Learning from Inconsistent and Unreliable Annotators

by Ping Zhang and Zoran Obradovic Center for Data Analytics and Biomedical Informatics, Temple University

> September, 2011 Athens, Greece

Instance $oldsymbol{x}_i \in \mathbf{R}^d$	Label $y_i \in \mathcal{Y} = \{0, 1\}$
$oldsymbol{x}_1$	1
x_2	0
$oldsymbol{x}_3$	0
$oldsymbol{x}_4$	1
l <mark>e</mark> r a	5 [.] 1
$oldsymbol{x}_N$	1

Learn a classification function

$$f: \mathbf{R}^d \to \mathcal{Y}$$

- How to obtain the labels for training? $y_i \in \mathcal{Y} = \{0, 1\}$
- Getting the actual golden ground truth can be
- Expensive
- Potentially dangerous
- Could be impossible

- Getting golden ground truth is hard, so we use opinion from an annotator
- An annotator provides his/her subjective version of the truth
- Error prone/noisy/unreliable
- Use multiple annotators who label the same example

Annotations from multiple annotators

Each radiologist is asked to annotate whether a lesion is malignant (1) or not (0).

Lesion ID	Radiologist 1	Radiologist 2	Radiologist 3	Radiologist 4	Truth Unknown
01	0	0	0	0	x
02	0	1	0	0	x
03	1	1	1	1	x
04	0	0	1	1	x
05	0	1	1	1	x
06	0	0	1	0	x
07	0	1	1	0	×

In practice there is a substantial amount of disagreement.

We have no knowledge of the actual golden ground truth.

Getting absolute ground truth (e.g. biopsy) can be expensive.

- Building a model to answer questions
- How to train a classifier?
- > How to evaluate annotators?
- How to estimate the actual ground truth?

Sensitivity $\alpha^{j} = \Pr[y^{j} = 1 \mid y = 1]$ Label assigned True label by annotator j Specificity $\beta^{j} = \Pr[y^{j} = 0 \mid y = 0]$

- In many cases annotator knowledge can fluctuate considerably depending on the groups of input instances
- Build data-dependent model based on the intuition that inconsistent annotators have different sensitivity and specificity for different regions of the feature space
- How to find the fittest model to approximate the distribution of the instances?

- Gaussian mixture model (GMM): Linear superposition of Gaussians components
- Well-studied statistical inference techniques are available (EM algorithm)
- A "soft" group assignment is available. E-step evaluates the probability that an observation x_i belongs to component k as τ_{ik}
- Choose the model and the number of components by Bayesian Information Criterion (BIC)

 Input: Given N instances with annotations from R annotators

$$D = \{\boldsymbol{x}_{i}, y_{i}^{1}, ..., y_{i}^{R}\}_{i=1}^{N}$$

• Output:

- Sensitivities at each component
- Specificities at each component
- > Estimates of true labels $y_1, ..., y_N$

If we know the true labels

- We can learn a classifier
- To model the data-dependent behavior of annotators, we hypothesize that each annotator has its own sensitivity and specificity for each mixture component

 $\alpha_k^j = \Pr(y_i^j = 1 | y_i = 1, \text{ k-th Gaussian mixture component generates } x_i)$ $\beta_k^j = \Pr(y_i^j = 0 | y_i = 0, \text{ k-th Gaussian mixture component generates } x_i)$ $\alpha_k^j = \sum_{i=1}^N z_{ik} y_i^j / \sum_{i=1}^N z_{ik}$ $\beta_k^j = \sum_{i=1}^N (\tau_{ik} - z_{ik})(1 - y_i^j) / \sum_{i=1}^N (\tau_{ik} - z_{ik})$ $Z_i \text{ is a soft label (probability that the label is 1) and } z_{ik} = z_i \tau_{ik}$

Hypothesize the behavior of annotator: Given an instance x to label, the annotator finds the mixture component which most likely generates that instance. Then the annotators generate labels with their sensitivities and specificities at the most likely component

Again, Bayes Rule

$$z_{i} = \frac{\Pr[y_{i}^{1}, ..., y_{i}^{R} | y_{i} = 1, \phi] \cdot \Pr[y_{i} = 1 | \mathbf{x}_{i}, \phi]}{\Pr[y_{i}^{1}, ..., y_{i}^{R} | \phi]}$$

$$\Pr[y_{i}^{1}, ..., y_{i}^{R} | y_{i} = 1, \alpha] = \Pr[y_{i}^{1}, ..., y_{i}^{R} | y_{i} = 1, \alpha_{q}^{1}, ..., \alpha_{q}^{R}]$$
where $q = \underset{k=1,...,K}{\operatorname{argmax}}(\tau_{ik})$

$$= \prod_{j=1}^{R} \Pr[y_{i}^{j} | y_{i} = 1, \alpha_{q}^{j}] = \prod_{j=1}^{R} [\alpha_{q}^{j}]^{y_{i}^{j}} [1 - \alpha_{q}^{j}]^{1 - y_{i}^{j}}$$

 Therefore, if we know annotators' sensitivities and specificities at each component, the estimation of the hidden true label is:

$$z_i = \frac{a_i p_i}{a_i p_i + b_i (1 - p_i)}$$

where

$$p_{i} = \Pr[y_{i} = 1 | \mathbf{x}_{i}, \mathbf{w}] = \sigma(\mathbf{w}^{T} \mathbf{x}_{i})$$

$$a_{i} = \prod_{j=1}^{R} [\alpha_{q}^{j}]^{y_{i}^{j}} [1 - \alpha_{q}^{j}]^{1 - y_{i}^{j}}$$

$$b_{i} = \prod_{j=1}^{R} [1 - \beta_{q}^{j}]^{y_{i}^{j}} [\beta_{q}^{j}]^{1 - y_{i}^{j}}$$

$$q = \underset{k=1,...,K}{\operatorname{arg}} \max(\tau_{ik})$$

GMM-MAPML Algorithm

GMM

Find the fittest model to approximate the distribution of the instances

If we know how good each predictor is, we can estimate the true label

 $z_{i} = \frac{\sigma(\boldsymbol{w}^{T}\boldsymbol{x}_{i})\prod_{j=1}^{R} [\alpha_{q}^{j}]^{y_{i}^{j}} [1-\alpha_{q}^{j}]^{1-y_{i}^{j}}}{\sigma(\boldsymbol{w}^{T}\boldsymbol{x}_{i})\prod_{j=1}^{R} [\alpha_{q}^{j}]^{y_{i}^{j}} + (1-\sigma(\boldsymbol{w}^{T}\boldsymbol{x}_{i}))\prod_{j=1}^{R} [\beta_{q}^{j}]^{1-y_{i}^{j}} [1-\beta_{q}^{j}]^{y_{i}^{j}}}$ MAP
Iterate until convergence
Initialize using majority-voting
ML

If we know the true label we can estimate how good each predictor is at each component

$$\alpha_{k}^{j} = \sum_{i=1}^{N} z_{ik} y_{i}^{j} / \sum_{i=1}^{N} z_{ik} \qquad \beta_{k}^{j} = \sum_{i=1}^{N} (\tau_{ik} - z_{ik}) (1 - y_{i}^{j}) / \sum_{i=1}^{N} (\tau_{ik} - z_{ik}) \qquad \text{Learn a classifier}$$

Analysis of the model

$$logit(z_{i}) = ln \frac{z_{i}}{1 - z_{i}} = ln \frac{Pr[y_{i} = 1 | y_{i}^{1}, ..., y_{i}^{R}, \boldsymbol{x}_{i}, \boldsymbol{\phi}]}{Pr[y_{i} = 0 | y_{i}^{1}, ..., y_{i}^{R}, \boldsymbol{x}_{i}, \boldsymbol{\phi}]}$$
$$= w^{T} \boldsymbol{x}_{i} + \sum_{j=1}^{R} y_{i}^{j} \boxed{logit(\alpha_{q}^{j}) + logit(\beta_{q}^{j})]} + c$$
$$Constant$$
Annotators' labels
Consider both sensitivity and specificity as weight
 $q = \underset{k=l,\ldots,k}{\operatorname{arg\,max}(\tau_{ik})}$ indicates data-dependent.

- Why to study emotional speech?
- Recognition (e.g., Interface optimization in call centers)
- Generation (e.g., TTS, games)
- Acted emotional utterance
- Semantically neutral
- Four acted emotions: happy 4, neutral 4, sad 4, angry 4

Dataset: EMA database from University of Southern California

- Golden ground truth is known: 568 utterances were chosen as best emotional utterances
- 39-element feature vectors were extracted from the speech signal (WAV file) by using VOICEBOX
- Binary labels: {happy, neutral} were assigned to positive emotion (0), {sad, angry} were assigned to negative emotion (1)
- Multiple annotators: 5 annotators with different academic background. Most of them are non-native English speakers. Noisy/unreliable annotators

Experiment Results: ROC comparisons

ROC Curve for the classifier

Experiment Results: GMM-MAPML based estimates of annotators' accuracy

	First Component		Second Component		
	Estimated	Estimated	Estimated	Estimated	
Listeners	Sensitivity	Specificity	Sensitivity	Specificity	
Listener 1	0.902	0.891	0.925	0.951	
Listener 2	0.843	0.862	0.814	0.799	
Listener 3	0.784	0.802	0.779	0.792	
Listener 4	0.756	0.744	0.877	0.861	
Listener 5	0.719	0.698	0.728	0.736	
		■ 1st Component ■ 2nd	Component		
	0,8				

Protein Disorder Prediction

- Lock and Key Paradigm:
 - AA seq \rightarrow 3-D Structure \rightarrow Function
- Definition: A part of the protein or the whole protein doesn't have a fixed tertiary structure
- Importance: Involved in many important functions and in various diseases.

CASP9 Disorder Dataset

- 117 experimentally characterized targets (=26083 residues) were analyzed containing: 9.30% disordered residues and 90.70% ordered residues
- Golden ground truth is known: either X-ray or NMR experimental characterization
- 20-element feature vectors (19 amino acid composition features and 1 sequence complexity feature) were extracted from the protein sequences
- Multiple annotators: Labels by15 predictors developed at different institutions
- Disordered segments <4 residues were not considered

CASP9 Assessment Scores

Predictor Name	Institution	ACC	Sw	AUC
GMM-MAPML		0.785	0.527	0.874
MAP-ML		0.764	0.513	0.859
MAJORITY VOTING		0.735	0.496	0.776
PRDOS2	Tokyo Tech, Japan	0.754	0.509	0.855
MULTICOM-REFINE	University of Missouri, USA	0.75	0.5	0.822
BIOMINE_DR_PDB	University of Alberta, Canada	0.741	0.483	0.821
GSMETADISORDERMD	IIMCB in Warsaw, Poland	0.738	0.476	0.816
MASON	George Mason University, USA	0.736	0.473	0.743
ZHOU-SPINE-D	IU School of Medicine, USA	0.731	0.462	0.832
DISTILL-PUNCH1	UCD Dublin, Ireland	0.726	0.453	0.8
OND-CRF	Umea University, Sweden	0.706	0.412	0.737
UNITED3D	Kitasato University, Japan	0.704	0.412	0.781
CBRC_POODLE	CBRC, Japan	0.694	0.405	0.83
MCGUFFIN	University of Reading, UK	0.688	0.402	0.817
ISUNSTRUCT	IPR RAS, Russia	0.679	0.396	0.742
DISOPRED3C	University College London, UK	0.67	0.391	0.853
ULG-GIGA	University of Liege, France	0.585	0.341	0.726
MEDOR	Aix-Marseille University, France	0.579	0.338	0.688

(a) Accuracy estimates at the 1st component

(c) Accuracy estimates at the 3rd component

Estimated Sensitivity Estimated Specificity 1 0.8 0.6 0.4 0.2 0 GSMETADSORDERMD BIOMMEDR. PDB MULTICOM REINE CBRC POODLE DETILPUNCH OND-CRF ULGGIGA MCGUFFIN MASON DISOPRED3C MEDOR PROOSE SUNSTRUCT

(b) Accuracy estimates at the 2nd component

Ping Zhang: <u>ping@temple.edu</u> Zoran Obradovic: <u>zoran.obradovic@temple.edu</u>