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Introduction

Active Learning

Active learning selects unlabeled data points to query some
oracle.
Existing active learning methods: uncertainty sampling (SVM
Active Learning), query-by-committee, representative sampling
(Transductive Experimental Design).

Input: Labeled data set L; Unlabeled data set U
Output: Learning model
Step 1: Train a learning model based on L;
Step 2:
For t = 1, . . . , tmax

2.1: Select an unlabeled data set S from U based
on some unlabeled data selection criterion;

2.2: Query an oracle to label S;
2.3: L ← L ∪ S, U ← U \S;
2.4: Re-train the learning model based on L;
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Introduction

Our Contribution

Some methods are complementary.

SVM Active Learning: Use of discriminative information; Selection
of one point in an iteration
TED: Use of data distribution information; Selection of multiple
points in an iteration

Our Contributions:

The proposal of discriminative experimental design (DED),
combining the strengths of both SVM active learning and TED.
A projection method to solve the optimization problem.
The good performance on some benchmark datasets.
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Notations

Notations

V ∈ Rd×n: The matrix for the unlabeled data currently available
X ∈ Rd×t : The selected subset of unlabeled data
t : The number of selected data points
φ(·): The feature mapping corresponding to some kernel function
k(·, ·)
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Discriminative Experimental Design

Least-Square SVM Revisited

The objective function of least-square SVM is formulated as:

min
w

l∑
i=1

(wTφ(xi)− yi)
2 + λ‖w‖22. (1)

Its equivalent form:

min
w

J(w) =
l∑

i=1

(1− yiwTφ(xi))
2 + λ‖w‖22. (2)

Here the square loss is similar to the square hinge loss
L′(s, t) = max(0,1− st)2.
The function score for a data point is defined as:

y =
1

wTφ(x)
,
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Discriminative Experimental Design

The Objective Function

According to the analysis in TED, the estimation error satisfies

cov(w−w?) ∝ Cw =
( ∂2J(w)

∂w∂wT

)−1
=
(
φ(X)Y2

Xφ(X)
T + λId ′

)−1

The predictive error on the whole unlabeled data set satisfies

Cf = YVφ(V)T Cwφ(V)YV

The A-optimal design is used to minimize the predictive variance:

min tr(Cf).

Definition
Discriminative Experimental Design:

max
X,YX

tr
[
YVKVXYX(λIt + YXKXYX)

−1YXKXVYV

]
s.t. X ⊂ V, |X| = t ,YX ⊂ YV. (3)
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Discriminative Experimental Design

The Relationship between DED and TED

The optimization problem of linear DED:

max
X̃

tr
[
ṼT X̃(λIt + X̃T X̃)−1X̃T Ṽ

]
s.t. X̃ ⊂ Ṽ, |X̃| = t . (4)

This is identical to the optimization problem of TED.
TED can be seen as a special case of DED.
DED is a weighted version of TED.

The weights are related to function scores of the data points.
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Discriminative Experimental Design

Reformulation of DED

A selection indicator matrix S ∈ {0,1}n×t is defined as

sij =

{
1 if (φ(X)YX),j is from (φ(V)YV),i
0 otherwise

The constraint set for S is CS =
{

S |S ∈ {0,1}n×t ,ST S = It
}

.
The objective function of DED can be reformulated as

max
S

tr
[
(ST (λIn + K̃V)S)−1ST K̃2

VS
]

s.t. S ∈ CS, (5)

If there is no constraint, the optimal solution has the form of S?P.

S? consists of the top t eigenvectors of K̃V.
P ∈ Rt×t is an orthogonal matrix.
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Discriminative Experimental Design

The Projection Method

The optimal solution S?P is projected to the set CS:

min
P,Q

‖S?P−Q‖2F

s.t. Q ∈ CS, PPT = It , (6)

Its equivalent form:

max
P,Q

tr(QT S?P)

s.t. Q ∈ CS, PPT = It . (7)

An alternating optimization method is used to solve this problem.
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Discriminative Experimental Design

Subproblem 1

When P is fixed, the optimization problem with respect to Q is

max
Q

tr(QT S?P)

s.t. Q ∈ {0,1}n×t ,QT 1n = 1t ,Q1t ≤ 1n. (8)

This is an integer programming problem with no efficient solution.
This problem is to find the t largest elements in S?P

No two elements can be in the same column or the same row.

Observation: the largest elements of different columns in S?P
usually lie in different rows.
We propose a greedy method to select multiple largest elements
in different rows.
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Discriminative Experimental Design

Subproblem 2

When Q is fixed, the optimization problem with respect to P is

max
P

tr(QT S?P)

s.t. PPT = It . (9)

By using Lagrangian multiplier method, we can get the analytical
solution as

P? = URT .

(S?)T Q = UΣRT be the singular value decomposition.
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Discriminative Experimental Design

Properties of Our Optimization Method

The computational complexity of our method is O(n2t).
DED is insensitive to the regularization parameter.
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Experiments

Experimental Setup

The method compared: DED, SVM active learning, TED, batch
mode active learning.
Two public benchmark data sets used: Newsgroups and Reuters.
Performance measure: The area under the ROC curve (AUC).
The size of queries t : 5
The regularization parameters: 0.01.
Five labeled data points are provided for each class before active
learning starts.
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Experiments

Results on Newsgroups Data
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When the labeled data is scarce, data distribution information is
very important.
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Experiments

Results on Reuters Data
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Experiments

Comparison on Two Optimization Techniques
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Conclusion

Conclusion

A novel active learning method has been proposed.
The data selection criterion utilizes discriminative information and
data distribution information.

Future Work:

The integration of active learning and semi-supervised learning
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