UNIKASSEL

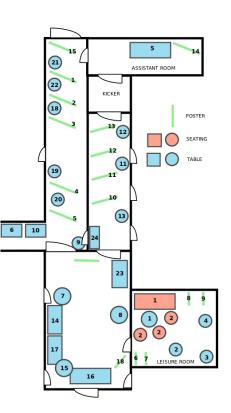
ENDOWED CHAIR OF THE HERTIE FOUNDATION Knowledge and Data Engineering ELECTRICAL ENGINEERING & COMPUTER SCIENCE, UNIVERSITY OF KASSEL

Resource-Aware On-Line RFID Localization Using Proximity Data

Christoph Scholz¹, Stephan Doerfel¹, Martin Atzmueller¹, Andreas Hotho², Gerd Stumme¹

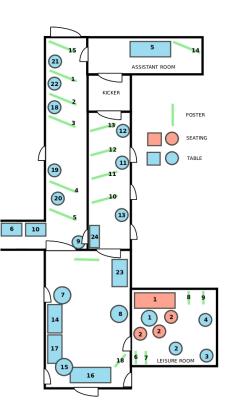
¹Knowledge and Data Engineering Group University of Kassel, Germany ²Data Mining and Information Retrieval Group University of Würzburg, Germany

- Application Context
 Method
 - · Benchmark
 - Social Boosting
- 3. Dataset
- 4. Results
- 5. Summary

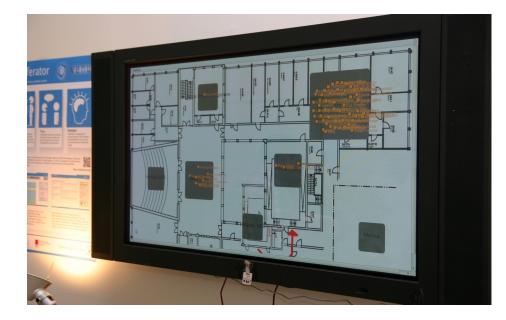


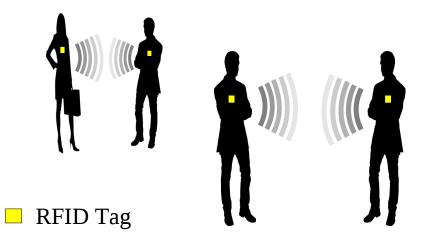
1. Application Context

- 2. Method
 - · Benchmark
 - Social Boosting
- 3. Dataset
- 4. Results
- 5. Summary



Localization of Conferences

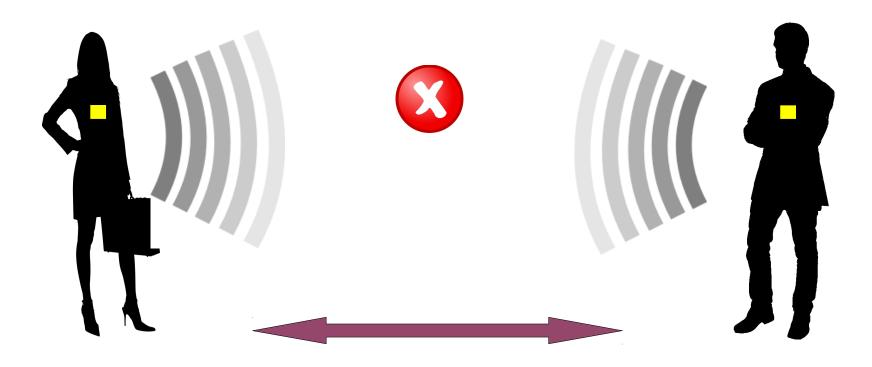




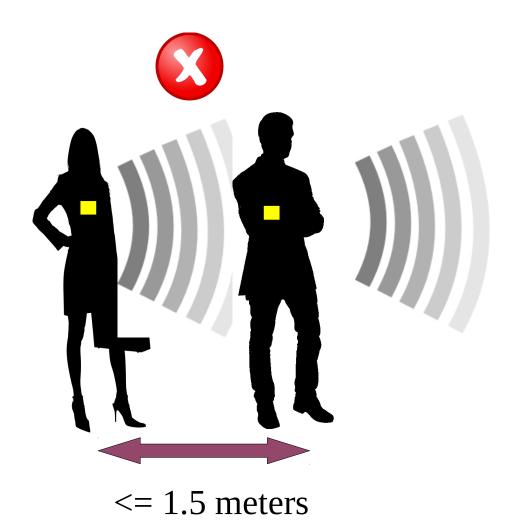
- development of a social network for conferences (www.conferator.org)
- offers contact history for participants
- analysis of contact data
- indoor-localization (room level)

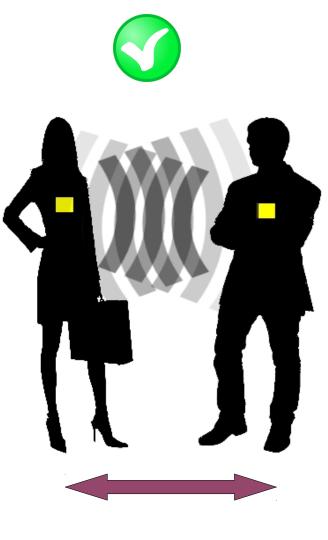
- active RFID tag
- detects other proximity tags within a range of up to 1.5 meters
- done by sending out special proximity packages
- sends one tracking package in four different signal strengths every two seconds
- cannot store information

- receives RFID signals from proximity tags and forwards them to a central server
- does not provide information like Angle of Arrival (AoA) or Received Signal Strength (RSS)



> 1.5 meters

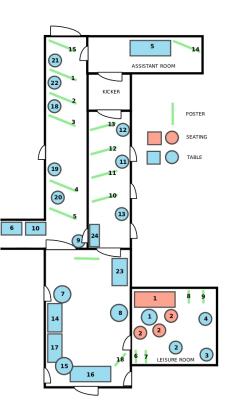




<= 1.5 meters

- first explicit analysis that contact information helps to improve localization accuracy
- use of real-time data
- evaluation of state-of-the-art machine learning techniques for room-level localization
- resource-aware application
 - use of limited number of readers
 - use of cost-effective technology

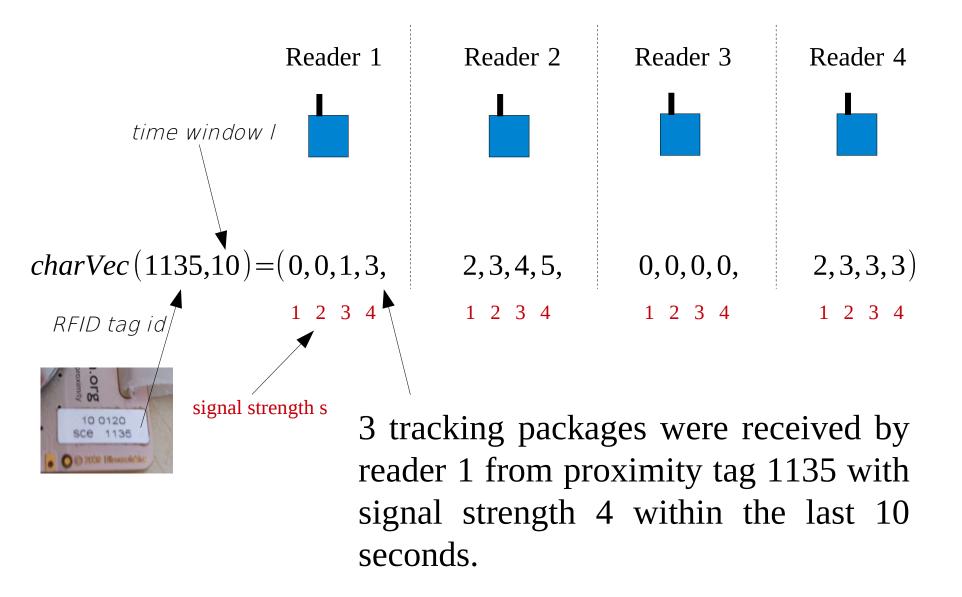
- · Benchmark
- Social Boosting
- 3. Dataset
- 4. Results
- 5. Summary



Assumption

The number of packages an RFID reader receives is significantly dependent on the position of the sending RFID tag.

We determine a set of characteristic vectors for each room in the conference area.

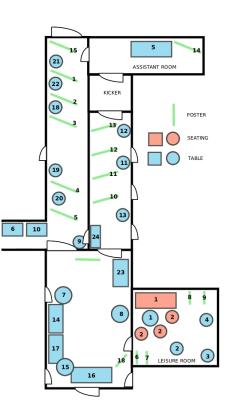


Benchmark

four state of the art machine learning methods:

- Naive Bayes (NBAY)
- K-Nearest Neighbor (KNN)
- Support Vector Machines (SVM) (radial kernel)
- Random Forest (RF)

- State of the Art
- Social Boosting
- 3. Dataset
- 4. Results
- 5. Summary



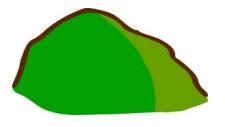
Mean-Approach

1. determine all contacts C(u) of user u at time t2. set $\frac{charcVec(u, l) + \sum_{i \in C(u)} charVec(i, l)}{1 + |C(u)|}$

3. use $charVec_{mean}(u, l)$ as input vector for the prediction algorithm

Max-Approach

Goal: Prediction of user *u*'s position at time *t*, given time window l



1. determine all contacts *C(u)* of user *u* at time *t* 2. set

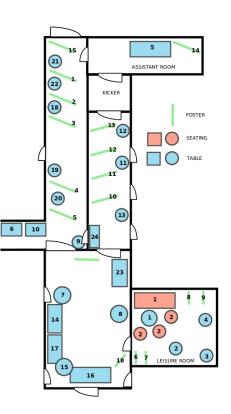
 $charVec_{max}(u, l) = \left(max_{i \in C(u) \cup \{u\}} \left[charVec(u, l)_{1} \right], \dots, max_{i \in C(u) \cup \{u\}} \left[charVec(u, l)_{4r} \right] \right)$

3. use $charVec_{max}(u, l)$ as input vector for the prediction algorithm

Vote-Approach

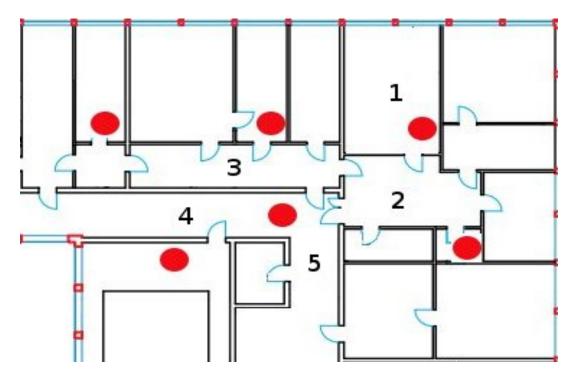
- 1. Determine the position (room) for user *u* and all his contacts with the prediction algorithm.
- 2. User *u*'s position is the majority vote among all these predictions.

- Benchmark
- Social Boosting
- 3. Dataset
- 4. Results
- 5. Summary



• real-time data collected during the two hour poster-session at the LWA 2010 in Kassel.

- we asked each participant to wear a proximity tag.
- 46 people took part in our experiment.
- we placed 6 RFID readers in the conference area.



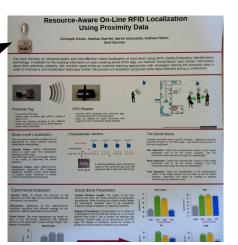
Definition: Object Tag and User Tag

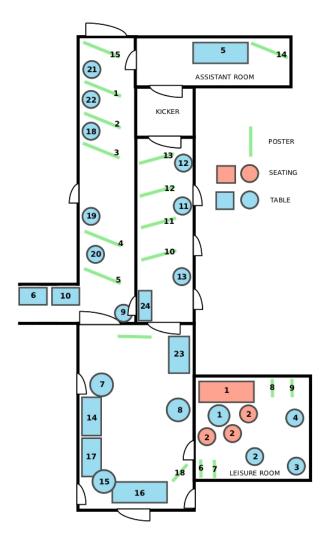
Object Tag

- is a proximity tag fixed to an unmovable object

User Tag

- is a proximity tag worn by a participant during the conference

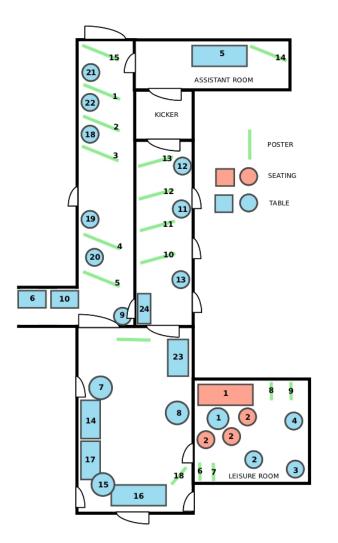




• we determined the position of the participants by using object tags

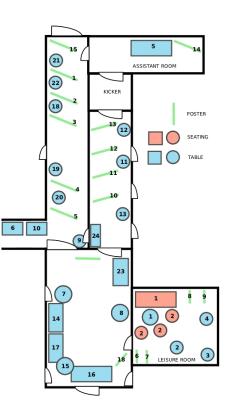
• whenever a participant's tag was recorded by an object tag, we know that the participant was in the same room as the object tag

• for the experiments we predicted the rooms for the vectors where the location could be verified.



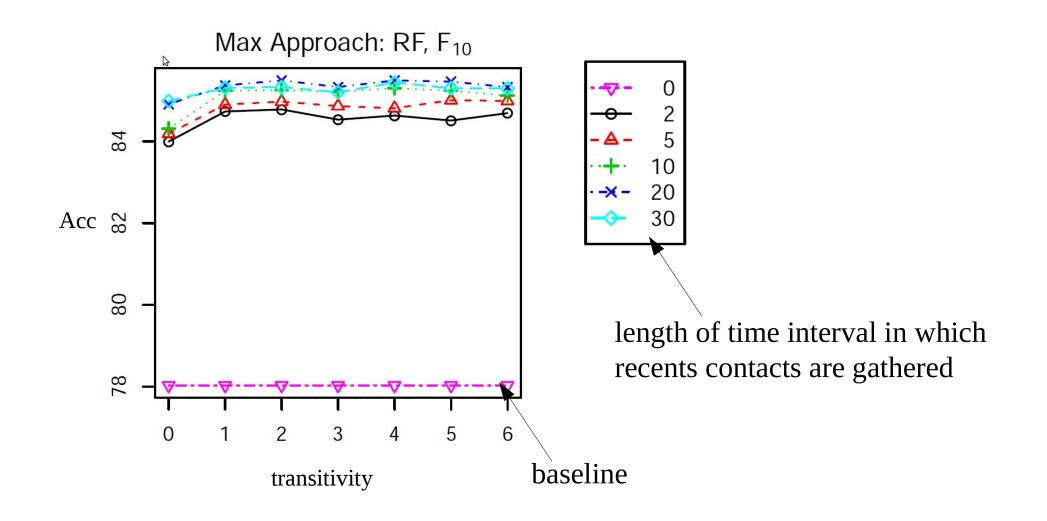
the first 1500 characteristic vectors collected through the object tags (ca. 20 min)

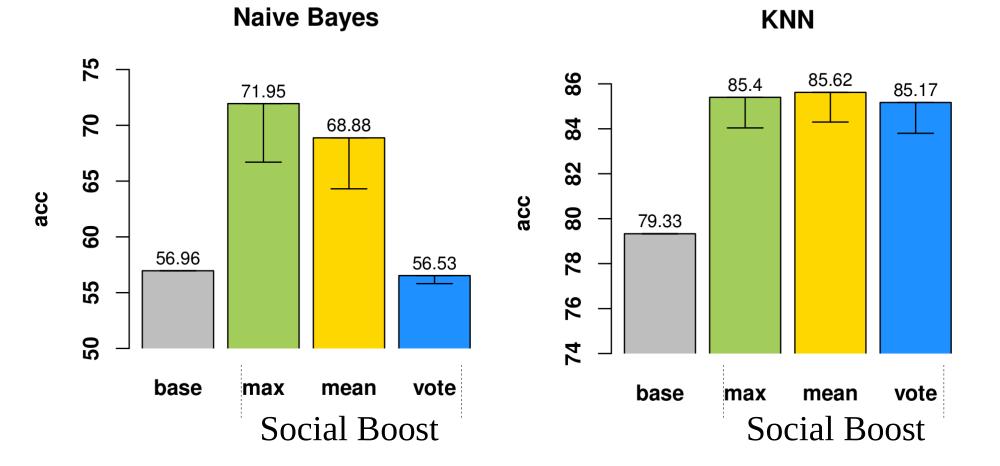
- Benchmark
- Social Boosting
- 3. Dataset
- 4. Results
- 5. Summary



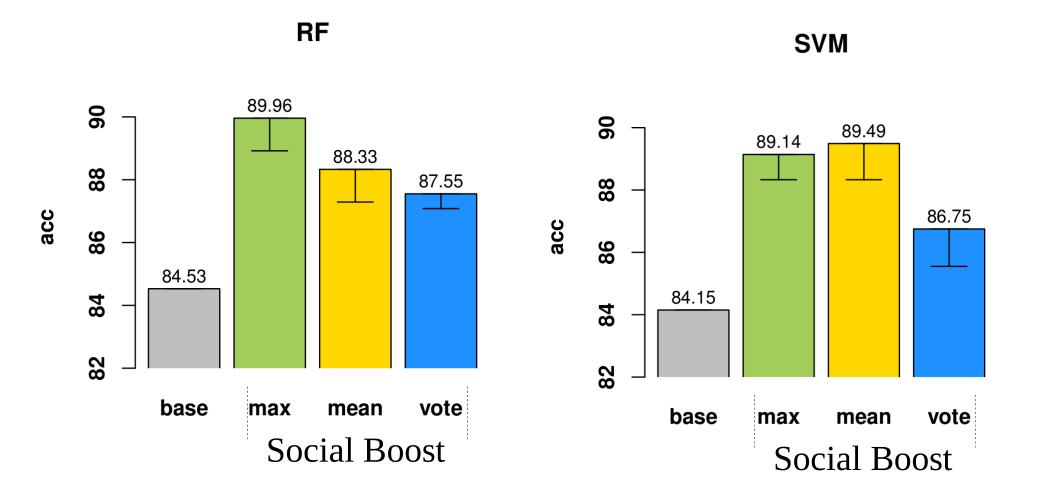
	2
00	b

	base	l = 10	l = 30	l = 50
кNN	k	165	185	200
	Accuracy	73.58	79.33	79.80
\mathbf{RF}	mtry	1	2	4
	ntree	375	350	200
	Accuracy	78.03	84.18	84.78
SVM	j	1	1	1
	γ	-14	-18	-20
	Accuracy			
NBAY	Accuracy	38.97	56.96	61.97

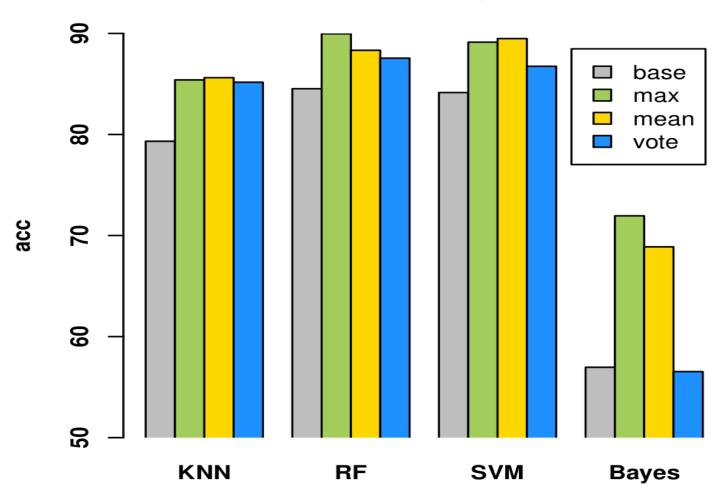




Scholz et al: Resource-Aware On-Line RFID Localization Using Proximity Tags, ECML 2011



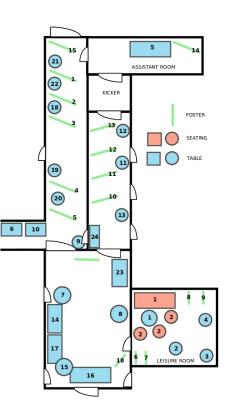
Scholz et al: Resource-Aware On-Line RFID Localization Using Proximity Tags, ECML 2011



Summary

Scholz et al: Resource-Aware On-Line RFID Localization Using Proximity Tags, ECML 2011

- Benchmark
- Social Boosting
- 3. Dataset
- 4. Results
- 5. Summary



• we presented methods that improve the localization accuracy significantly.

- RF and SVM perform very well, Naive Bayes not
- best result we got was 93 % with social boosting (only participants, who are in contact)

- · learning of user data instead of object data
- using the localization history (HMM, CRFs,....)
- · increasing the package frequency
- · use additional datasets

Thanks for your attention.

BACKUP SLIDES

	KNN	RF	SVM	NBAY
				F_{10} .
contact fraction	69.23	65.01	64.91	69.3
contact base ACC	74.33	76.83	77.78	33.05
contact best ACC	88.09	88.18	89.34	58.80
boost	13.76	11.34	11.57	25.74