Aggregating Independent and Dependent Models to Learn Multi-label Classifiers

E. Montañés, J.R. Quevedo, J.J. del Coz

Artificial Intelligence Center - University of Oviedo

- 2 Multi-label classification
- 3 Previous approaches
- 4 Our proposal
- 5 Experiments
- 6 Conclusions

- 2 Multi-label classification
- 3 Previous approaches
- 4 Our proposal
- 5 Experiments
- 6 Conclusions

- To study dependence and independence on their own
- To show that both help to improve the multi-label classification
- To propose aggregating vs. stacking
- To compare actual labels vs. predicted ones
- To compare binary vs. probabilistic outputs

- 2 Multi-label classification
- 3 Previous approaches
- 4 Our proposal
- 5 Experiments
- 6 Conclusions

Multi-label vs. mono-label classification

Binary classification

X ₁	X ₂	X ₃	X ₄	С	
3	Т	1.5	-2	1	
2	F	1.5	-4	0	
9	т	2.3	-2	1	
4	F	7.8	-1	0	
3	F	1.5	-9	1	

Multi-class classification

X ₁	X ₂	X ₃	X ₄	С
3	Т	1.5	-2	1
2	F	1.5	-4	2
9	т	2.3	-2	2
4	F	7.8	-1	3
3	F	1.5	-9	1

Multi-label classification

Mono-label classification

X ₁	X ₂	X ₃	X ₄	C ₁	C ₂	C ₃	C ₄	C ₅
3	Т	1.5	-2	1	0	0	1	0
2	F	1.5	-4	0	0	0	0	1
9	Т	2.3	-2	0	1	1	1	1
4	F	7.8	-1	1	0	0	1	0
3	F	1.5	-9	1	1	0	1	0

E. Montañés et al. - Aggregating Independent and Dependent Models...

Previous approaches

Our proposal

Experimer

Conclusions

Formal statement

Point of departure

$$\mathcal{L} = \{\ell_1, \ell_2, \dots, \ell_m\} \text{ a set of labels}$$

$$\mathcal{X} \text{ an input space}$$

$$\mathcal{Y} = \mathcal{P}(\mathcal{L}) \sim \{0, 1\}^m \text{ (the power set of } \mathcal{L})$$

$$\downarrow$$

$$S = \{(\mathbf{x}_1, \mathbf{y}_1), \dots, (\mathbf{x}_n, \mathbf{y}_n)\} \in \mathcal{X} \times \mathcal{Y}$$

$$\approx$$

$$\mathbf{P}(\mathbf{X}, \mathbf{Y})$$

The target

Induce $h : X \longrightarrow \mathcal{Y}$ from *S* $h(x) = (h_1(x), h_2(x), \dots, h_m(x))$ $h_j : X \longrightarrow \{0, 1\}$ predicts if ℓ_j is attached to x

E. Montañés et al. - Aggregating Independent and Dependent Models...

Evaluating multi-label classification

Example-based measures

- classification rather than ranking
- capture correlations among labels at example level
- used in stacking approaches

Biased measures

- Jaccard index
- Precision, Recall, F₁

Other measures	
Hamming loss	٦
0/1 loss	

- 2 Multi-label classification
- 3 Previous approaches
- 4 Our proposal
- 5 Experiments
- 6 Conclusions

- Each label is learned independently of the rest
- Linear complexity respect to the number of labels
- Does not consider label dependence

$$\boldsymbol{h}(\boldsymbol{x}) = (h_1(\boldsymbol{x}), h_2(\boldsymbol{x}), \dots, h_m(\boldsymbol{x}))$$
$$h_j : \mathcal{X} \longrightarrow \{0, 1\}$$

Two groups of classifiers are learned

The independent ones

$$\boldsymbol{h}^{1}(\boldsymbol{x}) = (h_{1}^{1}(\boldsymbol{x}), \dots, h_{m}^{1}(\boldsymbol{x}))$$
$$h_{j}^{1} : \boldsymbol{X} \longrightarrow \{0, 1\}$$

The dependent ones

1

$$h^{2}(\boldsymbol{x}, \boldsymbol{h}^{1}(\boldsymbol{x})) = (h_{1}^{2}(\boldsymbol{x}, \boldsymbol{h}^{1}(\boldsymbol{x})), \dots, h_{m}^{2}(\boldsymbol{x}, \boldsymbol{h}^{1}(\boldsymbol{x})))$$
$$h_{j}^{2} : \mathcal{X} \times \{0, 1\}^{m} \longrightarrow \{0, 1\}$$
$$\bigcup$$
$$h(\boldsymbol{x}) = h^{2}(\boldsymbol{x}, \boldsymbol{h}^{1}(\boldsymbol{x}))$$

- One classifier per label
- Same complexity as binary relevance
- A chain of classifiers is built according to certain order of the labels

 $h(\mathbf{x}) = (h_1(\mathbf{x}), h_2(\mathbf{x}, h_1(\mathbf{x})), h_3(\mathbf{x}, h_1(\mathbf{x}), h_2(\mathbf{x}, h_1(\mathbf{x}))), \dots)$ $h_j : \mathcal{X} \times \{0, 1\}^{j-1} \longrightarrow \{0, 1\}$

Ensemble version

- Several orders of labels are ensembled
- Diminishes the effect of the label order

Probabilistic version

- The probability product rule is used
- The complexity increases considerably in testing

E. Montañés et al. - Aggregating Independent and Dependent Models...

Our proposa

Other approaches

MLkNN

Instance-based learner

- Posterior (over neighbors) and prior probability based on frequency counting
- Bayes rule gives the labels' probability

Instance-Based Learning by Logistic Regression (IBLR)

Unifies instance-based learning and logistic regression

RAndom k-labELsets (RAkEL)

Ensemble of Label Power set (LP) classifiers

E. Montañés et al. - Aggregating Independent and Dependent Models...

Our proposal

Other approaches

MLkNN

Instance-based learner

Instance-Based Learning by Logistic Regression (IBLR)

Unifies instance-based learning and logistic regression

- Labels of the neighbors as additional features
- Classification by logistic regression

RAndom k-labELsets (RAkEL)

Ensemble of Label Power set (LP) classifiers

E. Montañés et al. - Aggregating Independent and Dependent Models...

Our proposa

Conclusions

Other approaches

MLkNN

Instance-based learner

Instance-Based Learning by Logistic Regression (IBLR)

Unifies instance-based learning and logistic regression

RAndom k-labELsets (RAkEL)

Ensemble of Label Power set (LP) classifiers

- It randomly selects a k-labelset Y_i from L without replacement
- It learns a LP classifier of the form $X \to \mathcal{P}(Y_i)$
- A voting process determines the final classification

1 The goal

- 2 Multi-label classification
- 3 Previous approaches
- 4 Our proposal
- 5 Experiments

6 Conclusions

E. Montañés et al. - Aggregating Independent and Dependent Models...

Aggregating Independent and Dependent classifiers (AID)

Our hypothesis

Both approaches are not exclusive, but complementary

The independent ones

$$\boldsymbol{h}^{1}(\boldsymbol{x}) = (h_{1}^{1}(\boldsymbol{x}), \dots, h_{m}^{1}(\boldsymbol{x}))$$
$$h_{j}^{1} : \mathcal{X} \longrightarrow \{0, 1\}$$

The dependent ones

$$h^{2}(\mathbf{x}, \mathbf{y}) = (h_{1}^{2}(\mathbf{x}, y_{2}, \dots, y_{m}), \dots, h_{m}^{2}(\mathbf{x}, y_{1}, \dots, y_{m-1}))$$

$$h_{j}^{2} : \mathcal{X} \times \{0, 1\}^{m-1} \longrightarrow \{0, 1\}$$

$$\downarrow$$

$$h(\mathbf{x}) = \bigoplus ((h_{1}^{1}(\mathbf{x}), \dots, h_{m}^{1}(\mathbf{x})), (h_{1}^{2}(\mathbf{x}, h_{2}^{1}(\mathbf{x}), \dots, h_{m}^{1}(\mathbf{x})), \dots, h_{m}^{2}(\mathbf{x}, h_{1}^{1}(\mathbf{x}), \dots, h_{m-1}^{1}(\mathbf{x})))))$$

E. Montañés et al. - Aggregating Independent and Dependent Models...

1

Our proposal

Conclusion

Comparing AID with other methods (I)

With regard to ...

... binary relevance

It also considers correlations among labels

... stacking approaches

- The outputs of independent classifiers are additionally employed to decide the predicted labels
- Actual labels rather than predicted labels (more reliable information)

Comparing AID with other methods (II)

With regard to ...

... chain classifiers

- Free of in-chain dependence
- Richer estimations since all correlations are considered
- Although it only offers greedy approximations of the entire join distribution

... MLkNN, IBLR & RAKEL

Interpretability of different kinds of labels predicted

- Those coming just from the description of the examples
- Those coming from other labels

Our proposal

eriments

Conclusions

About the complexity

	BR	STA	CC	PCC	ECC	EPCC	AID
Models	т	2m	т	т	Nm	Nm	2 <i>m</i>
Testing complexity	Linear	Linear	Linear	Exp.	Linear	Exp.	Linear

E. Montañés et al. - Aggregating Independent and Dependent Models...

- 2 Multi-label classification
- 3 Previous approaches
- 4 Our proposal
- 5 Experiments
- 6 Conclusions

Settings

The learning process

- For binary relevance, CC, stacking & AID
 - logistic regression as binary base learner
 - A grid search for C over $\{10^p \mid p \in [-3, ..., 3]\}$ optimizing the accuracy through a balanced 2-fold cross validation repeated 5 times
- Default parameters for MLkNN, IBLR & RAkEL

The evaluation

Using a 10-fold cross validation, we estimate

- Jaccard index
- Precision. Recall. & F_1
- Hamming loss & 0/1 loss

Previous approaches

Our proposal

osal 🛛 🗄

Conclu

AID vs. Stacking

Average ranks over all data sets

	BR	AID	STA ^y	AID ^{y'}	STA	AID ^p	STA ^p
Precision	4.45	2.45	3.59	4.91	4.82	3.09	4.68
Recall	6.18	1.45	3.00	3.55	4.27	3.55	6.00
F1	5.82	1.36	2.95	4.45	4.91	3.18	5.32
Jaccard	5.64	1.45	2.95	4.64	4.91	3.18	5.23
Hamming	2.27	4.91	5.00	4.59	4.41	2.77	4.05
0/1loss	4.91	2.64	2.73	5.05	4.77	3.27	4.64

1 STA or AID?

- Actual label data or predictions of independent models?
- In the testing phase, binary or probabilistic features?
- 4 To aggregate or to stack?

E. Montañés et al. - Aggregating Independent and Dependent Models...

The goal

Previous approache

Our proposal

isal Ex

Conclus

AID vs. other methods

Average ranks over all data sets

	BR	MLkNN	IBLR	RAKEL	ECC	AID	AID ^p
Precision	4.05	5.55	4.55	3.45	4.14	3.05	3.23
Recall	5.14	6.45	4.55	2.73	4.86	1.41	2.86
F1	4.95	6.36	4.55	2.82	4.86	1.59	2.86
Jaccard	4.77	6.27	4.00	2.91	4.86	2.05	3.14
Hamming	3.05	4.36	4.18	4.36	3.00	5.18	3.86
0/1loss	4.50	5.14	3.73	3.55	4.23	2.91	3.95

AID is the best for all measures except for Hamming loss

- In Hamming loss, ECC is the best and AID is the worst
- AID^{*p*} is quite steady for all measures

E. Montañés et al. - Aggregating Independent and Dependent Models...

- 2 Multi-label classification
- 3 Previous approaches
- 4 Our proposal
- 5 Experiments
- 6 Conclusions

Conclusions

- Interpretability of two kinds of labels
- Actual labels better than predicted ones
- Aggregating better than stacking
- AID exhibits competitive results, but not for Hamming loss
- AID has linear complexity in both training and testing stages