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Collaborative prediction

The task of predicting preferences of users, based on their own
available preferences as well as preferences of other users who share
similar preferences

Methods

Memory-based methods
Model-based methods (matrix factorization)
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User-Item Rating Matrix
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Matrix Factorization for Collaborative Prediction
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Cold Start Problems

Cold start problems

- Extremely small number of ratings or no ratings at all for some users or
items
- Not able to accurately predict preferences for cold-start users or
cold-start items
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Matrix Co-Factorization

Input matrices are jointly decomposed, sharing some factor matrices.
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Related Work on Matrix Co-Factorization

Authors Side Information Work

Yu et al., 2005 label supervised LSI

Zhu et al., 2007 content+link information retrieval

Singh & Gordon, 2008 relational collective matrix factorization

Williamson & Ghahramani, 2008 relational probabilistic models

Lee & Choi, 2009 inter+intra subject group NMF

Yoo & Choi, 2009 relational matrix co-tri-factorization

Lee & Choi, 2010 label semi-supervised NMF

Singh & Gordon, 2010 relational Bayesian factorization (sampling)

Yoo et al., 2010 drum drum source separation

Yoo & Choi, 2011 uncompressed compressed sensing
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Bayesian Matrix Factorization: Empirical Variational Bayes

iu jv

ijx
, ,1i I= !

1, ,j J= !

ρ

uΣ vΣ

Lim and Teh, 2007
Raiko et al., 2007

Model

X = U>V + E,

xij = u>i vj + εij .

Gaussian likelihood

p(xij |ui , vj) = N (xij |, 0, ρ).

Priors (Σu and Σv are diagonal)

p(U) =
I∑

i=1

N (ui |0,Σu),

p(V) =
J∑

j=1

N (vj |0,Σv ).
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Variational Inference

Marginal likelihood is given by

log p(X) = log

∫ ∫
p(X,U,V)dUdV

≥
∫ ∫

q(U,V) log
p(X,U,V)

q(U,V)
dUdV,

where the variational lower-bound is given by

I(q) =

∫ ∫
q(U,V) log p(X,U,V)dUdV −

∫ ∫
q(U,V) log q(U,V)dUdV.

Mean field approximation assumes that q(U,V) = q(U)q(V).

Variational posterior distributions q(U) and q(V) are computed by maximizing
I(q), leading to

log q(U) ∝ Eq(V ) {log p(X,U,V)} ,
log q(V) ∝ Eq(U) {log p(X,U,V)} .
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Probabilistic Model for Matrix Co-Factorization
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Probabilistic Model for Matrix Co-Factorization
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Variational Inference for Matrix Co-Factorization

A set of relational data matrix: X =
{

X(a,b)
}

for (a, b) ∈ R.

A set of model parameters: U =
{

U(a)
}

for a ∈ E .

Variational lower bound on the log marginal likelihood is given by

log p(X ) ≥
∫

q(U) log
p(X ,U)

q(U)
dU = I(q)

Mean field approximation assumes that q(U) =
∏

a∈E q
(

U(a)
)
.

Variational posterior distributions, which maximize I(q), are computed by

qa
(

U(a)
)
∝ exp

{
EU\U(a) [log p(X ,U)]

}
.
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Variational Posterior Distributions over Factor Matrices

Variational posterior distribution over factor matrices, qa
(

U(a)
)

, are

Gaussian, which are calculated as:

qa
(

U(a)
)

=
∏
ia

N
(

u
(a)
ia
|u(a)

ia
,Φ

(a)
ia

)
,

where mean vectors and covariance matrices are given by

u
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ia
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(a)
ia

 ∑
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ia ib
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Hyperparameter Learning

Hyperparameters ρ(a,b) and Σ(a) are estimated by maximizing the
variational lower bound I(q).

ρ(a,b) =
1

N(a,b)

∑
(ia,ib)∈O(a,b)

{(
x
(a,b)
ia ib

)2
− 2x

(a,b)
ia ib

u
(a)>
ia

u
(b)
ib

}

+
1

N(a,b)

∑
(ia,ib)∈O(a,b)

tr
{(

Φ
(a)
ia

+ u
(a)
ia

u
(a)>
ia

)(
Φ

(b)
ib

+ u
(b)
ib

u
(b)>
ib

)}
,

Σ(a) =
1

I (a)
ddiag

(∑
ia

[
Φ

(a)
ia

+ u
(a)
ia

u
(a)>
ia

])
.
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Predictive Distribution

Predictive distribution is computed by

p(xi∗a i∗b ) =

∫ ∫
p
(
xi∗a i∗b | U

(a),U(b)
)
q∗a

(
U(a)

)
q∗b

(
U(b)

)
dU(a)dU(b),

= N (xi∗a i∗b |u
(a)>
i∗a

u
(b)
i∗b
, ρ(a,b)),

which is Gaussian.

Hold-out prediction

xi∗a i∗
b
= u

(a)>
i∗a

u
(b)
i∗
b
.

Fold-in prediction

u
(a)

i∗a
= Φ

(a)

i∗a

 ∑
c|(a,c)∈R

∑
ic |(i∗a ,ic )∈O(a,c)

1

ρ(a,c)
x
(a,c)

i∗a ic
u
(c)
ic

 ,

(
Φ

(a)

i∗a

)−1
=

(
Σ(a)

)−1
+

∑
c|(a,c)∈R

∑
ic |(i∗a ,ic )∈O(a,c)

Φ
(c)
ic

+ u
(c)
ic

u
(c)>
ic

ρ(a,c)
.
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Bayesian Cramér-Rao Bound

Cramér-Rao Bound

A lower-bound on the variance of unbiased estimators

E
{
(θ − θ̂)(θ − θ̂)>

}
≥ I−1.

Fisher Information Matrix is computed by

Iij = Ex

{
−
∂2 log p(x|θ)
∂θi∂θj

}
.

Bayesian Cramér-Rao Bound

A lower-bound on the variance of any estimators

Iij = Ex,θ

{
−
∂2 log p(x,θ)

∂θi∂θj

}
.
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Fisher Information Matrices

Fisher Information Matrix in the case of Bayesian Matrix Co-Factorization

Fisher information matrix turns out to be a diagonal matrix.

Each diagonal entry becomes larger when more relational matrices
are involved.

Matrix Factorization

EX ,U

−∂2 log p(X ,U)∂u
(a)
iak
∂u

(a)
iak

 =
N

(a,c)
ia

ρ
(c)
k

ρ(a,c)
+

1

ρ
(a)
k

,

Matrix Co-factorization

EX ,U

−∂2 log p(X ,U)∂u
(a)
kia
∂u

(a)
kia

 =
∑

c|(a,c)∈R

N
(a,c)
ia

ρ
(c)
k

ρ(a,c)
+

1

ρ
(a)
k

,

where N(a,c) =
∣∣O(a,c)

∣∣ and N
(a,c)
ia

=
∣∣{ia | O(a,c)

}∣∣.
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Reconstruction Error: BCRB

We evaluate a lower bound on the reconstruction error using BCRB.

Eij = E
{

(x̂ij − xij)
2
}

= E
{

(u>i vj − u>i vj)
2
}

≥ v>j
[
I−1

]
ui

vj + tr
([
I−1

]
ui

[
I−1

]
vj

)
+ u>i

[
I−1

]
vj

ui .
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Numerical Experiments

Experiment 1: BCRB Comparison

E = {1, 2, 3, 4}
R = {(1, 2), (2, 3), (3, 4)}
U(a) ∈ R5×100 and [U(a)]ij ∼ N (U(a) | 0, 1).
Ratio of observed entries: 0% ∼ 90%

Experiment 2: Collaborative Prediction

MovieLens data: 943 users, 1682 movies
User information: age(5), gender(2), and occupation(21)
Movie information: genre(18)
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BCRB Comparison on Synthetic Data

- BMCF had lower bound and performance compared to the BMF
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Collaborative Prediction in the Cold-Start Situation

- BMCF performs better than BMF, especially in the cold-start situations

User Cold Start
BMF BMCF

MAE RMSE MAE RMSE
0 2.5403 2.7767 0.8238 1.0140
5 0.8281 1.0618 0.7895 0.9941
10 0.8032 1.0205 0.7446 0.9424
15 0.7474 0.9558 0.7426 0.9314
20 0.7421 0.9496 0.7348 0.9254

User and Item Cold Start (200 items out of 1682 are missing)
BMF BMCF

MAE RMSE MAE RMSE
0 2.5098 2.7584 0.8843 1.0857
5 0.9333 1.2412 0.8332 1.0550
10 0.8956 1.1863 0.7778 0.9857
15 0.8991 1.1948 0.7716 0.9789
20 0.8618 1.1535 0.7527 0.9555
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Conclusions

Matrix co-factorization provides a principled approach to
systematically exploiting side information.

We have presented a Bayesian matrix co-factorization (BMCF)
where we used variational Bayesian inference for collaborative
prediction.

We have also provided Bayesian Cramér-Rao bound (BCRB) for
both BMF and BMCF, emphasizing that BMCF indeed yielding the
smaller Cramér-Rao bound.

Numerical experiments confirmed the useful behavior of BMCF in
the case of user/item cold start.
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