Centre for Vision, Speech & Signal Processing

Engineering and Physical Sciences Research Council

Novel Fusion Methods for Pattern Recognition

Muhammad Awais, Fei Yan, Krystian Mikolajczyk and Josef Kittler ECML-PKDD 2011

Motivation

> Automatic analysis of visual information

Crime prevention

Visually impaired

multimedia documents

Image content search*

Classification of photos

news agencies

art catalogues

industrial components

trademarks

Problem Statement

Given a set of n features channels (kernels). Aim is to find the optimal way of combining these features channels.

Contents

- Existing fusion techniques.
- Proposed Classifier fusion techniques.
 - ➢ Binary CLF.
 - > NLP-vMC.
 - \succ NLP- β .
 - ≻NLP-B.
- Extended stacking.
- Evaluation on challenging datasets.
- Conclusions.

Multiple Kernel Learning (MKL)

> MKL maximizes the soft margin to obtain optimal weights, for the convex combination of base kernels.

$$K = \sum_{p=1} \beta_p K_p$$

Classifier Level Fusion (CLF)

Classifier Level Fusion (CLF)

Classifier Level Fusion (CLF)

Binary CLF with Non-Linear Constraints

m

- Extension of v–LP-AdaBoost to arbitrary norms
- Normalized margin

$$\rho := \min_{1 \le i \le m} y_i f(x_i) = \min_{1 \le i \le m} y_i \sum_{r=1}^n \beta_r g_r(x_i)$$

Nonlinear Programming CLF

$$\begin{aligned} \max_{\boldsymbol{\beta},\xi,\rho} \quad \rho - \frac{1}{\nu m} \sum_{i=1}^{m} \xi_i \\ s.t. \quad y_i \sum_{r=1}^{n} \beta_r f_r(x_i) \ge \rho - \xi_i \quad \forall \ i = 1, ..., m \\ \|\boldsymbol{\beta}\|_p^p \le 1, \quad \boldsymbol{\beta} \succeq 0, \boldsymbol{\xi} \succeq 0, \rho \ge 0 \end{aligned}$$

Multiclass CLF (NLP-vMC)

- Novel multiclass CLF
- Margin redefinition

$$\rho_i(x_i,\beta) := \sum_{r=1}^n \beta_{(N_C(r-1)+y_i)} g_{r,y_i}(x_i) - \sum_{r=1}^n \sum_{j=1,j\neq i}^{N_C} \beta_{(N_C(r-1)+y_j)} g_{r,y_j}(x_i)$$

➢ Nonlinear Programming (NLP-vMC)

$$\max_{\boldsymbol{\beta},\xi,\rho} \quad \rho - \frac{1}{\nu m} \sum_{i=1}^{m} \xi_i$$
s.t.
$$\sum_{r=1}^{n} \beta_{(N_C(r-1)+y_i)} g_{r,y_i}(x_i) - \sum_{r=1}^{n} \sum_{j=1,j\neq i}^{N_C} \beta_{(N_C(r-1)+y_j)} g_{r,y_j}(x_i) \ge \rho - \xi_i,$$

$$\|\boldsymbol{\beta}\|_p^p \le 1, \quad \rho \ge 0, \boldsymbol{\beta} \succeq 0 \quad \boldsymbol{\xi} \succeq 0 \quad \forall i = 1, ..., m$$

Multiclass CLF (NLP- β)

> Nonlinear Programming- β (NLP- β)

$$\max_{\beta,\xi,\rho} \quad \rho - \frac{1}{\nu m} \sum_{i=1}^{m} \xi_i$$
s.t.
$$\sum_{r=1}^{n} \beta_r g_{r,y_i}(x_i) - \max \sum_{y_j \neq y_i, r=1}^{n} \beta_r g_{r,y_j}(x_i) \ge \rho - \xi_i, \ \forall \ i = 1, ..., m$$

$$\|\beta\|_p^p \le 1, \ \beta_r \ge 0, \ \xi_i \ge 0, \rho \ge 0, \ \forall r = 1, ..., n, \forall \ i = 1, ..., m.$$

Multiclass CLF (NLP-B)

Nonlinear Programming-B (NLP-B)

$$\max_{B,\xi,\rho} \quad \rho - \frac{1}{\nu m} \sum_{i=1}^{m} \xi_i$$
s.t.
$$\sum_{r=1}^{n} B_r^{y_i} g_{r,y_i}(x_i) - \sum_{y_j \neq y_i, r=1}^{n} B_r^{y_j} g_{m,y_j}(x_i) \ge \rho - \xi_i \ i = 1, ..., m,$$

$$\|B\|_p^p \le 1, \ B_r^c \ge 0, \ \boldsymbol{\xi} \succeq 0, \rho \ge 0, \ \forall \ r = 1, ..., n, c = 1, ..., N_C$$

Extended Stacking

Break down multiclass problem into 1-vs-all.

- For each sample its distances from all hyperplanes of 1-vsall classifier is used as base feature.
- Break down multilabel problem into independent binary problem.
 - For each sample its distances from all hyperplanes of independent binary classifier is used as base feature.

Novel Fusion Methods for Pattern Recognition, M. Awais et al.

Base plus Stacking Kernel

UNIVERSITY OF IRRF

Results

Multi-Label Dataset (PASCAL VOC2007) \geq 20 classes, 9963 images from internet Mean Average Precision (MAP)

 $MAP = \frac{1}{|R|} \sum_{k=1}^{R} c_k, \qquad c_k = \begin{cases} \frac{|R \cap M_k|}{k} & \text{if concept true} \\ 0 & \text{if concept not true} \end{cases} \qquad M_k = \{i_1, i_2, \dots, i_k\}$

PASCAL VOC 2007

Feature channel weights learned with various lpnorm for CLF.

Sparsity decreases with higher norms

PASCAL VOC 2007

Mean Average Precision of different fusion methods.

norms Fusion Methods	1	$1 + 2^{-3}$	$1 + 2^{-2}$	$1 + 2^{-1}$	2	3	4	8	ℓ_∞
MKL	55.42	56.42	58.53	61.07	61.98	62.45	62.61	62.81	62.93
CLF	63.71	63.94	63.97	63.98	63.97	63.97	63.77	63.69	63.11
Stacking	64.44								
MKL (Base + Stacking)	64.39	64.55	65.06	65.75	66.06	66.23	66.24	66.09	65.93
CLF (Base + Stacking)	65.18	65.20	65.45	65.57	65.65	65.63	65.59	65.54	65.48

Results

Multi-Class Datasets

- >Oxford Flower17 (17 classes)
- >Oxford Flower102 (102 classes)
- Caltech101 (101 classes)
- Mean Accuracy
- Protein Subcellular Localization (4 datasets)

➤ 1- MCC in percentage

Mean Accuracy on Oxford Flower17

Decrease in sparsity led to performance improvement.

Best results by combining base and stacking kernels.

ML-Methods	1	$1+2^{-3}$	$1 + 2^{-1}$	2	3	4	8	
MKL	87.2 ± 2.7	74.9 ± 1.7	72.2 ± 3.6	71.2 ± 2.7	70.6 ± 3.8	73.1 ± 3.9	81.0 ± 4.0	
$\text{NLP-}oldsymbol{eta}$	86.5 ± 3.3	86.6 ± 3.4	86.6 ± 1.1	86.7 ± 1.2	87.4 ± 1.5	$87.9{\pm}1.8$	87.8 ± 2.1	
$NLP-\nu MC$	85.5 ± 1.3	86.6 ± 2.0	87.6 ± 2.2	87.7 ± 2.6	$87.8{\pm}2.1$	87.7 ± 2.0	87.8 ± 1.9	
NLP-B	84.6 ± 2.5	84.6 ± 2.4	84.8 ± 2.6	84.8 ± 2.5	85.5 ± 3.7	86.9 ± 2.7	87.3 ± 2.7	
Stacking	89.4 ± 0.5							
MKL(Base	89.3 ± 0.9	79.7 ± 2.7	77.6 ± 1.2	74.7 ± 2.4	73.8 ± 2.6	77.8 ± 4.3	86.3 ± 1.9	
+Stacking)								
NLP- $\boldsymbol{\beta}(\text{Base})$	$90.2{\pm}1.5$	89.3 ± 0.7	89.6 ± 0.5	89.2 ± 1.6	89.3 ± 1.2	89.1 ± 1.4	89.0 ± 1.0	
+Stacking)								
$NLP-\nu MC(Base$	86.1 ± 2.5	87.3 ± 1.4	88.5 ± 0.5	88.6 ± 0.9	88.6 ± 0.9	88.8 ± 1.1	88.9 ± 1.2	
+Stacking)								
Comparison with State-of-the-Art								
MKL-FDA (ℓ_p) [Yan et al. CVPR10](best state-of-the-art using 7 kernels) [8]							86.7 ± 1.2	
MKL-avg $(\ell_{\infty})(\text{using 7 kernels})$						84.9 ± 1.9		
CLF (ℓ_{∞}) (using 7 kernels)						86.7 ± 2.7		

Novel Fusion Methods for Pattern Recognition, M. Awais et al.

Summary of Mean Accuracy on Computer Vision Datasets

- Similar trend was observed for oxford flower102 and clatech101.
 - > Summary of results is given in table (more details in paper).

ML-Methods	Oxford flower 17	Oxford flower 102	caltech101
state-of-the-art-best	86.7 ± 1.2	72.8	68.6 ± 2.2
proposed Extended Stacking	89.4 ± 0.5	77.7	68.0 ± 2.4
proposed-CLF-best	$90.2{\pm}1.5$	80.3	70.7 ± 1.9

Protein Subcellular Localization

Results on 4 bioinformatics datasets validate our experiments.

Prediction error is measured as 1- Matthew Correlation Coefficient (MCC) in percentage.

ML-Methods	plant	nonpl	$\operatorname{psortNeg}$	$\operatorname{psortPos}$
SVM-best [kloft et al. JMLR11]	8.18 ± 0.47	8.97 ± 0.26	9.87 ± 0.34	13.01 ± 0.63
FDA-best [Yan et al. JMLR11]	10.85 ± 2.37	10.84 ± 1.72	9.74 ± 2.00	12.59 ± 4.10
proposed-best	$5.25{\pm}1.88$	$6.39{\pm}1.12$	$9.16{\pm}1.67$	$10.40{\pm}3.56$

Conclusions

- A novel nonlinear separable convex optimization formulation for multiclass classifier fusion.
 - Learns weight of each class in each feature channel.
- > Arbitrary norm in the existing CLF formulation
 - Don't reject informative channels
 - Robust against noisy and redundant channels
 - Norm can be learnt using validation set
- Extended stacking for binary and multiclass problems.
 Stacking plus base kernels gives best results
- > Extensive evaluation on challenging datasets.

Thanks! Questions ???

