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The basics

I Auto-encoders learn e�cient representations by trying to

reconstruct the data

I Typical architecture is similar to a one layer MLP but where

the output tries to be identical to the input

I Encoder : h = f (x) = s(Wx + bh)

I Decoder : y = g(h) = s(W ′h + by )

and s is a nonlinear activation function, typically a logistic function

sigmoid(z) = 1

1+e−z
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Reconstruction error

The cost function usually corresponds to the reconstruction mean

square error or cross-entropy:

I L(x , y) = ‖x − y‖2

I L(x , y) = −
∑dx

i=1
xi log(yi ) + (1− xi ) log(1− yi )

Criterion

JAE(θ) =
∑
x∈Dn

L(x , g(f (x))) (1)
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First Order Contractive Auto-Encoder

I Same as a regular auto-encoder but with an added penalty to

the cost function

I Penalty corresponds to the Frobenius norm of the Jacobian of

the hidden layer

Criterion

JCAE(θ) =
∑
x∈Dn

L(x , g(f (x))) + λ‖Jf (x)‖2F (2)

and

‖Jf (x)‖2F =

dh∑
i=1

(hi (1− hi ))
2

dx∑
j=1

W 2

ij (3)
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Higher Order CAE

I Computing parameters' gradient through higher orders

derivatives of h is expensive.

I Instead we use a stochastic approximation of the Hessian

Frobenius norm.

‖Hf (x)‖2 = lim
σ→0

1

σ2
Eε∼N (0,σ2I )

[
||Jf (x)− Jf (x + ε)||2

]
(4)

Criterion

JCAE+H(θ) = JCAE(θ) + γEε∼N (0,σ2I )

[
||Jf (x)− Jf (x + ε)||2

]
(5)
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Why penalize the derivative's norm?

I Invariance: Encourages invariance of the hidden layer to small

changes by contracting locally the input space.

I Locality: The projection in the feature space is locally

contractive. Locality depends on the order of the derivative

penalized.
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Geometric interpretation of the CAE+H

I Measure how contractive are the learnt features near sample
points:

I Locally: Spectrum of the jacobian
I Globally: Contraction ratio as we move further away from

sample points

I Compare the features of the CAE+H with other algorithms
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Local space contraction

I Measure the spectrum of the singular values of the Jacobian at

sample points.

I Average over many samples to see how the feature space has

been contracted locally.

I This gives us an idea of the directions of contraction.
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Local space contraction
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Contraction Ratio

I We can estimate the isotropic contraction as a function of

distance from sample points.

I Generate samples on a sphere of varying radius centered on an

example.

I Measure the average distance of those points in the feature

space as a ratio of the radius.

I This gives us an idea of how the space is deformed far from

the samples.
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Contraction Ratio
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Local contraction

Two observations from previous graphs:
I Highly localized contraction near sample points.
I However, a few directions are almost not contracted and there

is a sharp dropo� in the singular values.
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Reconstruction vs. Contraction penalty

I The penalty is trying to make the features invariant in all

directions near the samples by contracting isotropically

I The reconstruction cost is ensuring that the reconstruction is

faithful by limiting the contraction in certain directions

I These directions correspond to the low dimensional manifold

where the neighboring samples congregate
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Approximating the manifold using the encoder's mapping

I We have no analytical parametrisation of the manifold.

I The contractive auto-encoder learns the directions of variation

in the data.

I By looking at the directions and the magnitude of the principal

singular vectors, we get an idea of the local dimensionality of

the manifold (its local tangent)

I No prior knowledge is needed on these factors of variations as

they are learned from the data
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Manifold learning context

I Variations in the data correspond to dimensions parallel to the

manifold,

I The orthogonal subspace to the manifold → unlikely data,

I Local directions are spanned by the PC of the Jacobian.
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Local charts of the manifold

A linear local chart is a set of vectors associated to a datapoint.

I We can construct an atlas of the manifold using the union of

local charts.

I Each local chart of this atlas is the low-dimensional tangent

space to the manifold given by the �rst few singular values of

the Jacobian
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Local coordinates and saturation

Interpreting the hidden representation as a coordinate system.

I CAE+H yields highly saturated units (sparse representation)

→ null jacobian for these units

I Only non-saturated(linear) units are responsible for the high

values in the spectrum of the Jacobian → directions of the

local charts.

Non-saturated units =⇒ local coordinates.

Saturated units =⇒ global coordinates.
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Formal de�nition of the atlas

I we de�ne a local chart around x using the Singular Value

Decomposition of JT (x) = U(x)S(x)V T (x)

The tangent plane Hx at x is the span of the set of principal

singular vectors Bx :

Bx = {U·k(x)|Skk(x) > ε} and Hx = span(Bx),

We can thus de�ne an atlas A captured by h:

A = {(x , v)|x ∈ D, v ∈ Hx)} (6)
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Visualizing the tangents

I Tangents learned on RCV1 and MNIST:
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Overcomplete representation

CAE+H bene�ts more from overcomplete representations.
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CAE+H features

XXXXXXXXXXXModel

pretrain
AE RBM DAE CAE CAE+H

LogReg 2.17±0.29 2.04±0.28 2.05±0.28 1.82±0.26 1.2±0.21

MLP 1.78±0.26 1.3±0.22 1.18±0.21 1.14±0.21 1.04±0.20

Table: Comparison of the quality of extracted features from di�erent
models when using them as the �xed inputs to a logistic regression (top
row) or to initialize a MLP that is �ne-tuned (bottom row).
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CAE+H: What happens when we go deep?

Data Set SVMrbf SAE-3 RBM-3 DAE-b-3 CAE-2 CAE+H-1 C AE+H-2

rot 11.11±0.28 10.30±0.27 10.30±0.27 9.53±0.26 9.66±0.26 10.9±0.27 9 .2±0.25

bg-img 22.61±0.379 23.00±0.37 16.31±0.32 16.68±0.33 15.50±0.32 15.9±0.32 14.8 ±0.31

rect 2.15±0.13 2.41±0.13 2.60±0.14 1.99±0.12 1.21±0.10 0.7±0.07 0.45±0.06

Table: Comparison of stacked second order contractive auto-encoders
with 1 and 2 layers (CAE+H-1 and CAE+H-2) with other 3-layer stacked
models and baseline SVM.
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CIFAR10 performance
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We achieved a test error of 78.5% on CIFAR-10
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Future Work

I Extending our de�nition of the local chart to a higher order

approximation (curvy surfaces),

I Sampling new data points moving along the manifold

approximation.

I Supervised learning algorithms taking advantage of the atlas

extracted by the CAE+H (to appear in NIP2011)
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Thanks to ...
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