Online Clustering of High-Dimensional Trajectories under Concept Drift

2011-09-07, ECMLPKDD 2011 Athens, Greece

Georg Krempl^{1,2}

Zaigham Siddiqui²

Myra Spiliopoulou²

¹ University of Graz georg.krempl@uni-graz.at

² University of Magdeburg {myra,siddiqui,krempl} @iti.cs.uni-magdeburg.de

Outline

- Problem Description
 - Motivation and Objectives
 - Modeling Trajectories as Gaussian Mixtures
 - Trajectory Clustering with Expectation Maximization (offline)
- TRACER Algorithm (online)
 - Overview
 - Initialisation
 - Update, Clustering and Prediction
- Experiments
 - Settings
 - Results
- Conclusion

Outline

- Problem Description
 - Motivation and Objectives
 - Modeling Trajectories as Gaussian Mixtures
 - Trajectory Clustering with Expectation Maximization (offline)
- ► TRACER Algorithm (online)
 - Overview
 - Initialisation
 - ► Update, Clustering and Prediction
- Experiments
 - Settings
 - Results

Conclusion

CRM Application

- Customers are shopping online
- Money is spent on different product groups in a basket
- Multiple visits per customer
- Behaviour changing over time (recession, new product)
- Can we cluster customers ? Can we predict values in the next basket ?

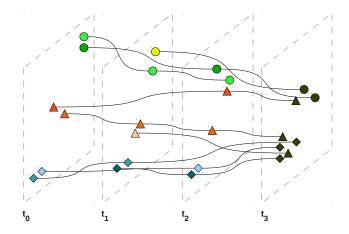
CRM Application

- Customers are shopping online
- Money is spent on different product groups in a basket
- Multiple visits per customer
- Behaviour changing over time (recession, new product)
- Can we cluster customers ? Can we predict values in the next basket ?

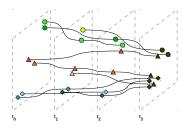
Trajectory Clustering Problem

- Customers: Population of individuals
- Each visit: Measurement, Money spent in all product groups: Measurement vector
- Customer history: *Trajectory*
- Subpopulations of customers: Clusters
- Multiple measurements per individual
- Measurements are not taken at equi-distant times
- Distribution of measurements is subject to drift

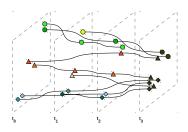
- Cluster individuals
- Track clusters over time
- Predict/Extrapolate cluster movements

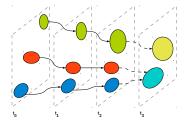


- Cluster individuals
- Track clusters over time
- Predict/Extrapolate cluster movements

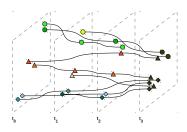


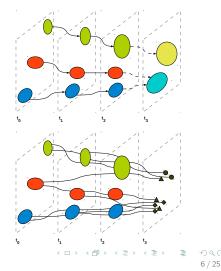
- Cluster individuals
- Track clusters over time
- Predict/Extrapolate cluster movements





- Cluster individuals
- Track clusters over time
- Predict/Extrapolate cluster movements





Clustering Trajectories under Drift

- Formulation as Gaussian Mixture Model
- ► $z_i = z_{i1}, z_{i2}, \cdots, z_{in_i}$ are the n_i observations of *i*-th individual
- ► K clusters, with
 - mixing proportions α_k
 - distribution parameters θ_k mean depends on time via regression coefficients β_k, covariance matrix Σ_k is static

for the k-th cluster.

Clustering Trajectories under Drift

- Formulation as Gaussian Mixture Model
- ► $z_i = z_{i1}, z_{i2}, \cdots, z_{in_i}$ are the n_i observations of *i*-th individual
- ► K clusters, with
 - mixing proportions α_k
 - distribution parameters θ_k mean depends on time via regression coefficients β_k, covariance matrix Σ_k is static

for the *k*-th cluster.

• Likelihood of observing trajectory of individual *i*:

$$p(z_i;\Theta) = \prod_{l=1}^{n_i} \sum_{k=1}^{K} \alpha_k p(z_{il};\theta_k)$$
(1)

EM Trajectory Clustering

- EM algorithm for general likelihood maximisation problem: Dempster et al., 1977
- Offline EM Trajectory Clustering algorithm:
 - ► Gaffney and Smyth, 1999
 - Provides an initial clustering
 - Problem:

Offline algorithm, how to use in a stream?

How robust against sudden change (non-smooth trajectories)

Outline

- Problem Description
 - Motivation and Objectives
 - Modelling Trajectories as Gaussian Mixtures
 - ► Trajectory Clustering with Expectation Maximisation (offline)
- TRACER Algorithm (online)
 - Overview
 - Initialisation
 - Update, Clustering and Prediction
- Experiments
 - Settings
 - Results

Conclusion

TRACER Algorithm

Overview

- Make an initial clustering using EM
- Update clustering:
 - Estimate new position of clusters
 - Assign new individuals to clusters
- Assumptions:
 - ► Static number of clusters, K
 - Static covariance matrices, Σ_k

イロト 不同下 イヨト イヨト

Э

TRACER Algorithm

Overview

- Make an initial clustering using EM
- Update clustering:
 - Estimate new position of clusters
 - Assign new individuals to clusters
- Assumptions:
 - ► Static number of clusters, K
 - Static covariance matrices, Σ_k
- Approach: Kálmán filter (Kálmán, 1959)

イロト イポト イヨト イヨト

Kálmán filter

▶ State transition: New state *x*_s

$$x_s = A x_{s-1} + w_s \tag{2}$$

• State-to-signal: Measurement $z \in \mathcal{R}^D$

$$z_s = H x_s + v_s \tag{3}$$

Kálmán filter

State transition: New state x_s

$$x_s = A x_{s-1} + w_s \tag{2}$$

• State-to-signal: Measurement $z \in \mathcal{R}^D$

$$z_s = H x_s + v_s \tag{3}$$

トロット 不良 アイビット 日本

- ► States: True (unobservable) cluster centroids, vector of length D * (O + 1)
- Kálmán filter computes at each discrete time step s: State estimate for each cluster: x̂s Error estimate on cluster state: Ps
- Questions:
 - How to chose \hat{x}_0 , A, Q, H, R ?
 - How to assign individuals to clusters ?

Initial State of Each Cluster

State is initialised from β -coefficients obtained via EM

• State vector μ_0 of size (D * (O + 1)x1) at t = 0:

$$f(t) = (f_1(0), \cdots, f_D(0))$$

d-th coordinate estimate:

$$f_d^{(0)}(t) = \beta_{d0} + t\beta_{d1} + \dots + t^o\beta_{do}$$

State Transition Matrix A

• Matrix
$$A = [a_{ij}]$$
 with

$$a_{i,j} = \begin{cases} \delta_q = \frac{\Delta^q}{q!} & \text{if } \exists q \in \mathbb{N}_0 : i - j + D * q = 0 \\ 0 & \text{otherwise} \end{cases}$$

State Transition Matrix A

• Matrix $A = [a_{ij}]$ with

 $a_{i,j} = \begin{cases} \delta_q = \frac{\Delta^q}{q!} & \text{if } \exists q \in \mathbb{N}_0 : i - j + D * q = 0 \\ 0 & \text{otherwise} \end{cases}$

• Example for D = 2 and O = 2:

$$A = \begin{pmatrix} a_0 & 0 & a_1 & 0 & a_2 & 0 \\ 0 & a_0 & 0 & a_1 & 0 & a_2 \\ 0 & 0 & a_0 & 0 & a_1 & 0 \\ 0 & 0 & 0 & a_0 & 0 & a_1 \\ 0 & 0 & 0 & 0 & a_0 & 0 \\ 0 & 0 & 0 & 0 & 0 & a_0 \end{pmatrix}$$

with $a_0 = 1$, $a_1 = \Delta$, $a_2 = \frac{\Delta^2}{2}$

イロト イロト イヨト イヨト ニヨー

Process Noise Covariance Matrix Q

• Identity matrix multiplied by process noise factor \hat{q} :

$$Q = I * \hat{q}$$

Process Noise Covariance Matrix Q

• Identity matrix multiplied by process noise factor \hat{q} :

$$Q = I * \hat{q}$$

Measurement (or state-to-signal) Matrix H

• Set equal to the identity matrix, H = I

Process Noise Covariance Matrix Q

• Identity matrix multiplied by process noise factor \hat{q} :

$$Q = I * \hat{q}$$

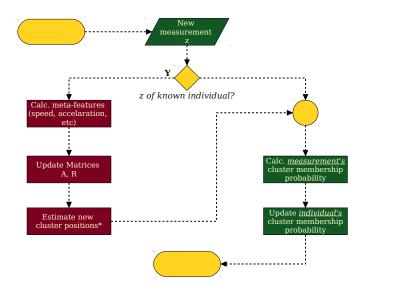
Measurement (or state-to-signal) Matrix H

• Set equal to the identity matrix, H = I

Measurement Noise Covariance Matrix R

Computed as covariance matrix of EM clustering

TRACER Update and Clustering



< □ > < @ > < 볼 > < 볼 > 별 ♡ < ℃ 15/25

Outline

- Problem Description
 - Motivation and Objectives
 - Modelling Trajectories as Gaussian Mixtures
 - ► Trajectory Clustering with Expectation Maximisation (offline)
- ► TRACER Algorithm (online)
 - Overview
 - Initialisation
 - ► Update, Clustering and Prediction

Experiments

- Settings
- Results

Objective

- Similar clustering quality of EM and TRACER?
- Robustness against sudden shift
- Speed and suitability for online processing

Objective

- Similar clustering quality of EM and TRACER?
- Robustness against sudden shift
- Speed and suitability for online processing

Synthetic Data Streams with Drift

- ► 5 types of synthetic data sets:
 - ▶ Different state transition noise (A : high, C low)
 - ▶ Different number of dimensions $(A, \dots, C: \text{ one; } D, E: \text{ two})$
- 10 data sets per type
- 1500 individuals, on average 2 measurements / individual, 1000 measurements for training, 1000 for test before shift, 1000 for test after shift

Update Strategies

Method Description

- ≥ EM Expectation Maximisation (multivariate variant of [Gaffney and Smyth, 1999])
 - K-1 Confidence prop. to squared membership probability
 - K-2 Confidence $\in \{0; 1\}$, winner-takes-all
 - K-3 Confidence prop. to membership probability
 - K-4 As K1, but 10x higher ST noise factor estimate
 - K-5 As K1, but 10x smaller ST noise factor estimate
 - K-6 As K1, but use of speed and acceleration as meta-features for membership probability estimation *p*

Kalman

Measure

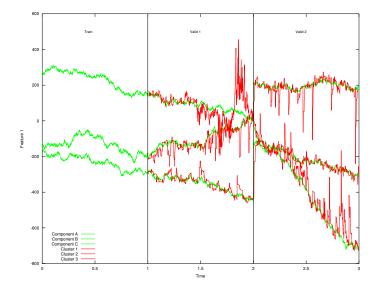
Cluster Purity:

$$purity = \frac{1}{N} \sum_{j=1}^{K} \max_{i=1}^{K} C_{ij}$$

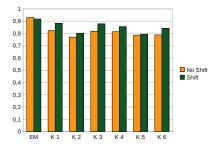
 C_{ij} Number of elements in the *i*-th true and *j*-th pred. cluster N Total number of elements

Wilcoxon signed rank sum test:
Significance of differences in clustering quality

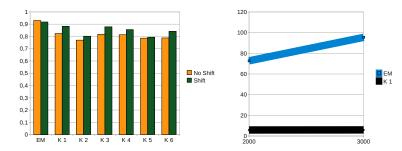
Accuracy of State Estimation over Time



Dependence of Purity : Shift and Speed : Dataset Size



Dependence of Purity : Shift and Speed : Dataset Size



	Purity		Time		
	No Shift	Shift	2000	3000	Method Description
EM	0.93	0.91	72.74	95.42	Offline Expectation Maximisation
K 1	0.82	0.88	5.84	5.92	Squared membership prob. $c = 1/p^2$
K 2	0.77	0.80	5.54	5.68	Winner-takes-all
K 3	0.82	0.88	5.82	6.10	Membership prob. as weights, $c = 1/p$
K 4	0.81	0.86	5.76	5.92	As K1, but ST noise estimated 10x higher
K 5	0.77	0.79	5.72	6.12	As K1, but ST noise estimated 10x lower
K 6	0.79	0.84	5.84	5.92	As K1, but speed and acceleration
					as features for <i>p</i> estimation

3

イロト イポト イヨト イヨト

Outline

- Problem Description
 - Motivation and Objectives
 - Modelling Trajectories as Gaussian Mixtures
 - ► Trajectory Clustering with Expectation Maximisation (offline)
- ► TRACER Algorithm (online)
 - Overview
 - Initialisation
 - ► Update, Clustering and Prediction
- Experiments
 - Settings
 - Results

Conclusion

Conclusion

Summary

- ► Trajectory clustering: e.g. customers with purchase histories
- ► TRACER Algorithm: *Online* trajectory clustering and tracking
- Compared to offline EM: Competitive quality, much faster, robust against shift
 Of particular interest when clustering streams

Conclusion

Summary

- ► Trajectory clustering: e.g. customers with purchase histories
- ► TRACER Algorithm: *Online* trajectory clustering and tracking
- Compared to offline EM: Competitive quality, much faster, robust against shift
 Of particular interest when clustering streams

Outlook

- Real-world application and experiments
- Dynamic covariance matrices (changing R over time), dynamic number of clusters (changing K over time)
- Smoothness of prediction
- Consider case where individuals change their cluster membership over time

Conclusion

Questions ?

Thank you!

Sourcecode available online: https://bitbucket.org/geos/ tracer-trajectory-tracking/overview

Bibliography

A. P. Dempster, N. M. Laird, and D. Rubin.

Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39:1–38, 1977.

S. Gaffney and P. Smyth.

Trajectory clustering with mixtures of regression models. In KDD '99, pages 63–72. ACM, 1999.

Y. Han, J. de Veth, and L. Boves.

Trajectory clustering for automatic speech recognition, 2005.

X. Jiang and N. Petkov, editors.

Computer Analysis of Images and Patterns, 13th International Conference, CAIP 2009, Münster, Germany, September 2-4, 2009. Proceedings, volume 5702 of Lecture Notes in Computer Science. Springer, 2009.

R. E. Kalman.

A New Approach to Linear Filtering and Prediction Problems. Trans. of the ASME – Journal of Basic Engineering, 82(Series D):35–45, 1960.

G. Xiong, C. Feng, and L. Ji.

Dynamical gaussian mixture model for tracking elliptical living objects. Pattern Recognition Letters, 27:838–842, May 2006.