary.
- SVM Active Learning: Use of discriminative information; Selection of one point in an iteration
- TED: Use of data distribution information; Selection of multiple points in an iteration

Our Contribution

- Some methods are complementary.
- SVM Active Learning: Use of discriminative information; Selection of one point in an iteration
- TED: Use of data distribution information; Selection of multiple points in an iteration
- Our Contributions:

Our Contribution

- Some methods are complementary.
- SVM Active Learning: Use of discriminative information; Selection of one point in an iteration
- TED: Use of data distribution information; Selection of multiple points in an iteration
- Our Contributions:
- The proposal of discriminative experimental design (DED), combining the strengths of both SVM active learning and TED.

Our Contribution

- Some methods are complementary.
- SVM Active Learning: Use of discriminative information; Selection of one point in an iteration
- TED: Use of data distribution information; Selection of multiple points in an iteration
- Our Contributions:
- The proposal of discriminative experimental design (DED), combining the strengths of both SVM active learning and TED.
- A projection method to solve the optimization problem.

Our Contribution

- Some methods are complementary.
- SVM Active Learning: Use of discriminative information; Selection of one point in an iteration
- TED: Use of data distribution information; Selection of multiple points in an iteration
- Our Contributions:
- The proposal of discriminative experimental design (DED), combining the strengths of both SVM active learning and TED.
- A projection method to solve the optimization problem.
- The good performance on some benchmark datasets.

Outline

(1) Introduction

(2) Notations

(3) Discriminative Experimental Design

(4) Experiments
(5) Conclusion

Notations

Notations

- $\mathbf{V} \in \mathbb{R}^{d \times n}$: The matrix for the unlabeled data currently available

Notations

- $\mathbf{V} \in \mathbb{R}^{d \times n}$: The matrix for the unlabeled data currently available
- $\mathbf{X} \in \mathbb{R}^{d \times t}$. The selected subset of unlabeled data

Notations

- $\mathbf{V} \in \mathbb{R}^{d \times n}$: The matrix for the unlabeled data currently available
- $\mathbf{X} \in \mathbb{R}^{d \times t}$. The selected subset of unlabeled data
- t : The number of selected data points

Notations

- $\mathbf{V} \in \mathbb{R}^{d \times n}$: The matrix for the unlabeled data currently available
- $\mathbf{X} \in \mathbb{R}^{d \times t}$. The selected subset of unlabeled data
- t : The number of selected data points
- $\phi(\cdot)$: The feature mapping corresponding to some kernel function $k(\cdot, \cdot)$

Outline

(1) Introduction

(2) Notations
(3) Discriminative Experimental Design
(4) Experiments
(5) Conclusion

Least-Square SVM Revisited

Least-Square SVM Revisited

- The objective function of least-square SVM is formulated as:

$$
\begin{equation*}
\min _{\mathbf{w}} \sum_{i=1}^{l}\left(\mathbf{w}^{T} \phi\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}+\lambda\|\mathbf{w}\|_{2}^{2} \tag{1}
\end{equation*}
$$

Least-Square SVM Revisited

- The objective function of least-square SVM is formulated as:

$$
\begin{equation*}
\min _{w} \sum_{i=1}^{l}\left(\mathbf{w}^{T} \phi\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}+\lambda\|\mathbf{w}\|_{2}^{2} \tag{1}
\end{equation*}
$$

- Its equivalent form:

$$
\begin{equation*}
\min _{\mathbf{w}} J(\mathbf{w})=\sum_{i=1}^{\prime}\left(1-y_{i} \mathbf{w}^{T} \phi\left(\mathbf{x}_{i}\right)\right)^{2}+\lambda\|\mathbf{w}\|_{2}^{2} \tag{2}
\end{equation*}
$$

Least-Square SVM Revisited

- The objective function of least-square SVM is formulated as:

$$
\begin{equation*}
\min _{w} \sum_{i=1}^{l}\left(\mathbf{w}^{T} \phi\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}+\lambda\|\mathbf{w}\|_{2}^{2} \tag{1}
\end{equation*}
$$

- Its equivalent form:

$$
\begin{equation*}
\min _{\mathbf{w}} J(\mathbf{w})=\sum_{i=1}^{\prime}\left(1-y_{i} \mathbf{w}^{T} \phi\left(\mathbf{x}_{i}\right)\right)^{2}+\lambda\|\mathbf{w}\|_{2}^{2} \tag{2}
\end{equation*}
$$

- Here the square loss is similar to the square hinge loss $L^{\prime}(s, t)=\max (0,1-s t)^{2}$.

Least-Square SVM Revisited

- The objective function of least-square SVM is formulated as:

$$
\begin{equation*}
\min _{w} \sum_{i=1}^{l}\left(\mathbf{w}^{T} \phi\left(\mathbf{x}_{i}\right)-y_{i}\right)^{2}+\lambda\|\mathbf{w}\|_{2}^{2} \tag{1}
\end{equation*}
$$

- Its equivalent form:

$$
\begin{equation*}
\min _{\mathbf{w}} J(\mathbf{w})=\sum_{i=1}^{\prime}\left(1-y_{i} \mathbf{w}^{T} \phi\left(\mathbf{x}_{i}\right)\right)^{2}+\lambda\|\mathbf{w}\|_{2}^{2} \tag{2}
\end{equation*}
$$

- Here the square loss is similar to the square hinge loss $L^{\prime}(s, t)=\max (0,1-s t)^{2}$.
- The function score for a data point is defined as:

$$
y=\frac{1}{\mathbf{w}^{T} \phi(\mathbf{x})}
$$

The Objective Function

The Objective Function

- According to the analysis in TED, the estimation error satisfies

$$
\operatorname{cov}\left(\mathbf{w}-\mathbf{w}^{\star}\right) \propto \mathbf{C}_{\mathbf{w}}=\left(\frac{\partial^{2} J(\mathbf{w})}{\partial \mathbf{w} \partial \mathbf{w}^{T}}\right)^{-1}=\left(\phi(\mathbf{X}) \mathbf{Y}_{\mathbf{X}}^{2} \phi(\mathbf{X})^{T}+\lambda \mathbf{I}_{d^{\prime}}\right)^{-1}
$$

The Objective Function

- According to the analysis in TED, the estimation error satisfies

$$
\operatorname{cov}\left(\mathbf{w}-\mathbf{w}^{\star}\right) \propto \mathbf{C}_{\mathbf{w}}=\left(\frac{\partial^{2} J(\mathbf{w})}{\partial \mathbf{w} \partial \mathbf{w}^{T}}\right)^{-1}=\left(\phi(\mathbf{X}) \mathbf{Y}_{\mathbf{X}}^{2} \phi(\mathbf{X})^{T}+\lambda \mathbf{I}_{d^{\prime}}\right)^{-1}
$$

- The predictive error on the whole unlabeled data set satisfies

$$
\mathbf{C}_{\mathbf{f}}=\mathbf{Y}_{\mathbf{V}} \phi(\mathbf{V})^{T} \mathbf{C}_{\mathbf{w}} \phi(\mathbf{V}) \mathbf{Y}_{\mathbf{V}}
$$

The Objective Function

- According to the analysis in TED, the estimation error satisfies

$$
\operatorname{cov}\left(\mathbf{w}-\mathbf{w}^{\star}\right) \propto \mathbf{C}_{\mathbf{w}}=\left(\frac{\partial^{2} J(\mathbf{w})}{\partial \mathbf{w} \partial \mathbf{w}^{T}}\right)^{-1}=\left(\phi(\mathbf{X}) \mathbf{Y}_{\mathbf{X}}^{2} \phi(\mathbf{X})^{T}+\lambda \mathbf{I}_{d^{\prime}}\right)^{-1}
$$

- The predictive error on the whole unlabeled data set satisfies

$$
\mathbf{C}_{\mathbf{f}}=\mathbf{Y}_{\mathbf{V}} \phi(\mathbf{V})^{T} \mathbf{C}_{\mathbf{w}} \phi(\mathbf{V}) \mathbf{Y}_{\mathbf{V}}
$$

- The A-optimal design is used to minimize the predictive variance: $\min \operatorname{tr}\left(\mathbf{C}_{\mathbf{f}}\right)$.

The Objective Function

- According to the analysis in TED, the estimation error satisfies

$$
\operatorname{cov}\left(\mathbf{w}-\mathbf{w}^{\star}\right) \propto \mathbf{C}_{\mathbf{w}}=\left(\frac{\partial^{2} J(\mathbf{w})}{\partial \mathbf{w} \partial \mathbf{w}^{T}}\right)^{-1}=\left(\phi(\mathbf{X}) \mathbf{Y}_{\mathbf{X}}^{2} \phi(\mathbf{X})^{T}+\lambda \mathbf{I}_{d^{\prime}}\right)^{-1}
$$

- The predictive error on the whole unlabeled data set satisfies

$$
\mathbf{C}_{\mathbf{f}}=\mathbf{Y}_{\mathbf{V}} \phi(\mathbf{V})^{T} \mathbf{C}_{\mathbf{w}} \phi(\mathbf{V}) \mathbf{Y}_{\mathbf{V}}
$$

- The A-optimal design is used to minimize the predictive variance: $\min \operatorname{tr}\left(\mathbf{C}_{\mathbf{f}}\right)$.

Definition
Discriminative Experimental Design:

$$
\begin{array}{cl}
\max _{\mathbf{X}, \mathbf{Y}_{\mathbf{X}}} & \operatorname{tr}\left[\mathbf{Y}_{\mathbf{V}} \mathbf{K}_{\mathbf{V X}} \mathbf{Y}_{\mathbf{X}}\left(\lambda \mathbf{I}_{t}+\mathbf{Y}_{\mathbf{X}} \mathbf{K}_{\mathbf{X}} \mathbf{Y}_{\mathbf{X}}\right)^{-1} \mathbf{Y}_{\mathbf{X}} \mathbf{K}_{\mathbf{X V}} \mathbf{Y}_{\mathbf{V}}\right] \\
\text { s.t. } & \mathbf{X} \subset \mathbf{V},|\mathbf{X}|=t, \mathbf{Y}_{\mathbf{X}} \subset \mathbf{Y}_{\mathbf{V}}
\end{array}
$$

The Relationship between DED and TED

The Relationship between DED and TED

- The optimization problem of linear DED:

$$
\begin{array}{ll}
\max _{\tilde{\mathbf{X}}} & \operatorname{tr}\left[\tilde{\mathbf{V}}^{T} \tilde{\mathbf{X}}\left(\lambda \mathbf{I}_{t}+\tilde{\mathbf{X}}^{T} \tilde{\mathbf{X}}\right)^{-1} \tilde{\mathbf{X}}^{T} \tilde{\mathbf{V}}\right] \\
\text { s.t. } & \tilde{\mathbf{X}} \subset \tilde{\mathbf{V}},|\tilde{\mathbf{X}}|=t . \tag{4}
\end{array}
$$

The Relationship between DED and TED

- The optimization problem of linear DED:

$$
\begin{array}{ll}
\max _{\tilde{\mathbf{X}}} & \operatorname{tr}\left[\tilde{\mathbf{V}}^{\top} \tilde{\mathbf{X}}\left(\lambda \mathbf{I}_{t}+\tilde{\mathbf{X}}^{\top} \tilde{\mathbf{X}}\right)^{-1} \tilde{\mathbf{X}}^{\top} \tilde{\mathbf{V}}\right] \\
\text { s.t. } & \tilde{\mathbf{X}} \subset \tilde{\mathbf{V}}, \mid \tilde{\mathbf{X}}=t . \tag{4}
\end{array}
$$

- This is identical to the optimization problem of TED.

The Relationship between DED and TED

- The optimization problem of linear DED:

$$
\begin{array}{ll}
\max _{\tilde{\mathbf{X}}} & \operatorname{tr}\left[\tilde{\mathbf{V}}^{\top} \tilde{\mathbf{X}}\left(\lambda \mathbf{I}_{t}+\tilde{\mathbf{X}}^{\top} \tilde{\mathbf{X}}\right)^{-1} \tilde{\mathbf{X}}^{\top} \tilde{\mathbf{V}}\right] \\
\text { s.t. } & \tilde{\mathbf{X}} \subset \tilde{\mathbf{V}},|\tilde{\mathbf{X}}|=t . \tag{4}
\end{array}
$$

- This is identical to the optimization problem of TED.
- TED can be seen as a special case of DED.

The Relationship between DED and TED

- The optimization problem of linear DED:

$$
\begin{array}{ll}
\max _{\tilde{\mathbf{x}}} & \operatorname{tr}\left[\tilde{\mathbf{V}}^{\top} \tilde{\mathbf{X}}\left(\lambda \mathbf{I}_{t}+\tilde{\mathbf{X}}^{\top} \tilde{\mathbf{X}}\right)^{-1} \tilde{\mathbf{X}}^{\top} \tilde{\mathbf{V}}\right] \\
\text { s.t. } & \tilde{\mathbf{X}} \subset \tilde{\mathbf{V}},|\tilde{\mathbf{X}}|=t . \tag{4}
\end{array}
$$

- This is identical to the optimization problem of TED.
- TED can be seen as a special case of DED.
- DED is a weighted version of TED.

The Relationship between DED and TED

- The optimization problem of linear DED:

$$
\begin{array}{ll}
\max _{\tilde{\mathbf{X}}} & \operatorname{tr}\left[\tilde{\mathbf{V}}^{T} \tilde{\mathbf{X}}\left(\lambda \mathbf{I}_{t}+\tilde{\mathbf{X}}^{T} \tilde{\mathbf{X}}\right)^{-1} \tilde{\mathbf{X}}^{\top} \tilde{\mathbf{V}}\right] \\
\text { s.t. } & \tilde{\mathbf{X}} \subset \tilde{\mathbf{V}},|\tilde{\mathbf{X}}|=t . \tag{4}
\end{array}
$$

- This is identical to the optimization problem of TED.
- TED can be seen as a special case of DED.
- DED is a weighted version of TED.
- The weights are related to function scores of the data points.

Reformulation of DED

Reformulation of DED

- A selection indicator matrix $\mathbf{S} \in\{0,1\}^{n \times t}$ is defined as

$$
s_{i j}= \begin{cases}1 & \text { if }\left(\phi(\mathbf{X}) \mathbf{Y}_{\mathbf{X}}\right)_{, j} \text { is from }\left(\phi(\mathbf{V}) \mathbf{Y}_{\mathbf{V}}\right)_{, i} \\ 0 & \text { otherwise }\end{cases}
$$

Reformulation of DED

- A selection indicator matrix $\mathbf{S} \in\{0,1\}^{n \times t}$ is defined as

$$
s_{i j}= \begin{cases}1 & \text { if }\left(\phi(\mathbf{X}) \mathbf{Y}_{\mathbf{X}}\right)_{, j} \text { is from }\left(\phi(\mathbf{V}) \mathbf{Y}_{\mathbf{V}}\right)_{, i} \\ 0 & \text { otherwise }\end{cases}
$$

- The constraint set for \mathbf{S} is $C_{S}=\left\{\mathbf{S} \mid \mathbf{S} \in\{0,1\}^{n \times t}, \mathbf{S}^{T} \mathbf{S}=\mathbf{I}_{t}\right\}$.

Reformulation of DED

- A selection indicator matrix $\mathbf{S} \in\{0,1\}^{n \times t}$ is defined as

$$
s_{i j}= \begin{cases}1 & \text { if }\left(\phi(\mathbf{X}) \mathbf{Y}_{\mathbf{X}}\right)_{, j} \text { is from }\left(\phi(\mathbf{V}) \mathbf{Y}_{\mathbf{V}}\right)_{, i} \\ 0 & \text { otherwise }\end{cases}
$$

- The constraint set for \mathbf{S} is $C_{S}=\left\{\mathbf{S} \mid \mathbf{S} \in\{0,1\}^{n \times t}, \mathbf{S}^{T} \mathbf{S}=\mathbf{I}_{t}\right\}$.
- The objective function of DED can be reformulated as

$$
\begin{array}{ll}
\max _{\mathbf{S}} & \operatorname{tr}\left[\left(\mathbf{S}^{T}\left(\lambda \mathbf{I}_{n}+\tilde{\mathbf{K}}_{\mathbf{V}}\right) \mathbf{S}\right)^{-1} \mathbf{S}^{T} \tilde{\mathbf{K}}_{\mathbf{V}}^{2} \mathbf{S}\right] \\
\text { s.t. } & \mathbf{S} \in C_{S}, \tag{5}
\end{array}
$$

Reformulation of DED

- A selection indicator matrix $\mathbf{S} \in\{0,1\}^{n \times t}$ is defined as

$$
s_{i j}= \begin{cases}1 & \text { if }\left(\phi(\mathbf{X}) \mathbf{Y}_{\mathbf{X}}\right)_{, j} \text { is from }\left(\phi(\mathbf{V}) \mathbf{Y}_{\mathbf{V}}\right)_{, i} \\ 0 & \text { otherwise }\end{cases}
$$

- The constraint set for \mathbf{S} is $C_{S}=\left\{\mathbf{S} \mid \mathbf{S} \in\{0,1\}^{n \times t}, \mathbf{S}^{T} \mathbf{S}=\mathbf{I}_{t}\right\}$.
- The objective function of DED can be reformulated as

$$
\begin{array}{ll}
\max _{\mathbf{S}} & \operatorname{tr}\left[\left(\mathbf{S}^{T}\left(\lambda \mathbf{I}_{n}+\tilde{\mathbf{K}}_{\mathbf{V}}\right) \mathbf{S}\right)^{-1} \mathbf{S}^{T} \tilde{\mathbf{K}}_{\mathbf{V}}^{2} \mathbf{S}\right] \\
\text { s.t. } & \mathbf{S} \in C_{S}, \tag{5}
\end{array}
$$

- If there is no constraint, the optimal solution has the form of $\mathbf{S}^{\star} \mathbf{P}$.

Reformulation of DED

- A selection indicator matrix $\mathbf{S} \in\{0,1\}^{n \times t}$ is defined as

$$
s_{i j}= \begin{cases}1 & \text { if }\left(\phi(\mathbf{X}) \mathbf{Y}_{\mathbf{X}}\right)_{, j} \text { is from }\left(\phi(\mathbf{V}) \mathbf{Y}_{\mathbf{V}}\right)_{, i} \\ 0 & \text { otherwise }\end{cases}
$$

- The constraint set for \mathbf{S} is $C_{S}=\left\{\mathbf{S} \mid \mathbf{S} \in\{0,1\}^{n \times t}, \mathbf{S}^{T} \mathbf{S}=\mathbf{I}_{t}\right\}$.
- The objective function of DED can be reformulated as

$$
\begin{array}{ll}
\max _{\mathbf{S}} & \operatorname{tr}\left[\left(\mathbf{S}^{T}\left(\lambda \mathbf{I}_{n}+\tilde{\mathbf{K}}_{\mathbf{V}}\right) \mathbf{S}\right)^{-1} \mathbf{S}^{T} \tilde{\mathbf{K}}_{\mathbf{V}}^{2} \mathbf{S}\right] \\
\text { s.t. } & \mathbf{S} \in C_{S}, \tag{5}
\end{array}
$$

- If there is no constraint, the optimal solution has the form of $\mathbf{S}^{\star} \mathbf{P}$.
- \mathbf{S}^{\star} consists of the top t eigenvectors of $\tilde{\mathbf{K}}_{\mathbf{V}}$.

Reformulation of DED

- A selection indicator matrix $\mathbf{S} \in\{0,1\}^{n \times t}$ is defined as

$$
s_{i j}= \begin{cases}1 & \text { if }\left(\phi(\mathbf{X}) \mathbf{Y}_{\mathbf{X}}\right)_{, j} \text { is from }\left(\phi(\mathbf{V}) \mathbf{Y}_{\mathbf{V}}\right)_{, i} \\ 0 & \text { otherwise }\end{cases}
$$

- The constraint set for \mathbf{S} is $C_{S}=\left\{\mathbf{S} \mid \mathbf{S} \in\{0,1\}^{n \times t}, \mathbf{S}^{T} \mathbf{S}=\mathbf{I}_{t}\right\}$.
- The objective function of DED can be reformulated as

$$
\begin{array}{ll}
\max _{\mathbf{S}} & \operatorname{tr}\left[\left(\mathbf{S}^{T}\left(\lambda \mathbf{I}_{n}+\tilde{\mathbf{K}}_{\mathbf{V}}\right) \mathbf{S}\right)^{-1} \mathbf{S}^{T} \tilde{\mathbf{K}}_{\mathbf{V}}^{2} \mathbf{S}\right] \\
\text { s.t. } & \mathbf{S} \in C_{S}, \tag{5}
\end{array}
$$

- If there is no constraint, the optimal solution has the form of $\mathbf{S}^{\star} \mathbf{P}$.
- \mathbf{S}^{\star} consists of the top t eigenvectors of $\tilde{\mathbf{K}}_{\mathbf{V}}$.
- $\mathbf{P} \in \mathbb{R}^{t \times t}$ is an orthogonal matrix.

The Projection Method

The Projection Method

- The optimal solution $\mathbf{S}^{\star} \mathbf{P}$ is projected to the set C_{S} :

$$
\begin{align*}
\min _{\mathbf{P}, \mathbf{Q}} & \left\|\mathbf{S}^{\star} \mathbf{P}-\mathbf{Q}\right\|_{F}^{2} \\
\text { s.t. } & \mathbf{Q} \in C_{S}, \mathbf{P P}^{T}=\mathbf{I}_{t}, \tag{6}
\end{align*}
$$

The Projection Method

- The optimal solution $\mathbf{S} \star \mathbf{P}$ is projected to the set C_{S} :

$$
\begin{align*}
\min _{\mathbf{P}, \mathbf{Q}} & \left\|\mathbf{S}^{\star} \mathbf{P}-\mathbf{Q}\right\|_{F}^{2} \\
\text { s.t. } & \mathbf{Q} \in C_{S}, \mathbf{P P}^{T}=\mathbf{I}_{t}, \tag{6}
\end{align*}
$$

- Its equivalent form:

$$
\begin{align*}
\max _{\mathbf{P}, \mathbf{Q}} & \operatorname{tr}\left(\mathbf{Q}^{T} \mathbf{S}^{\star} \mathbf{P}\right) \\
\text { s.t. } & \mathbf{Q} \in C_{S}, \mathbf{P P}^{T}=\mathbf{I}_{t} \tag{7}
\end{align*}
$$

The Projection Method

- The optimal solution $\mathbf{S}^{\star} \mathbf{P}$ is projected to the set C_{S} :

$$
\begin{align*}
\min _{\mathbf{P}, \mathbf{Q}} & \left\|\mathbf{S}^{\star} \mathbf{P}-\mathbf{Q}\right\|_{F}^{2} \\
\text { s.t. } & \mathbf{Q} \in C_{S}, \mathbf{P P}^{T}=\mathbf{I}_{t}, \tag{6}
\end{align*}
$$

- Its equivalent form:

$$
\begin{array}{cl}
\max _{\mathbf{P}, \mathbf{Q}} & \operatorname{tr}\left(\mathbf{Q}^{T} \mathbf{S}^{\star} \mathbf{P}\right) \\
\text { s.t. } & \mathbf{Q} \in C_{S}, \mathbf{P P}^{T}=\mathbf{I}_{t} \tag{7}
\end{array}
$$

- An alternating optimization method is used to solve this problem.

Subproblem 1

Subproblem 1

- When \mathbf{P} is fixed, the optimization problem with respect to \mathbf{Q} is

$$
\begin{align*}
& \max _{\mathbf{Q}} \operatorname{tr}\left(\mathbf{Q}^{T} \mathbf{S}^{\star} \mathbf{P}\right) \\
& \text { s.t. } \mathbf{Q} \in\{0,1\}^{n \times t}, \mathbf{Q}^{T} \mathbf{1}_{n}=\mathbf{1}_{t}, \mathbf{Q} \mathbf{1}_{t} \leq \mathbf{1}_{n} . \tag{8}
\end{align*}
$$

Subproblem 1

- When \mathbf{P} is fixed, the optimization problem with respect to \mathbf{Q} is

$$
\begin{align*}
& \max _{\mathbf{Q}}^{\operatorname{tr}} \operatorname{tr}\left(\mathbf{Q}^{T} \mathbf{S}^{\star} \mathbf{P}\right) \\
& \text { s.t. } \mathbf{Q} \in\{0,1\}^{n \times t}, \mathbf{Q}^{T} \mathbf{1}_{n}=\mathbf{1}_{t}, \mathbf{Q} \mathbf{1}_{t} \leq \mathbf{1}_{n} . \tag{8}
\end{align*}
$$

- This is an integer programming problem with no efficient solution.

Subproblem 1

- When \mathbf{P} is fixed, the optimization problem with respect to \mathbf{Q} is

$$
\begin{align*}
& \max _{\mathbf{Q}} \operatorname{tr}\left(\mathbf{Q}^{T} \mathbf{S}^{\star} \mathbf{P}\right) \\
& \text { s.t. } \mathbf{Q} \in\{0,1\}^{n \times t}, \mathbf{Q}^{\top} \mathbf{1}_{n}=\mathbf{1}_{t}, \mathbf{Q} \mathbf{1}_{t} \leq \mathbf{1}_{n} \tag{8}
\end{align*}
$$

- This is an integer programming problem with no efficient solution.
- This problem is to find the t largest elements in $\mathbf{S}^{\star} \mathbf{P}$

Subproblem 1

- When \mathbf{P} is fixed, the optimization problem with respect to \mathbf{Q} is

$$
\begin{align*}
& \max _{\mathbf{Q}}^{\operatorname{tr}} \operatorname{tr}\left(\mathbf{Q}^{T} \mathbf{S}^{\star} \mathbf{P}\right) \\
& \text { s.t. } \mathbf{Q} \in\{0,1\}^{n \times t}, \mathbf{Q}^{\top} \mathbf{1}_{n}=\mathbf{1}_{t}, \mathbf{Q} \mathbf{1}_{t} \leq \mathbf{1}_{n} \tag{8}
\end{align*}
$$

- This is an integer programming problem with no efficient solution.
- This problem is to find the t largest elements in $\mathbf{S}^{\star} \mathbf{P}$
- No two elements can be in the same column or the same row.

Subproblem 1

- When \mathbf{P} is fixed, the optimization problem with respect to \mathbf{Q} is

$$
\begin{align*}
& \max _{\mathbf{Q}} \operatorname{tr}\left(\mathbf{Q}^{T} \mathbf{S}^{\star} \mathbf{P}\right) \\
& \text { s.t. } \mathbf{Q} \in\{0,1\}^{n \times t}, \mathbf{Q}^{T} \mathbf{1}_{n}=\mathbf{1}_{t}, \mathbf{Q} \mathbf{1}_{t} \leq \mathbf{1}_{n} . \tag{8}
\end{align*}
$$

- This is an integer programming problem with no efficient solution.
- This problem is to find the t largest elements in $\mathbf{S}^{\star} \mathbf{P}$
- No two elements can be in the same column or the same row.
- Observation: the largest elements of different columns in $\mathbf{S}^{\star} \mathbf{P}$ usually lie in different rows.

Subproblem 1

- When \mathbf{P} is fixed, the optimization problem with respect to \mathbf{Q} is

$$
\begin{align*}
& \max _{\mathbf{Q}} \operatorname{tr}\left(\mathbf{Q}^{T} \mathbf{S}^{\star} \mathbf{P}\right) \\
& \text { s.t. } \mathbf{Q} \in\{0,1\}^{n \times t}, \mathbf{Q}^{T} \mathbf{1}_{n}=\mathbf{1}_{t}, \mathbf{Q} \mathbf{1}_{t} \leq \mathbf{1}_{n} \tag{8}
\end{align*}
$$

- This is an integer programming problem with no efficient solution.
- This problem is to find the t largest elements in $\mathbf{S}^{\star} \mathbf{P}$
- No two elements can be in the same column or the same row.
- Observation: the largest elements of different columns in $\mathbf{S}^{\star} \mathbf{P}$ usually lie in different rows.
- We propose a greedy method to select multiple largest elements in different rows.

Subproblem 2

Subproblem 2

- When \mathbf{Q} is fixed, the optimization problem with respect to \mathbf{P} is

$$
\begin{array}{ll}
\max _{\mathbf{P}} & \operatorname{tr}\left(\mathbf{Q}^{T} \mathbf{S}^{\star} \mathbf{P}\right) \\
\text { s.t. } & \mathbf{P P}^{T}=\mathbf{I}_{t} . \tag{9}
\end{array}
$$

Subproblem 2

- When \mathbf{Q} is fixed, the optimization problem with respect to \mathbf{P} is

$$
\begin{array}{ll}
\max _{\mathbf{P}} & \operatorname{tr}\left(\mathbf{Q}^{T} \mathbf{S}^{\star} \mathbf{P}\right) \\
\text { s.t. } & \mathbf{P P}^{T}=\mathbf{I}_{t} \tag{9}
\end{array}
$$

- By using Lagrangian multiplier method, we can get the analytical solution as

$$
\mathbf{P}^{\star}=\mathbf{U} \mathbf{R}^{T}
$$

Subproblem 2

- When \mathbf{Q} is fixed, the optimization problem with respect to \mathbf{P} is

$$
\begin{array}{ll}
\max _{\mathbf{P}} & \operatorname{tr}\left(\mathbf{Q}^{T} \mathbf{S}^{\star} \mathbf{P}\right) \\
\text { s.t. } & \mathbf{P P}^{T}=\mathbf{I}_{t} \tag{9}
\end{array}
$$

- By using Lagrangian multiplier method, we can get the analytical solution as

$$
\mathbf{P}^{\star}=\mathbf{U} \mathbf{R}^{T}
$$

- $\left(\mathbf{S}^{\star}\right)^{T} \mathbf{Q}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{R}^{T}$ be the singular value decomposition.

Properties of Our Optimization Method

Properties of Our Optimization Method

- The computational complexity of our method is $O\left(n^{2} t\right)$.

Properties of Our Optimization Method

- The computational complexity of our method is $O\left(n^{2} t\right)$.
- DED is insensitive to the regularization parameter.

Outline

(1) Introduction

(2) Notations
(3) Discriminative Experimental Design

(4) Experiments

(5) Conclusion

Experimental Setup

Experimental Setup

- The method compared: DED, SVM active learning, TED, batch mode active learning.

Experimental Setup

- The method compared: DED, SVM active learning, TED, batch mode active learning.
- Two public benchmark data sets used: Newsgroups and Reuters.

Experimental Setup

- The method compared: DED, SVM active learning, TED, batch mode active learning.
- Two public benchmark data sets used: Newsgroups and Reuters.
- Performance measure: The area under the ROC curve (AUC).

Experimental Setup

- The method compared: DED, SVM active learning, TED, batch mode active learning.
- Two public benchmark data sets used: Newsgroups and Reuters.
- Performance measure: The area under the ROC curve (AUC).
- The size of queries $t: 5$

Experimental Setup

- The method compared: DED, SVM active learning, TED, batch mode active learning.
- Two public benchmark data sets used: Newsgroups and Reuters.
- Performance measure: The area under the ROC curve (AUC).
- The size of queries $t: 5$
- The regularization parameters: 0.01.

Experimental Setup

- The method compared: DED, SVM active learning, TED, batch mode active learning.
- Two public benchmark data sets used: Newsgroups and Reuters.
- Performance measure: The area under the ROC curve (AUC).
- The size of queries $t: 5$
- The regularization parameters: 0.01.
- Five labeled data points are provided for each class before active learning starts.

Results on Newsgroups Data

Results on Newsgroups Data

(e) Autos

(g) Baseball

(f) Motorcycles

(h) Hockey

Results on Newsgroups Data

(i) Autos

(k) Baseball

(j) Motorcycles

(I) Hockey

- When the labeled data is scarce, data distribution information is very important.

Results on Reuters Data

Results on Reuters Data

(q) CCAT

(s) GCAT

(r) ECAT

(t) MCAT

Comparison on Two Optimization Techniques

Comparison on Two Optimization Techniques

(w) Newsgroups data

(x) Reuters data

Outline

(1) Introduction

(2) Notations

3 Discriminative Experimental Design
(4) Experiments
(5) Conclusion

Conclusion

Conclusion

- A novel active learning method has been proposed.

Conclusion

- A novel active learning method has been proposed.
- The data selection criterion utilizes discriminative information and data distribution information.

Conclusion

- A novel active learning method has been proposed.
- The data selection criterion utilizes discriminative information and data distribution information.

Future Work:

Conclusion

- A novel active learning method has been proposed.
- The data selection criterion utilizes discriminative information and data distribution information.

Future Work:

- The integration of active learning and semi-supervised learning

Thanks very much for your attention!

