Higher Order Contractive Auto-Encoder (CAE+H)

Salah Rifai, Grégoire Mesnil, Pascal Vincent, Xavier Muller, Yoshua Bengio, Yann Dauphin, Xavier Glorot

Laboratoire d'Informatique des Systèmes Adaptatifs http://www.iro.umontreal.ca/~lisa Université de Montréal

Salah Rifai, Grégoire Mesnil, Pascal Vincent, Xavier Muller,

Overview of the presentation

Auto-encoders Definition CAE: Contractive AE CAE+H: Higher order contractive AE

Understanding the contractive penalty

Classification results

Salah Rifai, Grégoire Mesnil, Pascal Vincent, Xavier Muller, Higher Order Contractive Auto-Encoder (CAE+H

Definition CAE: Contractive AE CAE+H: Higher order contractive AE

The basics

- Auto-encoders learn efficient representations by trying to reconstruct the data
- Typical architecture is similar to a one layer MLP but where the output tries to be identical to the input
- Encoder : $h = f(x) = s(Wx + b_h)$
- **Decoder** : $y = g(h) = s(W'h + b_y)$

and s is a nonlinear activation function, typically a logistic function $\mathrm{sigmoid}(z) = \frac{1}{1+e^{-z}}$

Definition CAE: Contractive AE CAE+H: Higher order contractive AE

Reconstruction error

The cost function usually corresponds to the reconstruction mean square error or cross-entropy:

►
$$L(x, y) = ||x - y||^2$$

► $L(x, y) = -\sum_{i=1}^{d_x} x_i \log(y_i) + (1 - x_i) \log(1 - y_i)$
Criterion

$$\mathcal{J}_{AE}(\theta) = \sum_{x \in D_n} L(x, g(f(x)))$$
(1)

Salah Rifai, Grégoire Mesnil, Pascal Vincent, Xavier Muller, Higher Order Contractive Auto-Encoder (CAE+H)

Definition **CAE: Contractive AE** CAE+H: Higher order contractive AE

First Order Contractive Auto-Encoder

- Same as a regular auto-encoder but with an added penalty to the cost function
- Penalty corresponds to the Frobenius norm of the Jacobian of the hidden layer

Criterion

$$\mathcal{J}_{CAE}(\theta) = \sum_{x \in D_n} L(x, g(f(x))) + \lambda \|J_f(x)\|_F^2$$
(2)

and

$$\|J_f(x)\|_F^2 = \sum_{i=1}^{d_h} (h_i (1-h_i))^2 \sum_{j=1}^{d_x} W_{ij}^2$$
(3)

Salah Rifai, Grégoire Mesnil, Pascal Vincent, Xavier Muller,

Definition CAE: Contractive AE CAE+H: Higher order contractive AE

Higher Order CAE

- Computing parameters' gradient through higher orders derivatives of h is expensive.
- Instead we use a stochastic approximation of the Hessian Frobenius norm.

$$\|H_f(x)\|^2 = \lim_{\sigma \to 0} \frac{1}{\sigma^2} \mathbb{E}_{\epsilon \sim \mathcal{N}(0,\sigma^2 I)} \left[||J_f(x) - J_f(x+\epsilon)||^2 \right]$$
(4)
Criterion

$$\mathcal{J}_{\mathrm{CAE+H}}(\theta) = \mathcal{J}_{\mathrm{CAE}}(\theta) + \gamma \mathbb{E}_{\epsilon \sim \mathcal{N}(0,\sigma^2 I)} \left[||J_f(x) - J_f(x+\epsilon)||^2 \right]$$
(5)

Salah Rifai, Grégoire Mesnil, Pascal Vincent, Xavier Muller,

Why penalize the derivative's norm?

- Invariance: Encourages invariance of the hidden layer to small changes by contracting locally the input space.
- Locality: The projection in the feature space is locally contractive. Locality depends on the order of the derivative penalized.

Geometric interpretation of the $\mathsf{CAE}\!+\!\mathsf{H}$

- Measure how contractive are the learnt features near sample points:
 - Locally: Spectrum of the jacobian
 - Globally: Contraction ratio as we move further away from sample points
- Compare the features of the CAE+H with other algorithms

Local space contraction

- Measure the spectrum of the singular values of the Jacobian at sample points.
- Average over many samples to see how the feature space has been contracted locally.
- This gives us an idea of the directions of contraction.

Local space contraction

Salah Rifai, Grégoire Mesnil, Pascal Vincent, Xavier Muller,

Contraction Ratio

- We can estimate the isotropic contraction as a function of distance from sample points.
- Generate samples on a sphere of varying radius centered on an example.
- Measure the average distance of those points in the feature space as a ratio of the radius.
- This gives us an idea of how the space is deformed far from the samples.

Contraction Ratio

Salah Rifai, Grégoire Mesnil, Pascal Vincent, Xavier Muller,

Local contraction

Two observations from previous graphs:

- Highly localized contraction near sample points.
- However, a few directions are almost not contracted and there is a sharp dropoff in the singular values.

Salah Rifai, Grégoire Mesnil, Pascal Vincent, Xavier Muller, Higher Order Contractive Auto-Encoder (CAE+H

Reconstruction vs. Contraction penalty

- The penalty is trying to make the features invariant in all directions near the samples by contracting isotropically
- The reconstruction cost is ensuring that the reconstruction is faithful by limiting the contraction in certain directions
- These directions correspond to the low dimensional manifold where the neighboring samples congregate

Approximating the manifold using the encoder's mapping

- ▶ We have no analytical parametrisation of the manifold.
- The contractive auto-encoder learns the directions of variation in the data.
- By looking at the directions and the magnitude of the principal singular vectors, we get an idea of the local dimensionality of the manifold (its local tangent)
- No prior knowledge is needed on these factors of variations as they are learned from the data

Manifold learning context

- Variations in the data correspond to dimensions parallel to the manifold,
- \blacktriangleright The orthogonal subspace to the manifold ightarrow unlikely data,
- Local directions are spanned by the PC of the Jacobian.

Salah Rifai, Grégoire Mesnil, Pascal Vincent, Xavier Muller, Hi

Local charts of the manifold

A linear local chart is a set of vectors associated to a datapoint.

- We can construct an atlas of the manifold using the union of local charts.
- Each local chart of this atlas is the low-dimensional tangent space to the manifold given by the first few singular values of the Jacobian

Salah Rifai, Grégoire Mesnil, Pascal Vincent, Xavier Muller, Higher Order Contractive Auto-Encoder (CAE+H

Local coordinates and saturation

Interpreting the hidden representation as a coordinate system.

- ► CAE+H yields highly saturated units (sparse representation) → null jacobian for these units
- ► Only non-saturated(linear) units are responsible for the high values in the spectrum of the Jacobian → directions of the local charts.

Non-saturated units \implies local coordinates. Saturated units \implies global coordinates.

Formal definition of the atlas

▶ we define a local chart around x using the Singular Value Decomposition of J^T(x) = U(x)S(x)V^T(x)

The tangent plane \mathcal{H}_x at x is the span of the set of principal singular vectors B_x :

$$\mathcal{B}_x = \{U_{\cdot k}(x) | S_{kk}(x) > \epsilon\} \ \ ext{and} \ \ \mathcal{H}_x = ext{span}(\mathcal{B}_x),$$

We can thus define an atlas \mathcal{A} captured by h:

$$\mathcal{A} = \{(x, v) | x \in \mathcal{D}, v \in \mathcal{H}_x\}$$
(6)

Salah Rifai, Grégoire Mesnil, Pascal Vincent, Xavier Muller, Higher Order Contractive Auto-Encoder (CAE+H)

Visualizing the tangents

Tangents learned on RCV1 and MNIST:

Salah Rifai, Grégoire Mesnil, Pascal Vincent, Xavier Muller,

Overcomplete representation

CAE+H benefits more from overcomplete representations.

Salah Rifai, Grégoire Mesnil, Pascal Vincent, Xavier Muller,

CAE+H features

pretrain Model	AE	RBM	DAE	CAE	CAE+H
Log Reg	$2.17{\pm}0.29$	2.04±0.28	2.05±0.28	$1.82{\pm}0.26$	1.2±0.21
MLP	1.78 ± 0.26	1.3 ± 0.22	$1.18{\scriptstyle \pm 0.21}$	$1.14{\scriptstyle \pm 0.21}$	1.04 ± 0.20

Table: Comparison of the quality of extracted features from different models when using them as the fixed inputs to a logistic regression (top row) or to initialize a MLP that is fine-tuned (bottom row).

CAE+H: What happens when we go deep?

Data Set	SVM _{rbf}	SAE-3	RBM-3	DAE-b-3	CAE-2	CAE+H-1	C AE+H-2
rot	11.11±0.28	10.30±0.27	$10.30{\scriptstyle \pm 0.27}$	9.53±0.26	9.66±0.26	10.9±0.27	9.2 ±0.25
bg-img	22.61±0.379	23.00±0.37	16.31±0.32	16.68±0.33	15.50±0.32	15.9±0.32	14.8 ± 0.31
rect	2.15±0.13	2.41±0.13	2.60±0.14	$1.99{\pm}0.12$	1.21 ± 0.10	0.7±0.07	0.45 ± 0.06

Table: Comparison of stacked second order contractive auto-encoders with 1 and 2 layers (CAE+H-1 and CAE+H-2) with other 3-layer stacked models and baseline SVM.

CIFAR10 performance

We achieved a test error of 78.5% on CIFAR-10

Salah Rifai, Grégoire Mesnil, Pascal Vincent, Xavier Muller,

Future Work

- Extending our definition of the local chart to a higher order approximation (curvy surfaces),
- Sampling new data points moving along the manifold approximation.
- Supervised learning algorithms taking advantage of the atlas extracted by the CAE+H (to appear in NIP2011)

Thanks to ...

Salah Rifai, Grégoire Mesnil, Pascal Vincent, Xavier Muller, Higher Order Contractive Auto-Encoder (C.