Tracking Concept Change with Incremental Boosting by Minimization of the Evolving Exponential Loss

Mihajlo Grbovic

mihajlo.grbovic@temple.edu

and

Slobodan Vucetic

slobodan.vucetic@temple.edu

September 6th 2011. ECML PKDD 2011, Athens, Greece

Department of Computer and Information Sciences Center for Data Analytics and Biomedical Informatics Temple University Philadelphia, USA

Telephone: (215) 204-5535

• Introduction

- Incremental Learning
- Motivation for Model Reuse
- Potential Applications of Incremental AdaBoost
- AdaBoost Statistical View
 - Fitting an additive model through an iterative optimization of an exponential loss
- Incremental AdaBoost
 - IBoost Methodology
 - IBoost Flowchart
 - IBoost for Concept Change
- Related Work
- Experimental Results

- Challenge: Learn an accurate model using training data set which changes over time
- Naïve Approach: Retrain the model from scratch each time the data set is modified (compitationally wasteful)
- Incremental Learning: process of updating the existing model when the training data set is changed
 - Particularly appealing for Online Learning, Active Learning, Outlier Removal and Learning with Concept Change
 - Many single-model algorithms are capable of incremental learning (e.g. linear regression, naïve Bayes, kernel perceptrons, SVM)
 - It is still an open challenge how to develop efficient and reliable **ensemble algorithms** for incremental learning

- Very popular because of its ease of implementation and state of the art performance
- **Requires sequential training** of a large number of classifiers which can be costly
- Rebuilding a whole ensemble upon slight changes in training data can put an overwhelming burden to the computational resources:
 - e.g. Active Learning <u>Query by Committee</u> AdaBoost algorithm is not suitable for large-scale learning applications
- There exists a high interest for modifying boosting for incremental learning applications
 - Online Learning
 - Active Learning
 - Concept Change (Model Reuse)
 - Decremental Learning (Outlier Removal)

AdaBoost (Two Class Case)

- Developed using arguments from the statistical learning theory
- □ Alternate View: fitting additive model through iterative exponential cost optimization:

$$E_m = \sum_{i=1}^N e^{-y_i \cdot F_m(x_i)} \quad \text{, where} \quad F_m(x) = \sum_{j=1}^m \alpha_j f_j(x)$$

 $F_m(x)$: current additive model - a linear combination of *m* base classifiers produced so far

T

AdaBoost (Two Class Case)

- Developed using arguments from the statistical learning theory
- □ Alternate View: fitting additive model through iterative exponential cost optimization:

$$E_m = \sum_{i=1}^N e^{-y_i \cdot F_m(x_i)} \quad \text{, where} \quad F_m(x) = \sum_{j=1}^m \alpha_j f_j(x)$$

 $F_m(x)$: current additive model - a linear combination of *m* base classifiers produced so far

Given: Data set $D = \{(x_i, y_i), i = 1...N\}$, initial data weights $w_i^0 = 1/N$, number of iterations M

FOR
$$m = 0$$
 TO $M-1$
(a) Fit $f_{m+1}(x)$ to data by minimizing:

$$J_{m+1} = \sum_{i=1}^{N} w_i^m I(y_i \neq f_{m+1}(x_i)) \quad (1)$$
(b) Evaluate the quantities:
 $\varepsilon_{m+1} = \sum_{i=1}^{N} w_i^m I(y_i \neq f_{m+1}(x_i)) / \sum_{i=1}^{N} w_i^m \quad (2)$
and then
(c) Update the example weights:
END
Make predictions for new point x_{test} using:
 $y = sign(\sum_{m=1}^{M} \alpha_m f_m(x_{test})) \quad (5)$

Given the additive model $F_m(x)$ at iteration m - 1 the objective is to find an improved one, $F_{m+1}(x) = F_m(x) + \alpha_{m+1} \cdot f_{m+1}(x)$, at iteration m. The cost function can be expressed

as:

$$E_{m+1} = \sum_{i=1}^{N} e^{-y_i (F_m(x_i) + \alpha_{m+1} f_{m+1}(x_i))} = \sum_{i=1}^{N} w_i^m e^{-y_i \alpha_{m+1} f_{m+1}(x_i)}$$
$$w_i^m = e^{-y_i F_m(x_i)}$$
(6)

where:

By rearranging E_{m+1} we can obtain:

$$E_{m+1} = (e^{\alpha_{m+1}} - e^{-\alpha_{m+1}}) \sum_{i=1}^{N} w_i^m I(y_i \neq f_{m+1}(x_i)) + e^{-\alpha_{m+1}} \sum_{i=1}^{N} w_i^m$$
 (7)

□ classifier $f_{m+1}(x)$ can be trained by minimizing (7) assuming α_{m+1} is fixed, as $f_{m+1}(x) = \arg \min_{f(x)} J_{m+1}$, where J_{m+1} is defined as (1)

 $\Box \ \alpha_{m+1} \text{ can be determined by minimizing (7) assuming } f_{m+1}(x) \text{ is fixed. By setting } \partial E_{m+1} / \partial \alpha_{m+1} = 0$ • the closed form solution can be derived as (3), where ε_{m+1} is defined as in (2)

 \Box Before continuing to round m+1 the example weights w_i^m are updated as (4) by making use of (6)

Proposed Method (IBoost)

- □ Assume an *AdaBoost* committee with *m* base classifiers $F_m(x)$ has been trained on data set D_{old}
- □ We wish to train a committee upon the data set changed to D_{new} by addition of N_{in} examples D_{in} , and removal of N_{out} examples, $D_{out} \subset D$
- \Box The new training data set is $D_{new} = D_{old} D_{out} + D_{in}$

Option 1: discard $F_m(x)$ and train a new ensemble from scratch Option 2: reuse the existing ensemble

 $w_3(old) - w_3(out)$ $D_{old} - D_{out}$

$$\hat{y} = sign(\sum_{m=1}^{3} \alpha_m f_m(x_{test}))$$

 $w_3(old) + w_3(in)$ $D_{old} + D_{in}$

$$\hat{y} = sign(\sum_{m=1}^{3} \alpha_m f_m(x_{test}))$$

Upon change of data set the cost function changes:

$$E_m^{old} = \sum_{i \in D_{old}} e^{-y_i \cdot F_m(x_i)} \qquad \longrightarrow \qquad E_m^{new} = \sum_{i \in D_{new}} e^{-y_i \cdot F_m(x_i)}$$

 \Box One could make several choices regarding reuse of the current ensemble $F_m(x)$:

1) Update α_t , $t = 1 \dots m$, to better fit the new data set

2) Remove base classifiers which no longer fit well to the data

Require actions which keep the E_m^{new} minimized (confidence parameter updates and example weight updates/recalculation)

3) Add a new base classifier f_{m+1} and its α_{m+1}

 \rightarrow To avoid an unbounded growth: budget M

Proposed Method (IBoost)

1. Update α_t , t = 1...m, to better fit the new data set (so that they minimize E_m^{new} for fixed base classifiers f_t , t = 1...m)

$$\alpha_{j}^{new} = \alpha_{j}^{old} + \eta \sum_{i \in D_{new}} y_{i} f_{j}(x_{i}) e^{-y_{i} \sum_{k=1}^{m} \alpha_{k}^{old} f_{k}(x_{i})}$$
(8)

batch

$$\alpha_{j}^{new} = \alpha_{j}^{old} + \eta \cdot y_{i} f_{j}(x_{i}) e^{-y_{i} \sum_{k=1}^{m} \alpha_{k}^{old} f_{k}(x_{i})}$$
(9)

stochastic

2. Potentially remove base classifiers

- that are underperforming: $\alpha < 0$
- when budget is full: $\min(\alpha)$

3. Update example weights (three scenarios)

- 1) If α were unchanged since the last iter. use:
- 2) If α were updated, use:
- 3) If any base classifier f_j was removed, use:

4. Add a new base classifier
$$f_{m+1}$$
 and calculate its $lpha_{m+1}$

$$w_{i}^{m} = e^{\sum_{i=1}^{m} \alpha_{i} I(y_{i} \neq f_{i}(x_{i}))}, i \in D_{in} \quad (10)$$

$$w_{i}^{m} = e^{-y_{i} F_{m}(x_{i})} \quad (6)$$

$$w_{i}^{m} = w_{i}^{m-1} e^{-\alpha_{j} I(y_{i} \neq f_{j}(x_{i}))} \quad (11)$$

- Data stream in which the properties of the target value *y* change over time
- The change can happen in unforeseen ways and at a random time

Concept Change (Drift)

- General Approach: Online Learning using a sliding window
- Window size *n* presents a tradeoff between accuracy on the current concept and fast recovery from distribution changes

- Popular: Adaptive supervised learning techniques (Adaptive Ensembles)
- Upadate criterion: How often to update the model?
 - depends on the properties of the data stream
 - depends on computational resources
 - one solution: after enough incoming data examples are missclassified

IBoost Variant for Concept Change

Input:

- 1. data stream $D = \{(x_i, y_i), i = 1...N\}$
- 2. window size *n*
- 3. budget M
- 4. frequency of model addition p
- 5. number of gradient descent updates b

Parameters (*M*, *n*, *p* and *b*) are intuitive and easy to select for a specific application:

- *n* is a tradeoff between accuracy on the current concept and fast recovery
- Larger *p* values can speed-up the process with slight decrease in performance
- Larger *M* imporves accuracy at cost of prediction, model update and storage
- *b* is a tradeoff between accuracy, concept change recovery and time

IBoost Variant for Concept Change

IBoost will be compared to:

- Non-incremental AdaBoost (retrained)
- Online Coordinate Boost (OCB)
- OnlineBoost
- Two OnlineBoost modifications for concept change (NSOnlineBoost and FLC)
- Fast and Light Boosting (FLB)
- Dynamic Weighted Majority (**DWM**)
- AdWin Online Bagging (AdWin Bagg)

Characteristics	IBoost	Online Boost	NSO Boost	FLC	AdWin Bagg	ОСВ	DWM	FLB
Change Detector Used				•	•			•
Online Base Classifier Update		•	•	•	•		•	
Classifier Addition and Removal	•		•		•		•	•
Sliding Window	•		•	•	•			•

OnlineBoost

- Initial base models f_j , j = 1...m: assigned weights $\lambda_j^{sc} = 0$ and $\lambda_j^{sw} = 0$
- A new example (x_i, y_i) : assigned an initial example weight $\lambda_d = 1$
- *Poisson* distribution used : update each f_i $k = Poisson(\lambda_d)$ times using (x_i, y_i)
- If $f_j(x_i) = y_i$: update $\lambda_d = \lambda_d / 2(1 \varepsilon_j)$ and $\lambda_j^{sc} = \lambda_j^{sc} + \lambda_d$
- Otherwise: $\lambda_d = \lambda_d / 2\varepsilon_j$ and $\lambda_j^{sw} = \lambda_j^{sw} + \lambda_d$, where $\varepsilon_j = \lambda_j^{sw} / (\lambda_j^{sw} + \lambda_j^{sc})$
- Update the next base model f_{j+1} , etc.
- Parameters α obtained using (3), predictions are made using (5)

□ Online Coordinate Boost (OCB)

- Base models f_i , j = 1...m, trained offline using some initial data
- Parameters α_j , j = 1...m, and sums of weights of correctly and incorrectly classified examples (λ_j^{sc} and λ_j^{sw} , respectively) also provided
- A new example (x_i, y_i) : find the appropriate updates $\Delta \alpha_j$ for α_j such that the *AdaBoost* loss with the addition of (x_i, y_i) is minimized
- $\Delta \alpha_j$ cannot be found in the closed form, closed form solution that minimize the approximate loss is derived
- Such optimization requires keeping and updating the sums of weights $(\lambda_{(j,l)}^{sc} \text{ and } \lambda_{(j,l)}^{sw})$ which involve two weak hypotheses j and l and introduction of the order parameter o

Data Set	Drift Type	Train Size	Test Type	Test Size
SEA	Sudden	50,000	Hold Out	10,000
Santa Fe	Incremental	10,000	Hold Out	2,475
LED	Rigorous	1,000,000	Test Then Train	-
RBF	Gradual	1,000,000	Test Then Train	-

SEA data Set: 4 concepts (Sudden Drifts) Test on hold-out data from current concept

Decision Stumps M = 200, n = 200

SEA data Set – Decision Stumps

	window size $n = 200$					budget M=200							
Algorithm			budget M					window size $n (n_{ocb}, n_{fb})$					
		20	50	100	200	500	100	200	500	1,000	2,000		
Stochastic	test accuracy (%)	94.5	96.4	96.7	97.1	97.5	96.9	97.1	97.3	97.5	98		
IBoost	recovery (%)	92.5	93.1	93.3	93.5	93.4	93.4	93.5	92.4	90.1	89.6		
<i>b</i> =5	time (s)	39	90	183	372	751	221	372	396	447	552		
Batch	test accuracy (%)	95.9	97.4	97.8	97.9	98	97.2	97.9	98.1	98.3	98.5		
IBoost	recovery (%)	91.5	92.1	92.9	92.5	93.4	92.8	92.5	91.2	88.8	88.4		
<i>b</i> = 5	time (s)	77	188	401	898	2.1K	801	885	1K	1.7K	2.3K		
	test accuracy (%)	94.5	95	95	94.9	94.9	92.8	94.9	96.7	97	97.5		
AdaBoost	recovery (%)	92	92.1	92.2	91.9	91.9	91.7	91.9	89.9	88.1	86.3		
	time (s)	91	192	432	913	2.1K	847	913	1K	1.3K	1.8K		
	test accuracy (%)	92.7	93.9	94.3	94.4	94.1	91.3	94.4	95.4	95.8	96.8		
ОСВ	recovery (%)	84.3	86.4	89.8	91.2	91.2	88.7	91.2	90.1	84.4	93.5		
	time (s)	47	120	259	590	2K	584	590	567	560	546		
	test accuracy (%)	82.6	89.4	92.9	94.4	94.9	94.7	94.4	90.5	87.5	83.4		
FLB	recovery (%)	82.3	85.3	86.1	84.7	84.9	85.2	84.7	83.8	83.5	81.9		
	time (s)	73	104	156	207	435	183	207	262	390	456		

SEA data Set – Decision Stumps

	window size $n = 200$					budget M=200						
Algorithm		budget M						window size <i>n</i>				
		20	50	100	200	500	100	200	500	1,000	2,000	
Stochastic	test accuracy (%)	94.5	96.4	96.7	97.1	97.5	96.9	97.1	97.3	97.5	98	
IBoost	recovery (%)	92.5	93.1	93.3	93.5	93.4	93.4	93.5	92.4	90.1	89.6	
b=5	time (s)	39	90	183	372	751	221	372	396	447	552	
Batch	test accuracy (%)	95.9	97.4	97.8	97.9	98	97.2	97.9	98.1	98.3	98.5	
IBoost	recovery (%)	91.5	92.1	92.9	92.5	93.4	92.8	92.5	91.2	88.8	88.4	
<i>b</i> = 5	time (s)	77	188	401	898	2.1K	801	885	1K	1.7K	2.3K	
	test accuracy (%)	94.5	95	95	94.9	94.9	92.8	94.9	96.7	97	97.5	
AdaBoost	recovery (%)	92	92.1	92.2	91.9	91.9	91.7	91.9	89.9	88.1	86.3	
	time (s)	91	192	432	913	2.1K	847	913	1K	1.3K	1.8K	

Recovery (%): average test accuracy on the first 600 examples after introduction of new concept

- IBoost Batch was more accurate but significantly slower than IBoost Stochastic
- Fastest recovery for all three concept changes was achieved by IBoost Stochastic
- Increase in budget *M*: resulted in larger training times and accuracy gain for all algorithms
- Increase in window size *n*: improves performance at cost of increased training time and slower recovery increases recovery performance gap between IBoost and AdaBoost, while reduces the test accuracy gap

SEA data Set – Decision Stumps

Algorithm	$M = 200 \ n = 200$		<i>p</i> =1			b = 1			
		b=1	b = 5	b = 10	p = 10	p = 50	p = 100		
IBoost Stochastic	test accuracy (%)	96.7	97.1	97.4	96.5	94.7	93.1		
	recovery (%)	93.1	93.5	93.7	92.8	92.7	92.1		
	time (s)	201	372	635	104	45	22		
IBoost Batch	test accuracy (%)	97.6	97.9	98.2	97.1	95.6	93.7		
	recovery (%)	92.3	92.5	92.9	92.6	91.6	91.4		
	time (s)	545	898	1.6K	221	133	96		

• Bigger values of b improved the performance at cost of increasing the training time

• Bigger values of p degraded the performance (some just slightly, e.g. p = 10) coupled with big time savings

SEA data Set: 4 concepts (**Sudden Drifts**) Test on hold-out data from current concept

Naïve Bayes M = 50, n = 200, p = 1, b = 5

SEA data Set: 4 concepts (Sudden Drifts) Test on hold-out data from current concept

Time Step

Naïve Bayes M = 50, n = 200, p = 1, b = 5

SantaFE data Set: 3 concepts (Incremental Drifts) Test on hold-out data from current concept

Naïve Bayes M = 50, n = 200, p = 1, b = 5

Performance summary on SEA and Santa Fe data sets based on the test accuracy (%)

Data Set	IBoost Stoch.	Online Boost	NSOBoost	FLC	AdWinBagg	OCB	DWM	FLB
SEA	97.95	95.6	96.9	97.35	94.5	95.2	96.9	94.9
Santa Fe	94.1	81.8	85.1	83.4	80	80.6	88.8	87.6

- RBF and LED Data Generated Using: MOA (massive online analysis) http://moa.cs.waikato.ac.nz/
- Experiments Performed in Matlab

• Code available soon

U We proposed an extension of AdaBoost to incremental learning

The new algorithm was evaluated on concept change applications

Experiments show that IBoost is more accurate, resistant, efficient than the original AdaBoost and previously proposed algorithms

Given Future Work:

- Extend IBoost to perform multi-class classification
- Combine it with the powerful AdWin change detection technique
- Experiment with Hoeffding Trees as base classifiers

THANK YOU