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Motivation

» Automatic analysis of visual information

Crime prevention Visually impaired multimedia documents Image contént search”

» Classification of photos

news agencies art catalogues industrial components trademarks
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Problem Statement
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» Given a set of n features channels (kernels). Aim is
to find the optimal way of combining these features
channels.
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Contents

» Existing fusion techniques.

» Proposed Classifier fusion techniques.
» Binary CLF.
» NLP-vMC.
> NLP-8.
> NLP-B.
» Extended stacking.
» Evaluation on challenging datasets.

» Conclusions.
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Multiple Kernel Learning (MKL)
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» MKL maximizes the soft margin to obtain optimal
weights, for the convex cgmbination of base kernels.
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Classifier Level Fusion (CLF)
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Classifier Level Fusion (CLF)
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Binary CLF with Non-Linear Constraints

» Extension of v—LP-AdaBoost to arbitrary norms
» Normalized margin

= min 1 — min 1 E Brgr(2;)
P 1<z<’mJlf( 1<z<mJ? S

» Nonlinear Programmmg CLF
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Multiclass CLF (NLP-vMC)

> Novel

multiclass CLF

» Margin redefinition

pi(wi, ) :
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» Nonlinear Programming (NLP-vMCQC)
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Multiclass CLF (NLP-£3)

» Nonlinear Programming- (NLP-£3)
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1BIb <1, B,>0, &>0,p>0, ¥Yr=1,....n,¥i=1,...,m.
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Multiclass CLF (NLP-B)

» Nonlinear Programming-B (NLP-B)
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Extended Stacking

» Break down multiclass problem into 1-vs-all.

» For each sample its distances from all hyperplanes of 1-vs-

all classifier is used as base feature.

» Break down multilabel problem into independent

binary problem.

» For each sample its distances from all hyperplanes of
Independent binary classifier is used as base feature.
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Results

» Multi-Label Dataset (PASCAL VOC2007)
» 20 classes, 9963 images from internet
» Mean Average Precision (MAP)

1 & IR N M| . o
MAP :—ch, Cp = v if concept true M, :{|1,|2 _____ |k}

0 if concept not true

£ UNIVERSITY OF 15
’b SURREY Novel Fusion Methods for Pattern Recognition, M. Awais et al.



PASCAL VOC 2007

» Feature channel weights learned with various Ip-
norm for CLF.

» Sparsity decreases with higher norms

p=142'5 p=1+27 p=1+2”! p=10*

1 v e v 0
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PASCAL VOC 2007

» Mean Average Precision of different fusion methods.

NOTIMS| |y 4 9=3|1 L 9=2|] L 9=1| o 3 4 8 | oo

Fusion Methods

MKL 55.42 56.42 | 58.53 | 61.07 [61.98]62.45|62.61 [62.81 62.93]
CLF 63.71] 63.94 | 63.97 | 63.98 [63.97[63.97|63.77 {63.69(63.11
Stacking 64.44

MKL (Base + Stacking) [64.39| 64.55 | 65.06 | 65.75 [66.06|66.2366.24]66.09(65.93
CLF (Base + Stacking) 65.18| 65.20 | 65.45 | 65.57 [65.65/65.63|65.59 [65.54(65.48

w
(@]}
e
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Results

» Multi-Class Datasets
» Oxford Flowerl7 (17 classes)
» Oxford Flower102 (102 classes)
» Caltech101 (101 classes)
» Mean Accuracy

» Protein Subcellular Localization (4 datasets)
»1- MCC In percentage g g
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Mean Accuracy on Oxford Flowerl7

» Decrease in sparsity led to performance improvement.
» Best results by combining base and stacking kernels.

ML-Methods 1 1+2 %1420 2 3 4 8
MKL 87.2+F2.7 |74.9F1.7|72.2£3.6|71.242.7| 70.6 £3.8 | 73.1+£3.9 [81.0+4.0
NLP-3 86.5+3.3 [86.64+3.4|86.6+1.1[86.7+1.2[ 87.4+1.5 |87.9+1.8[87.8+2.1
NLP-vMC 85.5+F1.3 |86.612.0[87.6£2.2|87.7£2.6[87.84+2.1|87.7+2.0 [87.8£1.9
NLP-B 84.6E£2.5 |84.612.4|84.8£2.6|84.8F2.5| 85.5+3.7 | 86.9E2.7 [87.3£2.7
Stacking 4 = 0.

MKL(Base 89.3£0.9 [79.7£2.7[77.6E1.2[74.7£2.4| 73.8£2.6 | 77.8£4.3[86.3E£1.9
+Stacking)

NLP-B(Base  [90.2+1.5|89.3£0.7[89.6£0.5|89.2F1.6| 89.3F£1.2 | 89.1£1.4 [89.0E£1.0
+Stacking)

NLP-vMC(Base| 86.1£2.5 |87.3£1.4[88.5+£0.5[88.6+0.9| 88.6+£0.9 | 88.8+1.1 [88.9£1.2
+Stacking)

Comparison with State-of-the-Art |

MKL-FDA (4,) [Yan et al. CVPR10](best state-of-the-art using 7 kernels) 86.7+1.2

MKL-avg (¢so)(using 7 kernels) 84.941.9
CLF (Yo ) (using 7 kernels) 86.7+2.7
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Summary of Mean Accuracy on
Computer Vision Datasets

» Similar trend was observed for oxford flower102 and

clatech101.
» Summary of results is given in table (more details in paper).

ML-Methods Oxford flower 17|Oxford flower 102|caltech101
state-of-the-art-best 86.7+1.2 72.8 68.61+2.2
proposed Extended Stacking 89.41+0.5 TT.T 63.01+2.4
proposed-CLF-best 90.2+1.5 80.3 70.7+1.9
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Protein Subcellular Localization

» Results on 4 bioinformatics datasets validate our

experiments.

» Prediction error is measured as 1- Matthew
Correlation Coefficient (MCC) in percentage.
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ML-Methods plant nonpl psortNeg psortPos
SVM-best [kloft et al. JMLR11]| 8.1840.47 | 8.97+£0.26 | 9.8740.34 | 13.01£0.63
FDA-best [Yan et al. JMLR11] [10.8542.37(10.8441.72]| 9.74+2.00 | 12.594+4.10
proposed-best 5.25+1.88(6.394+1.12(9.16+1.67|10.40+3.56
21




Conclusions

» A novel nonlinear separable convex optimization
formulation for multiclass classifier fusion.
» Learns weight of each class in each feature channel.

» Arbitrary norm in the existing CLF formulation
» Don’t reject informative channels
» Robust against noisy and redundant channels
» Norm can be learnt using validation set

» Extended stacking for binary and multiclass problems.

» Stacking plus base kernels gives best results
» Extensive evaluation on challenging datasets.
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