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Model Reuse 

 Challenge: Learn an accurate model using training data set which changes 
over time 

 

 Naïve Approach: Retrain the model from scratch each time the data set is 
modified (compitationally wasteful) 

 

 Incremental Learning: process of updating the existing model when the 
training data set is changed 

 
• Particularly appealing for Online Learning, Active Learning, Outlier Removal and Learning 

with Concept Change 

 

• Many single-model algorithms are capable of incremental learning (e.g. linear regression, 
naïve Bayes, kernel perceptrons, SVM) 

 

• It is still an open challenge how to develop efficient and reliable ensemble algorithms for 
incremental learning 



 

 

AdaBoost 

 Very popular because of its ease of implementation and state of the art 
performance 
 

 Requires sequential training of a large number of classifiers which can be costly  
 

 Rebuilding a whole ensemble upon slight changes in training data can put an 
overwhelming burden to the computational resources: 

• e.g. Active Learning Query by Committee AdaBoost algorithm is not suitable for large-scale 
learning applications 
 

 There exists a high interest for modifying boosting for incremental learning 
applications 
 

• Online Learning 

• Active Learning 

• Concept Change (Model Reuse) 

• Decremental Learning (Outlier Removal) 



AdaBoost (Two Class Case) 
 

 Developed using arguments from the statistical learning theory 

 Alternate View: fitting additive model through iterative exponential cost optimization: 
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AdaBoost (Two Class Case) 
 

 Developed using arguments from the statistical learning theory 

 Alternate View: fitting additive model through iterative exponential cost optimization: 

 

Given: Data set D = {(xi , yi), i = 1…N}, initial data weights wi
0 = 1/N, number of iterations M 

 

FOR m = 0 TO M1 
 

(a) Fit fm+1(x) to data by minimizing: 

 
(b) Evaluate the quantities:  

       
             and then 

 
       (c) Update the example weights: 
 

END 

Make predictions for new point xtest using:  
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linear combination of m base 

classifiers produced so far 
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AdaBoost (Two Class Case) 

Given: Data set D = {(xi , yi), i = 1…N}, initial data weights wi
0 = 1/N, number of iterations M 

 

FOR m = 0 TO M1 
 

(a) Fit fm+1(x) to data by minimizing: 

 
(b) Evaluate the quantities:  

       
             and then 

 
       (c) Update the example weights: 
 

END 

Make predictions for new point xtest using:  
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AdaBoost (Derived) 

 Given the additive model Fm(x) at iteration m – 1 the objective is to find an improved one,  

     Fm+1(x) = Fm(x) + αm+1·fm+1(x), at iteration m. The cost function can be expressed  

 

as: 

 

 

where: 

 
 

By rearranging Em+1 we can obtain: 
 
 

 

 

 

 

 

 

 

 classifier fm+1(x) can be trained by minimizing (7) assuming αm+1 is fixed, as fm+1(x) = arg minf(x) Jm+1,  

     where Jm+1 is defined as (1) 
 

 αm+1 can be determined by minimizing (7) assuming fm+1(x) is fixed. By setting ∂Em+1/∂αm+1 = 0  

• the closed form solution can be derived as (3), where εm+1 is defined as in (2) 
 

 Before continuing to round m + 1 the example weights wi
m are updated as (4) by making use of (6) 
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Proposed Method (IBoost) 

 Assume an AdaBoost committee with m base classifiers Fm(x) has been trained on  
     data set Dold 

 

  We wish to train a committee upon the data set changed to Dnew by addition of  

     Nin examples Din, and removal of Nout examples, Dout   D  
 
 The new training data set is Dnew = Dold – Dout + Din   

Option 1:  discard Fm(x) and train a new ensemble from scratch  

Option 2: reuse the existing ensemble 



Proposed Method (IBoost) 
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Proposed Method (IBoost) 

 Upon change of data set the cost function changes: 
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 One could make several choices regarding reuse of the current ensemble Fm(x): 
 

 

   1) Update αt, t = 1…m, to better fit the new data set 
 
   2) Remove base classifiers which no longer fit well to the data 
 

   3) Add a new base classifier fm+1 and its αm+1  

Require actions which keep the 
Em

new minimized (confidence 
parameter updates and example 
weight updates/recalculation) 

} 
To avoid an unbounded growth: budget M 



4f3w3w 4f3w 4

4
4f 4w} 

iteration4 
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…. 

Proposed Method (IBoost) 

11f0w 1w 2
2f 2w 33f 3w

1f0w0w 1f0w 1 2f1w1w 2f1w 2 3f2w2w 3f2w 3

} 

iteration1 

} 
iteration2 

} 

iteration3 



1. Update αt, t = 1…m, to better fit the new data set (so that they minimize  

    Em
new  for fixed base classifiers ft , t = 1…m) 

 
 

 

 

2. Potentially remove base classifiers  
• that are underperforming: α<0 

• when budget is full: min(α) 
 

3. Update example weights (three scenarios) 
      
      1) If α were unchanged since the last iter. use: 
 
      2) If α were updated, use: 
 
      3) If any base classifier fj was removed, use: 
  

4. Add a new base classifier fm+1 and calculate its αm+1 

 
 

Proposed Method (IBoost) 
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Proposed Method (IBoost) 

train fm 

(1) 

train 

fm ? YES 

update α (8) or (9) 

update weights (6)  

NO 

budget 

full ? 

remove f 

with min. α 

YES 

NO NO 

update 

α ?  

YES 

Update 

Weights 

update data 
Dnew= Dold – Dout+Din 

update 

weights (11) 

update α (8) or (9) 

update weights (6)  

calculate weights 

for Din only (10) 

calculate αm (3) 

update weights (4) 



Concept Change (Drift) 
 

• Data stream in which the properties of the target value y change  
   over time 
 

• The change can happen in unforeseen ways and at a random time  
 

• Drift Types: 
 



Concept Change (Drift) 

 

• General Approach: Online Learning using a sliding window 
 

• Window size n presents a tradeoff between accuracy on the 
current concept and fast recovery from distribution changes  
 

 
 

sliding window 
data 

concept 1 concept 2 

concept drift 



Concept Change (Drift) 

 

• Popular: Adaptive supervised learning techniques (Adaptive  
                    Ensembles) 

 
• Upadate criterion: How often to update the model?  

 
 depends on the properties of the data stream 

 
 depends on computational resources 

 
 one solution: after enough incoming data examples are  
     missclassified 

 



IBoost Variant for Concept Change 

Input:   
1. data stream D = {(xi, yi), i = 1…N} 

2. window size n 

3. budget M 

4. frequency of model addition p 

5. number of gradient descent updates b 

Parameters (M, n, p and b) are intuitive and easy to select for a specific application: 
 
• n is a tradeoff between accuracy on the current concept and fast recovery 
• Larger p values can speed-up the process with slight decrease in performance 
• Larger M imporves accuracy at cost of prediction, model update and storage 
• b is a tradeoff between accuracy, concept change recovery and time 



IBoost Variant for Concept Change 

m = m+1 

Initialize Window 

Dnew = {(xi, yi), i = 1…n} 

wi
0 = 1/n, k = n, m = 0 

calculate αm+1 (3) 

update weights (4) 

train fm+1 

(1) 

Slide the Window 

k = k + 1 

Dnew = Dold + (xk, yk)  (xk-n, yk-n)  

m=M ?  
(k mod p = 0) 

and 

 (yk≠ Fm(xk))? 

YES 

NO 

remove f 

with min. α 

YES 

NO update α (8) or (9) b times 

recalculate weights (6)  

m = m–1 

update α (8) or (9) b times 

recalculate weights (6)  

any 

αj<0?  

remove fj 

m = m–1 

YES 

NO 



Related Work 

IBoost will be compared to: 
 
• Non-incremental AdaBoost (retrained) 
• Online Coordinate Boost (OCB) 

• OnlineBoost  
• Two OnlineBoost modifications for concept change (NSOnlineBoost and FLC) 
• Fast and Light Boosting (FLB) 

• Dynamic Weighted Majority (DWM) 

• AdWin Online Bagging (AdWin Bagg) 

Characteristics IBoost 
Online 

Boost 

NSO 

Boost 
FLC 

AdWin 

Bagg 
OCB DWM FLB 

Change Detector Used • • • 

Online Base Classifier Update • • • • • 

Classifier Addition and Removal • • • • • 

Sliding Window • • • • • 



Related Work 

OnlineBoost  
 

• Initial base models fj, j = 1…m : assigned weights λj
sc = 0 and λj

sw = 0  

 

• A new example (xi,
 yi) : assigned an initial example weight λd = 1  

 

• Poisson distribution used : update each fj  k = Poisson (λd ) times using (xi, yi) 

  

• If fj(xi) = yi : update λd
 = λd / 2(1– εj) and λj

sc
 = λj

sc + λd  

• Otherwise: λd
 = λd

 / 2εj and λj
sw = λj

sw + λd, where εj
 = λj

sw / (λj
sw + λj

sc) 

 

• Update the next base model fj+1, etc. 

 

• Parameters α obtained using (3), predictions are made using (5)  
 

 



Related Work 

Online Coordinate Boost (OCB) 
 

• Base models fj, j = 1…m, trained offline using some initial data  
 

• Parameters αj, j = 1…m, and sums of weights of correctly and incorrectly classified  
       examples (λj

sc and λj
sw, respectively) also provided 

 

• A new example (xi,
 yi) : find the appropriate updates Δαj for αj such that the AdaBoost  

     loss with the addition of (xi,
 yi) is minimized  

 

• Δαj cannot be found in the closed form, closed form solution that minimize the  
 approximate loss is derived  

  

• Such optimization requires keeping and updating the sums of weights (λ(j,l)
sc and λ(j,l)

sw)  

 which involve two weak hypotheses j and l and introduction of the order parameter o  



Data Sets 

Data Set Drift Type Train Size Test Type Test Size 

SEA Sudden 50,000 Hold Out 10,000 

Santa Fe Incremental 10,000 Hold Out 2,475 

LED Rigorous 1,000,000 Test Then Train - 

RBF Gradual 1,000,000 Test Then Train - 



Results 
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IBoost-DS Batch, training time: 1,113 sec

IBoost-DS Stochastic, training time: 898 sec

AdaBoost-DS, training time: 913 sec

OCB-DS, training time: 590 sec

FLB-DS, training time: 207 sec

SEA data Set: 4 concepts (Sudden Drifts) 
Test on hold-out data from current concept 

M = 200, n = 200 Decision Stumps 



Results 

Algorithm 

window size n = 200 budget M = 200 

budget M window size n (nocb, nfb) 

20 50 100 200 500 100 200 500 1,000 2,000 

Stochastic test accuracy (%) 94.5 96.4 96.7 97.1 97.5 96.9 97.1 97.3 97.5 98 

IBoost recovery (%) 92.5 93.1 93.3 93.5 93.4 93.4 93.5 92.4 90.1 89.6 

b = 5 time (s) 39 90 183 372 751 221 372 396 447 552 

Batch test accuracy (%) 95.9 97.4 97.8 97.9 98 97.2 97.9 98.1 98.3 98.5 

IBoost recovery (%) 91.5 92.1 92.9 92.5 93.4 92.8 92.5 91.2 88.8 88.4 

b = 5 time (s) 77 188 401 898 2.1K 801 885 1K 1.7K 2.3K 

test accuracy (%) 94.5 95 95 94.9 94.9 92.8 94.9 96.7 97 97.5 

AdaBoost recovery (%) 92 92.1 92.2 91.9 91.9 91.7 91.9 89.9 88.1 86.3 

time (s) 91 192 432 913 2.1K 847 913 1K 1.3K 1.8K 

test accuracy (%) 92.7 93.9 94.3 94.4 94.1 91.3 94.4 95.4 95.8 96.8 

OCB recovery (%) 84.3 86.4 89.8 91.2 91.2 88.7 91.2 90.1 84.4 93.5 

time (s) 47 120 259 590 2K 584 590 567 560 546 

test accuracy (%) 82.6 89.4 92.9 94.4 94.9 94.7 94.4 90.5 87.5 83.4 

FLB recovery (%) 82.3 85.3 86.1 84.7 84.9 85.2 84.7 83.8 83.5 81.9 

time (s) 73 104 156 207 435 183 207 262 390 456 

SEA data Set – Decision Stumps 



Results 

Algorithm 

window size n = 200 budget M = 200 

budget M window size n 

20 50 100 200 500 100 200 500 1,000 2,000 

Stochastic test accuracy (%) 94.5 96.4 96.7 97.1 97.5 96.9 97.1 97.3 97.5 98 

IBoost recovery (%) 92.5 93.1 93.3 93.5 93.4 93.4 93.5 92.4 90.1 89.6 

b = 5 time (s) 39 90 183 372 751 221 372 396 447 552 

Batch test accuracy (%) 95.9 97.4 97.8 97.9 98 97.2 97.9 98.1 98.3 98.5 

IBoost recovery (%) 91.5 92.1 92.9 92.5 93.4 92.8 92.5 91.2 88.8 88.4 

b = 5 time (s) 77 188 401 898 2.1K 801 885 1K 1.7K 2.3K 

test accuracy (%) 94.5 95 95 94.9 94.9 92.8 94.9 96.7 97 97.5 

AdaBoost recovery (%) 92 92.1 92.2 91.9 91.9 91.7 91.9 89.9 88.1 86.3 

time (s) 91 192 432 913 2.1K 847 913 1K 1.3K 1.8K 

SEA data Set – Decision Stumps 

Recovery (%): average test accuracy on the first 600 examples after introduction of new concept  

• IBoost Batch was more accurate but significantly slower than IBoost Stochastic 
• Fastest recovery for all three concept changes was achieved by IBoost Stochastic 

 

• Increase in budget M: resulted in larger training times and accuracy gain for all algorithms 
• Increase in window size n: improves performance at cost of increased training time and slower recovery 
   increases recovery performance gap between IBoost and AdaBoost, while reduces the test accuracy gap 



Results 

Algorithm M = 200 n = 200 
p =1 b = 1 

b = 1 b = 5 b = 10 p = 10 p = 50 p = 100 

test accuracy (%) 96.7 97.1 97.4 96.5 94.7 93.1 

IBoost Stochastic recovery (%) 93.1 93.5 93.7 92.8 92.7 92.1 

time (s) 201 372 635 104 45 22 

test accuracy (%) 97.6 97.9 98.2 97.1 95.6 93.7 

IBoost Batch recovery (%) 92.3 92.5 92.9 92.6 91.6 91.4 

time (s) 545 898 1.6K 221 133 96 

• Bigger values of b improved the performance at cost of increasing the training time 
• Bigger values of p degraded the performance (some just slightly, e.g. p = 10)  

   coupled with big time savings 

SEA data Set – Decision Stumps 
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IBoost-NB Stochastic, training time: 104 sec

FLC-NB, training time: 1,156 sec

DWM-NB, training time: 21 sec
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IBoost-NB Stochastic, training time: 104 sec

OCB-NB, training time: 164 sec

AdWin OnlineBagg-NB, training time: 1,113 sec

FLC-NB, training time: 1,156 sec

OnlineBoost-NB, training time: 929 sec

DWM-NB, training time: 21 sec

SEA data Set: 4 concepts (Sudden Drifts) 
Test on hold-out data from current concept 

M = 50, n = 200, p = 1, b = 5  Naïve Bayes 
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IBoost-NB Stochastic, training time: 104 sec

OCB-NB, training time: 164 sec

AdWin OnlineBagg-NB, training time: 1,113 sec

FLC-NB, training time: 1,156 sec

OnlineBoost-NB, training time: 929 sec

DWM-NB, training time: 21 sec

SEA data Set: 4 concepts (Sudden Drifts) 
Test on hold-out data from current concept 

M = 50, n = 200, p = 1, b = 5  Naïve Bayes 



Results 

SantaFE data Set: 3 concepts (Incremental Drifts) 
Test on hold-out data from current concept 

M = 50, n = 200, p = 1, b = 5  Naïve Bayes 
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IBoost-NB Stochastic, training time: 52.4 sec

OCB-NB, training time: 40.3 sec

AdWin OnlineBagg-NB, training time: 394 sec

FLC-NB, training time: 387 sec

OnlineBoost-NB, training time: 361 sec

DWM-NB, training time: 12.8 sec

FLB-NB, training time: 38.1 sec

NSOnlineBoost-NB, training time: 2,315 sec



Results 

Data Set IBoost Stoch. Online Boost NSOBoost FLC AdWinBagg OCB DWM FLB 

SEA 97.95 95.6 96.9 97.35 94.5 95.2 96.9 94.9 

Santa Fe 94.1 81.8 85.1 83.4 80 80.6 88.8 87.6 

Performance summary on SEA and Santa Fe data sets based on the test accuracy (%) 
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IBoost-NB Stochastic, total time: 2,216 sec

OCB-NB, total time: 2,329 sec

Adwin OnlineBagg-NB, total time: 4,913 sec

FLC-NB, total time: 4,835 sec

OnlineBoost-NB, total time: 4,421 sec

DWM-NB, total time: 1,277 sec

LED Data Set, 10% noise, 4 drifting attributes, M = 20, n = 200, p = 10, b = 1   

RBF Data Set, 10 centroids, drift 0.001, M = 20, n = 200, p = 10, b = 1   

Test Method: Test then Train 

Results 

1,000 100,000 200,000 300,000 400,000 500,000 600,000 700,000 800,000 900,000 1,000,000

55

60

65

70

75

80

85

90

Time Step

T
e
s
t
 
A
c
c
u
r
a
c
y
 
(
%
)

 

 

IBoost-NB Stochastic, total time: 1,420 sec

OCB-NB, total time: 2,030 sec

AdWin OnlineBagg-NB, total time: 2,224 sec

FLC-NB, total time: 2,060 sec

OnlineBoost-NB, total time: 1,925 sec

DWM-NB, total time: 1,108 sec



Remarks 

 

• RBF and LED Data Generated Using: MOA (massive online analysis) 
                      http://moa.cs.waikato.ac.nz/  

 
• Experiments Performed in Matlab 

 
 

• Code available soon 

 
 



Conclusion 

 We proposed an extension of AdaBoost to incremental learning 

 
 The new algorithm was evaluated on concept change applications  

 
 Experiments show that IBoost is more accurate, resistant, efficient 
     than the original AdaBoost and previously proposed algorithms 

 
 Future Work:  

 

• Extend IBoost to perform multi-class classification  
• Combine it with the powerful AdWin change detection technique  
• Experiment with Hoeffding Trees as base classifiers  



THANK YOU 


