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I CRM Application
I Customers are shopping online
I Money is spent on different product groups in a basket
I Multiple visits per customer
I Behaviour changing over time (recession, new product)
I Can we cluster customers ?

Can we predict values in the next basket ?

I Trajectory Clustering Problem
I Customers: Population of individuals
I Each visit: Measurement,

Money spent in all product groups: Measurement vector
I Customer history: Trajectory
I Subpopulations of customers: Clusters

I Multiple measurements per individual
I Measurements are not taken at equi-distant times
I Distribution of measurements is subject to drift
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Clustering Trajectories under Drift: Objective
I Cluster individuals
I Track clusters over time
I Predict/Extrapolate cluster movements
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Clustering Trajectories under Drift

I Formulation as Gaussian Mixture Model

I zi = zi1, zi2, · · · , zini are the ni observations of i-th individual
I K clusters, with

I mixing proportions αk

I distribution parameters θk
mean depends on time via regression coefficients βk ,
covariance matrix Σk is static

for the k-th cluster.

I Likelihood of observing trajectory of individual i :

p(zi ; Θ) =

ni∏
l=1

K∑
k=1

αkp(zil ; θk) (1)
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EM Trajectory Clustering

I EM algorithm for general likelihood maximisation problem:
Dempster et al., 1977

I Offline EM Trajectory Clustering algorithm:

I Gaffney and Smyth, 1999
I Provides an initial clustering
I Problem:

Offline algorithm, how to use in a stream?
How robust against sudden change (non-smooth trajectories)
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TRACER Algorithm

Overview

I Make an initial clustering using EM

I Update clustering:

I Estimate new position of clusters
I Assign new individuals to clusters

I Assumptions:
I Static number of clusters, K
I Static covariance matrices, Σk

I Approach: Kálmán filter (Kálmán, 1959 )
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Kálmán filter

I State transition: New state xs

xs = Axs−1 + ws (2)

I State-to-signal: Measurement z ∈ RD

zs = Hxs + vs (3)

I States: True (unobservable) cluster centroids,
vector of length D ∗ (O + 1)

I Kálmán filter computes at each discrete time step s:
State estimate for each cluster: x̂s
Error estimate on cluster state: Ps

I Questions:
I How to chose x̂0, A, Q, H, R ?
I How to assign individuals to clusters ?
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TRACER Initialisation

Initial State of Each Cluster
State is initialised from β-coefficients obtained via EM

I State vector µ0 of size (D ∗ (O + 1)x1) at t = 0:

f (t) = (f1(0), · · · , fD(0))

I d-th coordinate estimate:

f
(0)
d (t) = βd0 + tβd1 + · · ·+ toβdo

I Covariance matrix Σ0: Identity matrix
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TRACER Initialisation

State Transition Matrix A

I Matrix A = [aij ] with

ai ,j =

{
δq = ∆q

q! if ∃ q ∈ N0 : i − j + D ∗ q = 0

0 otherwise

I Example for D = 2 and O = 2:

A =



a0 0 a1 0 a2 0
0 a0 0 a1 0 a2

0 0 a0 0 a1 0
0 0 0 a0 0 a1

0 0 0 0 a0 0
0 0 0 0 0 a0


with a0 = 1, a1 = ∆, a2 = ∆2

2
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TRACER Initialisation

Process Noise Covariance Matrix Q

I Identity matrix multiplied by process noise factor q̂:

Q = I ∗ q̂

Measurement (or state-to-signal) Matrix H

I Set equal to the identity matrix, H = I

Measurement Noise Covariance Matrix R

I Computed as covariance matrix of EM clustering
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TRACER Update and Clustering

New 
measurement 

z

Calc. meta-features 
(speed, accelaration, 

etc)

Update Matrices 
A, R

Estimate new 
cluster positions*

Calc. measurement's
cluster membership

probability

Update individual's
cluster membership

probability

z of known individual?

Y
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Objective

I Similar clustering quality of EM and TRACER?

I Robustness against sudden shift

I Speed and suitability for online processing

Synthetic Data Streams with Drift

I 5 types of synthetic data sets:
I Different state transition noise (A : high, C low)
I Different number of dimensions (A, · · · ,C : one; D,E : two)

I 10 data sets per type

I 1500 individuals, on average 2 measurements / individual,
1000 measurements for training,
1000 for test before shift, 1000 for test after shift
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Update Strategies

Method Description

E
M EM Expectation Maximisation

(multivariate variant of [Gaffney and Smyth, 1999])

K
al

m
an

K-1 Confidence prop. to squared membership probability
K-2 Confidence ∈ {0; 1}, winner-takes-all
K-3 Confidence prop. to membership probability

K-4 As K1, but 10x higher ST noise factor estimate
K-5 As K1, but 10x smaller ST noise factor estimate
K-6 As K1, but use of speed and acceleration

as meta-features for membership probability estimation p

18 / 25



Measure

I Cluster Purity:

purity =
1

N

K∑
j=1

K
max
i=1

Cij

Cij Number of elements in the i-th true and j-th pred. cluster
N Total number of elements

I Wilcoxon signed rank sum test:
Significance of differences in clustering quality
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Accuracy of State Estimation over Time
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Dependence of Purity : Shift and Speed : Dataset Size

EM K 1 K 2 K 3 K 4 K 5 K 6
0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

No Shift
Shift

2000 3000
0

20

40

60

80

100

120

EM
K 1

Purity Time
No Shift Shift 2000 3000 Method Description

EM 0.93 0.91 72.74 95.42 Offline Expectation Maximisation

K 1 0.82 0.88 5.84 5.92 Squared membership prob. c = 1/p2

K 2 0.77 0.80 5.54 5.68 Winner-takes-all
K 3 0.82 0.88 5.82 6.10 Membership prob. as weights, c = 1/p
K 4 0.81 0.86 5.76 5.92 As K1, but ST noise estimated 10x higher
K 5 0.77 0.79 5.72 6.12 As K1, but ST noise estimated 10x lower
K 6 0.79 0.84 5.84 5.92 As K1, but speed and acceleration

as features for p estimation
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Conclusion

Summary

I Trajectory clustering: e.g. customers with purchase histories

I TRACER Algorithm: Online trajectory clustering and tracking

I Compared to offline EM: Competitive quality, much faster,
robust against shift
Of particular interest when clustering streams

Outlook

I Real-world application and experiments

I Dynamic covariance matrices (changing R over time),
dynamic number of clusters (changing K over time)

I Smoothness of prediction

I Consider case where individuals change their cluster
membership over time
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Conclusion

Questions ?

Thank you!

Sourcecode available online:
https://bitbucket.org/geos/

tracer-trajectory-tracking/overview
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