Label Noise-Tolerant Hidden Markov Models

Benoît Frénay, Gaël de Lannoy and Michel Verleysen

September 6, 2011

Introduction

For real datasets, perfect labelling is difficult:

- subjectivity of the labelling task;
- lack of information;
- communication noise.

In particular, label noise arise in biomedical applications.

Previous works by e.g. Lawrence et al. incorporated a **noise model** into a **generative model** for **i.i.d. observations** (classification).

Example and Contributions

Label noise in the case of sequential data modelled by HMMs:

- a new label-noise tolerant algorithm is proposed;
- experiments are carried on ECG signals;
- the interest of the proposed approach is shown.

Hidden Markov Models in a Nutshell

HMM: description of the relationship between an unobservable sequence of hidden states S and an observable sequence O.

Parameters $\Theta = (q, a, b)$:

- q_i is the **prior** of state i;
- a_{ij} is the transition probability from state i to state j;
- b_i is the **observation distributions** for state i.

Here, b_i are Gaussian mixture models (GMMs).

Standard Inference Algorithms for HMMs

Supervised learning:

- assumes the observed labels are correct;
- maximises the likelihood $P(S, O|\Theta)$;
- learns the correct concepts;
- sensitive to label noise.

Baum-Welch algorithm:

- unsupervised, i.e. observed labels are discarded;
- iteratively (i) label samples and (ii) learn a model;
- may learn concepts which differs significantly;
- theoretically insensitive to label noise.

Label Noise Model

Two distinct sequences of states:

- the **observed**, **noisy** annotations *Y*;
- the hidden, true labels S.

The annotation probability is

$$d_{ij} = \begin{cases} 1 - p_i & (i = j) \\ \frac{p_i}{|S| - 1} & (i \neq j) \end{cases}$$

where p_i is the expert error probability in i.

Label Noise-Tolerant HMMs

Compromise between supervised learning and Baum-Welch.

- assumes the observed labels are potentially noisy;
- maximises the likelihood P(Y, O|Θ);
- learns the correct concepts;
- less sensitive to label noise.

Expectation-Maximisation Algorithm

Non-convex function to optimise:

$$\log P(O, Y|\Theta) = \log \sum_{S} P(O, Y, S|\Theta),$$

Solution: EM algorithm.

Expectation step: estimate the posteriors

$$\gamma_t(i) = P(S_t = i | O, Y, \Theta^{old})$$

$$\epsilon_t(i,j) = P(S_{t-1} = i, S_t = j | O, Y, \Theta^{old})$$

Maximisation Step (parts of)

Maximisation step for p_i :

$$p_i = \frac{\sum_{t|Y_t \neq i} \gamma_t(i)}{\sum_{t=1}^T \gamma_t(i)}$$

Maximisation step for μ_{il} :

$$\mu_{il} = \frac{\sum_{t=1}^{T} \gamma_t(i, l) o_t}{\sum_{t=1}^{T} \gamma_t(i)}$$

The true labels are estimated and used to compute the parameters.

Application: Electrocardiograms

Electrocardiograms (ECGs):

- periodic signal measuring the electrical activity of the heart;
- patterns: P waves, QRS complexes, T waves and B3 baseline;

Preprocessing:

- filtered using a 3-30 Hz band-pass filter;
- transformed using a continuous wavelet transform;
- dyadic scales from 2¹ to 2⁷ are kept and normalised.

Experimental Settings

EM algorithms:

- GMM with 5 components;
- EM algorithms are repeated 10 times;

Electrocardiograms:

- a set of 10 artificial ECGs;
- 10 ECGs selected in the sinus MIT-QT database;
- 10 ECGs selected in the arrhythmia MIT-QT database.

Comparison:

- learning with addition of artificial label noise;
- comparison on original signals;
- label noise moves the boundaries of P and T waves.

Results for Artificial ECGs

Supervised learning, Baum-Welch and label noise-tolerant.

Results for Sinus ECGs

Supervised learning, Baum-Welch and label noise-tolerant.

Resuts for Arrhythmia ECGs

Supervised learning, Baum-Welch and label noise-tolerant.

Discussion

Supervised learning:

affected by increasing label noise.

Baum-Welch:

- worst results for small levels of noise;
- less affected by the label noise
- better than supervised learning for large levels of noise.

Label-noise tolerant algorithm:

- affected by increasing label noise;
- most often better than Baum-Welch;
- better than supervised learning for large levels of noise.

Conclusion

An EM algorithm for label noise-tolerant HMM inference is proposed and compared with supervised learning and Baum-Welch.

Experiments on healthy and pathological ECGs signals show:

- all approaches are adversely impacted by label noise;
- the proposed algorithm can yield better performances.

Future work includes

- testing other types of label noise;
- comparing algorithms on other problems.