
Tracking Concept Change with Incremental Boosting by
Minimization of the Evolving Exponential Loss

Mihajlo Grbovic
mihajlo.grbovic@temple.edu

and

Slobodan Vucetic
slobodan.vucetic@temple.edu

September 6th 2011.

Department of Computer and Information Sciences
Center for Data Analytics and Biomedical Informatics
Temple University
Philadelphia, USA

Telephone: (215) 204-5535

ΕCML PKDD 2011, Athens, Greece

Outline

• Introduction

– Incremental Learning
– Motivation for Model Reuse
– Potential Applications of Incremental AdaBoost

• AdaBoost – Statistical View

– Fitting an additive model through an iterative optimization of an
exponential loss

• Incremental AdaBoost

– IBoost Methodology
– IBoost Flowchart
– IBoost for Concept Change

• Related Work

• Experimental Results

Model Reuse

 Challenge: Learn an accurate model using training data set which changes
over time

 Naïve Approach: Retrain the model from scratch each time the data set is
modified (compitationally wasteful)

 Incremental Learning: process of updating the existing model when the
training data set is changed

• Particularly appealing for Online Learning, Active Learning, Outlier Removal and Learning

with Concept Change

• Many single-model algorithms are capable of incremental learning (e.g. linear regression,
naïve Bayes, kernel perceptrons, SVM)

• It is still an open challenge how to develop efficient and reliable ensemble algorithms for
incremental learning

AdaBoost

 Very popular because of its ease of implementation and state of the art
performance

 Requires sequential training of a large number of classifiers which can be costly

 Rebuilding a whole ensemble upon slight changes in training data can put an
overwhelming burden to the computational resources:

• e.g. Active Learning Query by Committee AdaBoost algorithm is not suitable for large-scale
learning applications

 There exists a high interest for modifying boosting for incremental learning
applications

• Online Learning

• Active Learning

• Concept Change (Model Reuse)

• Decremental Learning (Outlier Removal)

AdaBoost (Two Class Case)

 Developed using arguments from the statistical learning theory

 Alternate View: fitting additive model through iterative exponential cost optimization:

N

i

xFy

m
imieE

1

)(

m

j
jjm xfxF

1

)()(
Fm(x) : current additive model - a

linear combination of m base

classifiers produced so far
, where

AdaBoost (Two Class Case)

 Developed using arguments from the statistical learning theory

 Alternate View: fitting additive model through iterative exponential cost optimization:

Given: Data set D = {(xi , yi), i = 1…N}, initial data weights wi
0 = 1/N, number of iterations M

FOR m = 0 TO M1

(a) Fit fm+1(x) to data by minimizing:

(b) Evaluate the quantities:

 and then

 (c) Update the example weights:

END

Make predictions for new point xtest using:

N

i

xFy

m
imieE

1

)(

m

j
jjm xfxF

1

)()(

N

i
imi

m

im xfyIwJ
1

11))((

))((ˆ
1

M

m
testmm xfsigny

))((1 11 imim xfyIm

i

m

i eww

 111 /1ln mmm

N

i

m

i

N

i
imi

m

im wxfyIw
11

11 /))((

Fm(x) : current additive model - a

linear combination of m base

classifiers produced so far
, where

(2)

(4)

(5)

(1)

(3)

AdaBoost (Two Class Case)

Given: Data set D = {(xi , yi), i = 1…N}, initial data weights wi
0 = 1/N, number of iterations M

FOR m = 0 TO M1

(a) Fit fm+1(x) to data by minimizing:

(b) Evaluate the quantities:

 and then

 (c) Update the example weights:

END

Make predictions for new point xtest using:

N

i
imi

m

im xfyIwJ
1

11))((

))((ˆ
1

M

m
testmm xfsigny

))((1 11 imim xfyIm

i

m

i eww

 111 /1ln mmm

N

i

m

i

N

i
imi

m

im wxfyIw
11

11 /))(((2)

(4)

(5)

(1)

(3)

11f0w 1w 2
2f 2w 33f 3w

1f0w0w 1f0w 1 2f1w1w 2f1w 2 3f2w2w 3f2w 3

}

iteration1

}

iteration2

}
iteration3

….
1w 2w 3w

AdaBoost (Derived)

 Given the additive model Fm(x) at iteration m – 1 the objective is to find an improved one,

 Fm+1(x) = Fm(x) + αm+1·fm+1(x), at iteration m. The cost function can be expressed

as:

where:

By rearranging Em+1 we can obtain:

 classifier fm+1(x) can be trained by minimizing (7) assuming αm+1 is fixed, as fm+1(x) = arg minf(x) Jm+1,

 where Jm+1 is defined as (1)

 αm+1 can be determined by minimizing (7) assuming fm+1(x) is fixed. By setting ∂Em+1/∂αm+1 = 0

• the closed form solution can be derived as (3), where εm+1 is defined as in (2)

 Before continuing to round m + 1 the example weights wi
m are updated as (4) by making use of (6)

N

i

xfym

i

N

i

xfxFy

m
immiimmimi eweE

1

)(

1

))()((

1
1111

)(imi xFym

i ew

 (6)

N

i

m

i

N

i
imi

m

im wexfyIweeE mmm

11
11

111))(()(

(7)

Proposed Method (IBoost)

 Assume an AdaBoost committee with m base classifiers Fm(x) has been trained on
 data set Dold

 We wish to train a committee upon the data set changed to Dnew by addition of

 Nin examples Din, and removal of Nout examples, Dout D

 The new training data set is Dnew = Dold – Dout + Din

Option 1: discard Fm(x) and train a new ensemble from scratch

Option 2: reuse the existing ensemble

Proposed Method (IBoost)

11f0w 1w 2
2f 2w 33f 3w

1f0w0w 1f0w 1 2f1w1w 2f1w 2 3f2w2w 3f2w 3

}

iteration1

}
iteration2

}

iteration3

oldD oldD

outold DD

oldD

)()(33 outwoldw

 What prevents AdaBoost to be incrementally updated?

))((ˆ
3

1

m

testmm xfsigny

Proposed Method (IBoost)

11f0w 1w 2
2f 2w 33f 3w

1f0w0w 1f0w 1 2f1w1w 2f1w 2 3f2w2w 3f2w 3

}

iteration1

}
iteration2

}

iteration3

oldD oldD

outold DD

oldD

4
4f 4w

4f3ŵ3ŵ 4f3ŵ 4̂

}
iteration4

….

)()(33 outwoldw

 What prevents AdaBoost to be incrementally updated?

))(ˆ(ˆ
4

1

m

testmm xfsigny

Proposed Method (IBoost)

11f0w 1w 2
2f 2w 33f 3w

1f0w0w 1f0w 1 2f1w1w 2f1w 2 3f2w2w 3f2w 3

}

iteration1

}
iteration2

}

iteration3

oldD oldD

inold DD

oldD

)()(33 inwoldw

 What prevents AdaBoost to be incrementally updated?

))((ˆ
3

1

m

testmm xfsigny

Proposed Method (IBoost)

11f0w 1w 2
2f 2w 33f 3w

1f0w0w 1f0w 1 2f1w1w 2f1w 2 3f2w2w 3f2w 3

}

iteration1

}
iteration2

}

iteration3

oldD oldD

inold DD

oldD

4
4f 4w

4f3ŵ3ŵ 4f3ŵ 4̂

}
iteration4

)()(33 inwoldw

….

 What prevents AdaBoost to be incrementally updated?

))(ˆ(ˆ
4

1

m

testmm xfsigny

Proposed Method (IBoost)

 Upon change of data set the cost function changes:

old

imi

Di

xFyold

m eE
)(

new

imi

Di

xFynew

m eE
)(

 One could make several choices regarding reuse of the current ensemble Fm(x):

 1) Update αt, t = 1…m, to better fit the new data set

 2) Remove base classifiers which no longer fit well to the data

 3) Add a new base classifier fm+1 and its αm+1

Require actions which keep the
Em

new minimized (confidence
parameter updates and example
weight updates/recalculation)

}
To avoid an unbounded growth: budget M

4f3w3w 4f3w 4

4
4f 4w}

iteration4

55f 5w 66f 6w

5f4w4w 5f4w 5 3f5w5w 5f5w 6

}
iteration5

}

iteration6

….

Proposed Method (IBoost)

11f0w 1w 2
2f 2w 33f 3w

1f0w0w 1f0w 1 2f1w1w 2f1w 2 3f2w2w 3f2w 3

}

iteration1

}
iteration2

}

iteration3

1. Update αt, t = 1…m, to better fit the new data set (so that they minimize

 Em
new for fixed base classifiers ft , t = 1…m)

2. Potentially remove base classifiers
• that are underperforming: α<0

• when budget is full: min(α)

3. Update example weights (three scenarios)

 1) If α were unchanged since the last iter. use:

 2) If α were updated, use:

 3) If any base classifier fj was removed, use:

4. Add a new base classifier fm+1 and calculate its αm+1

Proposed Method (IBoost)

new

m

k

ik
old
ki

Di

xfy

iji

old

j

new

j exfy 1

)(

)(

 (8)

m

k

ik
old
ki xfy

iji

old

j

new

j exfy 1

)(

)(

 (9)

batch stochastic

))((1 ijij xfyIm

i

m

i eww

 (11)

in

xfyI
m

i Diew

m

t

itit

,1

))(((10)

)(imi xFym

i ew

 (6)

Proposed Method (IBoost)

train fm

(1)

train

fm ? YES

update α (8) or (9)

update weights (6)

NO

budget

full ?

remove f

with min. α

YES

NO NO

update

α ?

YES

Update

Weights

update data
Dnew= Dold – Dout+Din

update

weights (11)

update α (8) or (9)

update weights (6)

calculate weights

for Din only (10)

calculate αm (3)

update weights (4)

Concept Change (Drift)

• Data stream in which the properties of the target value y change
 over time

• The change can happen in unforeseen ways and at a random time

• Drift Types:

Concept Change (Drift)

• General Approach: Online Learning using a sliding window

• Window size n presents a tradeoff between accuracy on the
current concept and fast recovery from distribution changes

sliding window
data

concept 1 concept 2

concept drift

Concept Change (Drift)

• Popular: Adaptive supervised learning techniques (Adaptive
 Ensembles)

• Upadate criterion: How often to update the model?

 depends on the properties of the data stream

 depends on computational resources

 one solution: after enough incoming data examples are
 missclassified

IBoost Variant for Concept Change

Input:
1. data stream D = {(xi, yi), i = 1…N}

2. window size n

3. budget M

4. frequency of model addition p

5. number of gradient descent updates b

Parameters (M, n, p and b) are intuitive and easy to select for a specific application:

• n is a tradeoff between accuracy on the current concept and fast recovery
• Larger p values can speed-up the process with slight decrease in performance
• Larger M imporves accuracy at cost of prediction, model update and storage
• b is a tradeoff between accuracy, concept change recovery and time

IBoost Variant for Concept Change

m = m+1

Initialize Window

Dnew = {(xi, yi), i = 1…n}

wi
0 = 1/n, k = n, m = 0

calculate αm+1 (3)

update weights (4)

train fm+1

(1)

Slide the Window

k = k + 1

Dnew = Dold + (xk, yk) (xk-n, yk-n)

m=M ?
(k mod p = 0)

and

 (yk≠ Fm(xk))?

YES

NO

remove f

with min. α

YES

NO update α (8) or (9) b times

recalculate weights (6)

m = m–1

update α (8) or (9) b times

recalculate weights (6)

any

αj<0?

remove fj

m = m–1

YES

NO

Related Work

IBoost will be compared to:

• Non-incremental AdaBoost (retrained)
• Online Coordinate Boost (OCB)

• OnlineBoost
• Two OnlineBoost modifications for concept change (NSOnlineBoost and FLC)
• Fast and Light Boosting (FLB)

• Dynamic Weighted Majority (DWM)

• AdWin Online Bagging (AdWin Bagg)

Characteristics IBoost
Online

Boost

NSO

Boost
FLC

AdWin

Bagg
OCB DWM FLB

Change Detector Used • • •

Online Base Classifier Update • • • • •

Classifier Addition and Removal • • • • •

Sliding Window • • • • •

Related Work

OnlineBoost

• Initial base models fj, j = 1…m : assigned weights λj
sc = 0 and λj

sw = 0

• A new example (xi,
 yi) : assigned an initial example weight λd = 1

• Poisson distribution used : update each fj k = Poisson (λd) times using (xi, yi)

• If fj(xi) = yi : update λd
 = λd / 2(1– εj) and λj

sc
 = λj

sc + λd

• Otherwise: λd
 = λd

 / 2εj and λj
sw = λj

sw + λd, where εj
 = λj

sw / (λj
sw + λj

sc)

• Update the next base model fj+1, etc.

• Parameters α obtained using (3), predictions are made using (5)

Related Work

Online Coordinate Boost (OCB)

• Base models fj, j = 1…m, trained offline using some initial data

• Parameters αj, j = 1…m, and sums of weights of correctly and incorrectly classified
 examples (λj

sc and λj
sw, respectively) also provided

• A new example (xi,
 yi) : find the appropriate updates Δαj for αj such that the AdaBoost

 loss with the addition of (xi,
 yi) is minimized

• Δαj cannot be found in the closed form, closed form solution that minimize the
 approximate loss is derived

• Such optimization requires keeping and updating the sums of weights (λ(j,l)
sc and λ(j,l)

sw)

 which involve two weak hypotheses j and l and introduction of the order parameter o

Data Sets

Data Set Drift Type Train Size Test Type Test Size

SEA Sudden 50,000 Hold Out 10,000

Santa Fe Incremental 10,000 Hold Out 2,475

LED Rigorous 1,000,000 Test Then Train -

RBF Gradual 1,000,000 Test Then Train -

Results

5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000 50,000

80

85

90

95

100

Time Step

T
e
s
t

A
c
c
u
r
a
c
y

(
%
)

IBoost-DS Batch, training time: 1,113 sec

IBoost-DS Stochastic, training time: 898 sec

AdaBoost-DS, training time: 913 sec

OCB-DS, training time: 590 sec

FLB-DS, training time: 207 sec

SEA data Set: 4 concepts (Sudden Drifts)
Test on hold-out data from current concept

M = 200, n = 200 Decision Stumps

Results

Algorithm

window size n = 200 budget M = 200

budget M window size n (nocb, nfb)

20 50 100 200 500 100 200 500 1,000 2,000

Stochastic test accuracy (%) 94.5 96.4 96.7 97.1 97.5 96.9 97.1 97.3 97.5 98

IBoost recovery (%) 92.5 93.1 93.3 93.5 93.4 93.4 93.5 92.4 90.1 89.6

b = 5 time (s) 39 90 183 372 751 221 372 396 447 552

Batch test accuracy (%) 95.9 97.4 97.8 97.9 98 97.2 97.9 98.1 98.3 98.5

IBoost recovery (%) 91.5 92.1 92.9 92.5 93.4 92.8 92.5 91.2 88.8 88.4

b = 5 time (s) 77 188 401 898 2.1K 801 885 1K 1.7K 2.3K

test accuracy (%) 94.5 95 95 94.9 94.9 92.8 94.9 96.7 97 97.5

AdaBoost recovery (%) 92 92.1 92.2 91.9 91.9 91.7 91.9 89.9 88.1 86.3

time (s) 91 192 432 913 2.1K 847 913 1K 1.3K 1.8K

test accuracy (%) 92.7 93.9 94.3 94.4 94.1 91.3 94.4 95.4 95.8 96.8

OCB recovery (%) 84.3 86.4 89.8 91.2 91.2 88.7 91.2 90.1 84.4 93.5

time (s) 47 120 259 590 2K 584 590 567 560 546

test accuracy (%) 82.6 89.4 92.9 94.4 94.9 94.7 94.4 90.5 87.5 83.4

FLB recovery (%) 82.3 85.3 86.1 84.7 84.9 85.2 84.7 83.8 83.5 81.9

time (s) 73 104 156 207 435 183 207 262 390 456

SEA data Set – Decision Stumps

Results

Algorithm

window size n = 200 budget M = 200

budget M window size n

20 50 100 200 500 100 200 500 1,000 2,000

Stochastic test accuracy (%) 94.5 96.4 96.7 97.1 97.5 96.9 97.1 97.3 97.5 98

IBoost recovery (%) 92.5 93.1 93.3 93.5 93.4 93.4 93.5 92.4 90.1 89.6

b = 5 time (s) 39 90 183 372 751 221 372 396 447 552

Batch test accuracy (%) 95.9 97.4 97.8 97.9 98 97.2 97.9 98.1 98.3 98.5

IBoost recovery (%) 91.5 92.1 92.9 92.5 93.4 92.8 92.5 91.2 88.8 88.4

b = 5 time (s) 77 188 401 898 2.1K 801 885 1K 1.7K 2.3K

test accuracy (%) 94.5 95 95 94.9 94.9 92.8 94.9 96.7 97 97.5

AdaBoost recovery (%) 92 92.1 92.2 91.9 91.9 91.7 91.9 89.9 88.1 86.3

time (s) 91 192 432 913 2.1K 847 913 1K 1.3K 1.8K

SEA data Set – Decision Stumps

Recovery (%): average test accuracy on the first 600 examples after introduction of new concept

• IBoost Batch was more accurate but significantly slower than IBoost Stochastic
• Fastest recovery for all three concept changes was achieved by IBoost Stochastic

• Increase in budget M: resulted in larger training times and accuracy gain for all algorithms
• Increase in window size n: improves performance at cost of increased training time and slower recovery
 increases recovery performance gap between IBoost and AdaBoost, while reduces the test accuracy gap

Results

Algorithm M = 200 n = 200
p =1 b = 1

b = 1 b = 5 b = 10 p = 10 p = 50 p = 100

test accuracy (%) 96.7 97.1 97.4 96.5 94.7 93.1

IBoost Stochastic recovery (%) 93.1 93.5 93.7 92.8 92.7 92.1

time (s) 201 372 635 104 45 22

test accuracy (%) 97.6 97.9 98.2 97.1 95.6 93.7

IBoost Batch recovery (%) 92.3 92.5 92.9 92.6 91.6 91.4

time (s) 545 898 1.6K 221 133 96

• Bigger values of b improved the performance at cost of increasing the training time
• Bigger values of p degraded the performance (some just slightly, e.g. p = 10)

 coupled with big time savings

SEA data Set – Decision Stumps

Results

5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000 50,000

80

85

90

95

100

Time Step

T
e
s
t

A
c
c
u
r
a
c
y

(
%
)

IBoost-NB Stochastic, training time: 104 sec

FLC-NB, training time: 1,156 sec

DWM-NB, training time: 21 sec

5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000 50,000

80

85

90

95

100

Time Step

T
e
s
t

A
c
c
u
r
a
c
y

(
%
)

IBoost-NB Stochastic, training time: 104 sec

OCB-NB, training time: 164 sec

AdWin OnlineBagg-NB, training time: 1,113 sec

FLC-NB, training time: 1,156 sec

OnlineBoost-NB, training time: 929 sec

DWM-NB, training time: 21 sec

SEA data Set: 4 concepts (Sudden Drifts)
Test on hold-out data from current concept

M = 50, n = 200, p = 1, b = 5 Naïve Bayes

Results

25,000

80

85

90

95

Time Step

T
e
s
t

A
c
c
u
r
a
c
y

(
%
)

IBoost-NB Stochastic, training time: 104 sec

OCB-NB, training time: 164 sec

AdWin OnlineBagg-NB, training time: 1,113 sec

FLC-NB, training time: 1,156 sec

OnlineBoost-NB, training time: 929 sec

DWM-NB, training time: 21 sec

SEA data Set: 4 concepts (Sudden Drifts)
Test on hold-out data from current concept

M = 50, n = 200, p = 1, b = 5 Naïve Bayes

Results

SantaFE data Set: 3 concepts (Incremental Drifts)
Test on hold-out data from current concept

M = 50, n = 200, p = 1, b = 5 Naïve Bayes

1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 10,000

50

60

70

80

90

100

Time Step

T
e
s
t

A
c
c
u
r
a
c
y

(
%
)

IBoost-NB Stochastic, training time: 52.4 sec

OCB-NB, training time: 40.3 sec

AdWin OnlineBagg-NB, training time: 394 sec

FLC-NB, training time: 387 sec

OnlineBoost-NB, training time: 361 sec

DWM-NB, training time: 12.8 sec

FLB-NB, training time: 38.1 sec

NSOnlineBoost-NB, training time: 2,315 sec

Results

Data Set IBoost Stoch. Online Boost NSOBoost FLC AdWinBagg OCB DWM FLB

SEA 97.95 95.6 96.9 97.35 94.5 95.2 96.9 94.9

Santa Fe 94.1 81.8 85.1 83.4 80 80.6 88.8 87.6

Performance summary on SEA and Santa Fe data sets based on the test accuracy (%)

1000 100,000 200,000 300,000 400,000 500,000 600,000 700,000 800,000 900,000 1,000,000
78

78.5

79

79.5

80

80.5

81

81.5

82

Time Step

T
e
s
t

A
c
c
u
r
a
c
y

(
%
)

IBoost-NB Stochastic, total time: 2,216 sec

OCB-NB, total time: 2,329 sec

Adwin OnlineBagg-NB, total time: 4,913 sec

FLC-NB, total time: 4,835 sec

OnlineBoost-NB, total time: 4,421 sec

DWM-NB, total time: 1,277 sec

LED Data Set, 10% noise, 4 drifting attributes, M = 20, n = 200, p = 10, b = 1

RBF Data Set, 10 centroids, drift 0.001, M = 20, n = 200, p = 10, b = 1

Test Method: Test then Train

Results

1,000 100,000 200,000 300,000 400,000 500,000 600,000 700,000 800,000 900,000 1,000,000

55

60

65

70

75

80

85

90

Time Step

T
e
s
t

A
c
c
u
r
a
c
y

(
%
)

IBoost-NB Stochastic, total time: 1,420 sec

OCB-NB, total time: 2,030 sec

AdWin OnlineBagg-NB, total time: 2,224 sec

FLC-NB, total time: 2,060 sec

OnlineBoost-NB, total time: 1,925 sec

DWM-NB, total time: 1,108 sec

Remarks

• RBF and LED Data Generated Using: MOA (massive online analysis)
 http://moa.cs.waikato.ac.nz/

• Experiments Performed in Matlab

• Code available soon

Conclusion

 We proposed an extension of AdaBoost to incremental learning

 The new algorithm was evaluated on concept change applications

 Experiments show that IBoost is more accurate, resistant, efficient
 than the original AdaBoost and previously proposed algorithms

 Future Work:

• Extend IBoost to perform multi-class classification
• Combine it with the powerful AdWin change detection technique
• Experiment with Hoeffding Trees as base classifiers

THANK YOU

