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PROBLEM FRAMEWORK
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Markov Decision Processes

We are interested in the problem of optimal control in a dynamic
environment. Examples include

• Robotics.
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Markov Decision Processes

We are interested in the problem of optimal control in a dynamic
environment. Examples include

• Robotics.

• Portfolio Optimisation.

• Network Management.
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Markov Decision Processes

We consider the problem of Markov Decision Processes, which
are given by

• action-state space

action space - a ∈ A (discrete).
state space - s ∈ S (discrete).

• initial state distribution - p0(s).
• policy

non-stationary - πt (a|s, t) = p(a|s, t ;π).
stationary - π(a|s) = p(a|s;π).

• reward - R(a, s).
• transition dynamics - p(s′|s,a).
• planning horizon - H (finite or infinite).
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Markov Decision Processes

Objective - Optimise π to maximise the total expected reward

U(π) =
H∑

t=1

∑
at ,st

R(at , st )p(at , st ;π),

where p(at , st ;π) is the marginal of the trajectory distribution

p(s1:H ,a1:H ;π) = p(aH |sH ;π)p0(s1)
H−1∏
t=1

p(st+1|st ,at )p(at |st ;π).
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Problem Framework

Interested in solving finite horizon MDP’s with stationary
policies, i.e.

• H <∞,

• πt (a|s) = π(a|s), t = 1, ...,H.

In particular we’re interested in a dynamic programming ‘type’
solution to this problem class.

Other planning algorithms

EM - slow convergence.
Policy Gradients - susceptible to local optima.

Difficult - Bellman’s principal of optimality no longer holds.
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Influence Diagrams

π1 π2 π3 π4

s1 s2 s3 s4

R1 R2 R3 R4

a1 a2 a3 a4

Non-Stationary Policies

Chain Structured - Easy to Optimise

π

s1 s2 s3 s4

R1 R2 R3 R4

a1 a2 a3 a4

Stationary Policies

Large Policy Clique - Difficult to Optimise
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DUAL DECOMPOSITION
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Dual Decomposition

Use idea of dual decomposition to exploit the theoretical ease
of optimising a finite horizon MDP with non-stationary policies.

Original maximisation problem

max
π

H∑
t=1

∑
at ,st

R(at , st )p(at , st ;π),

can be rewritten as

max
π,π1:H
πt =π,∀t

H∑
t=1

∑
at ,st

R(at , st )p(at , st ;π1:t ).
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Dual Decomposition

Ordinarily the constraints πt = π, t = 1, ...,H, would be handled
by adjoining

H∑
t=1

∑
a,s

λt (a, s)(πt (a|s)− π(a|s)),

to the Lagrangian.

Note - this doesn’t lead to dynamic programming solution.

So we consider the equivalent constraints
H∑

t=1

∑
a,s

λt (a, s)(πt (a|s)− π(a|s))p(st = s|π1:t−1).
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Dual Decomposition

This leads to objective function

L(π, π1:H , λ1:H) =
H∑

t=1

∑
at ,st

{(
R(at ,st ) + λt (at , st )

)
p(at , st |π1:t )

− λt (at , st )π(at |st )p(st |π1:t−1)

}
Can perform optimisation over π.

This gives constraint set Λ(π1:H) over Lagrange multipliers
H∑

t=1

λt (a, s)p(st = s|π1:t−1) = 0, ∀(a, s) ∈ S ×A.
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Dual Objective

Final dual objective function

L(λ1:H , π1:H) =
H∑

t=1

∑
at ,st

(
R(at , st ) + λt (at , st )

)
p(at , st |π1:t ).

This is optimised iteratively through a sequence of

• slave problems

• master problems
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Slave Problem

For fixed λ1:H maximisation over π1:H takes the form

argmax
π1:H

H∑
t=1

∑
at ,st

(
R(at , st ) + λt (at , st )

)
p(at , st |π1:t ) (1)

• Objective (1) an ordinary MDP with non-stationary
policies.

• Lagrange multipliers leads to non-stationary rewards.

• Solvable using dynamic programming.
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Master Problem

For fixed π1:H minimisation over λ1:H takes the form

argmin
λ1:H∈Λ

H∑
t=1

∑
at ,st

(
R(at , st ) + λt (at , st )

)
p(at , st |π1:t ).

Minimisation done using a projected sub-gradient step.

Gradient Step - take step in direction of anti-gradient
λi

t ← λi−1
t − ηi−1π

i−1
t .

Projection Step - project λ1:H back down into constraint set Λ

λi
t (s,a)← λi

t (s,a)−
H∑
τ=1

ρτ (s)λi
τ (s,a).
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Algorithm Summary

Summary - dual decomposition solution iterates between slave
problem and the master problem until convergence.

• Slave Problem - Update π1:H by solving a finite
horizon MDP with

• non-stationary policies.
• non-stationary rewards - R̂t = R + λt .

• Master Problem - Update λ1:H using a projected
sub-gradient step.
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Resource Allocation

Dual decomposition algorithm adjusts non-stationary rewards
(i.e. Lagrange multipliers) to obtain stationary policies.

Question - How are λ1:H updated?

We show the following relation

λi+1
t (s,a)

{
≤ λi

t (s,a) if a = argmax
a

πi
t (a|s),

≥ λi
t (s,a) if otherwise.

Additionally, the difference obeys the relation

|λi+1
t (s,a)− λi

t (s,a)| = O(H − Ni(s,a)),

where Ni(s,a)

Ni(s,a) =

∣∣∣∣{t ∈ {1, ...,H}
∣∣∣∣πt (a|s) = 1

}∣∣∣∣
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Resource Allocation - An Example

Example - Consider an MDP with 2 actions.
If in a given a state, s, the previous slave problem found

• action a1 was optimal for a large number of time points,
• while action a2 was optimal for only a few time points,

then

• for time-points where a1 was optimal
λt (a1, s) - would decrease only slightly
λt (a2, s) - would increase only slightly

• for time-points where a2 was optimal
λt (a1, s) - would increase more dramatically
λt (a2, s) - would decrease more dramatically
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EXPERIMENTS
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Comparisons

We compare our Dual Decomposition Dynamic Programming
(DD DP) algorithm against;

• Expectation Maximisation (EM)

• Policy Gradients (PG)

• Fixed Step Size
• Line Search

• Expectation Maximisation - Policy Gradients (EM-PG)
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Chain Problem

Objective - For H = 25 it is optimal to manoeuvre the agent to
the right-most end of the chain.

• |S| = 5.

• |A| = 2.

• H = 25.

s1 s2 s3 s4 s5
a,0 a,0

b,2

a,0 a,0

a,10

Thomas Furmston, David Barber Dual Decomposition of Finite Horizon MDP’s



Mountain Car

Objective - Manoeuvre the agent to the goal region at the right-
most peak of the valley.

• |S| = 231.

• |A| = 3.

• H = 25.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Goal
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Puddle World

Objective - Manoeuvre the agent to the goal region whilst avoid-
ing the puddles, which cause a negative reward.

• |S| = 441.

• |A| = 4.

• H = 50.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Initial State

Goal

Initial State

Goal
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Results

Algorithms
DD DP EM F-PG LS-PG EM-PG

Chain Problem U(π∗) 86 85 75 65 86
Iterations 3 100 100 3 100

Mountain Car U(π∗) 19 19 16 14 19
Iterations 7 100 100 3 100

Puddle World U(π∗) 42 39 N/A 0 N/A
Iterations 30 1000 N/A 10 N/A
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Summary & Future Work

Summary
We have presented that dual decomposition algorithm for finite
horizon MDP’s with stationary policies.

Future work

• Extend to continuous state-action domains.
• Extend to more complex domains, such as partially

observable Markov decision processes.

Thomas Furmston, David Barber Dual Decomposition of Finite Horizon MDP’s




