Bayesian Matrix Co-Factorization: Variational Algorithm and Cramér-Rao Bound

Seungjin Choi (joint work with Jiho Yoo)

Department of Computer Science Pohang University of Science and Technology, Korea seungjin@postech.ac.kr http://www.postech.ac.kr/~seungjin

September 6, 2011

1/24

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Outline

Problem of interest

- Matrix factorization for collaborative prediction
- Cold-start problem
- Variational Bayesian matrix co-factorization
 - Probabilistic models and variational inference
 - Bayesian Cramér-Rao bound
- Numerical experiments
- Conclusions

Collaborative Prediction

(日)

Collaborative Prediction

Collaborative prediction

- The task of predicting preferences of users, based on their own available preferences as well as preferences of other users who share similar preferences
- Methods
 - Memory-based methods
 - Model-based methods (matrix factorization)

P B B U

4 / 24

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

P B B U

4 / 24

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

1985

・ロ・・日・・日・・日・ 日・ 名

P p g 4

User-Item Rating Matrix

Item Item Item ... User 1 5 5 ... User 2 5 ... User 3 2 ... User 4 2 3 5 4 ... 1 User 5 1 5

Most of the entries are not rated (value 0)

▲ロト ▲御 と ▲ 臣 と ▲ 臣 と の

6/24

・ロン ・回 と ・ 回 と ・ 回 と

6/24

・ロン ・回 と ・ 回 と ・ 回 と

6/24

・ロン ・回 と ・ 回 と ・ 回 と

Cold Start Problems

Cold Start Problems

Cold start problems

- Extremely small number of ratings or no ratings at all for some users or items

- Not able to accurately predict preferences for cold-start users or cold-start items

Side Information

8/24

・ロト ・日本 ・モト ・モト

Input matrices are jointly decomposed, sharing some factor matrices.

Related Work on Matrix Co-Factorization

Authors	Side Information	Work	
Yu <i>et al.</i> , 2005	label	supervised LSI	
Zhu <i>et al.</i> , 2007	content + link	information retrieval	
Singh & Gordon, 2008	relational	collective matrix factorization	
Williamson & Ghahramani, 2008	relational	probabilistic models	
Lee & Choi, 2009	inter+intra subject	group NMF	
Yoo & Choi, 2009	relational	matrix co-tri-factorization	
Lee & Choi, 2010	label	semi-supervised NMF	
Singh & Gordon, 2010	relational	Bayesian factorization (sampling)	
Yoo <i>et al.</i> , 2010	drum	drum source separation	
Yoo & Choi, 2011	uncompressed	compressed sensing	

10/24

(ロ) (四) (E) (E) (E) (E)

Bayesian Matrix Factorization: Empirical Variational Bayes

Lim and Teh, 2007 Raiko *et al.*, 2007

Model

$$\begin{array}{rcl} \mathbf{X} &=& \mathbf{U}^{\top}\mathbf{V} + \mathbf{E}, \\ x_{ij} &=& \mathbf{u}_i^{\top}\mathbf{v}_j + \epsilon_{ij}. \end{array}$$

Gaussian likelihood

$$p(x_{ij}|\mathbf{u}_i,\mathbf{v}_j) = \mathcal{N}(x_{ij}|,0,\rho).$$

Priors (Σ_u and Σ_v are diagonal)

$$\begin{split} p(\mathbf{U}) &= \sum_{i=1}^{I} \mathcal{N}(\mathbf{u}_i | \mathbf{0}, \mathbf{\Sigma}_u), \\ p(\mathbf{V}) &= \sum_{j=1}^{J} \mathcal{N}(\mathbf{v}_j | \mathbf{0}, \mathbf{\Sigma}_v). \end{split}$$

・ロト ・日ト ・ヨト ・ヨト

Variational Inference

Marginal likelihood is given by

$$\begin{split} \log p(\mathbf{X}) &= \log \int \int p(\mathbf{X}, \mathbf{U}, \mathbf{V}) d\mathbf{U} d\mathbf{V} \\ &\geq \int \int q(\mathbf{U}, \mathbf{V}) \log \frac{p(\mathbf{X}, \mathbf{U}, \mathbf{V})}{q(\mathbf{U}, \mathbf{V})} d\mathbf{U} d\mathbf{V}, \end{split}$$

where the variational lower-bound is given by

$$\mathcal{I}(q) = \int \int q(\mathbf{U}, \mathbf{V}) \log p(\mathbf{X}, \mathbf{U}, \mathbf{V}) d\mathbf{U} d\mathbf{V} - \int \int q(\mathbf{U}, \mathbf{V}) \log q(\mathbf{U}, \mathbf{V}) d\mathbf{U} d\mathbf{V}.$$

Mean field approximation assumes that $q(\mathbf{U}, \mathbf{V}) = q(\mathbf{U})q(\mathbf{V})$.

Variational posterior distributions $q(\mathbf{U})$ and $q(\mathbf{V})$ are computed by maximizing $\mathcal{I}(q)$, leading to

$$\begin{split} \log q(\mathbf{U}) &\propto \quad \mathbb{E}_{q(V)} \left\{ \log p(\mathbf{X},\mathbf{U},\mathbf{V}) \right\}, \\ \log q(\mathbf{V}) &\propto \quad \mathbb{E}_{q(U)} \left\{ \log p(\mathbf{X},\mathbf{U},\mathbf{V}) \right\}. \end{split}$$

12/24

・ロト ・回 ト ・ ヨ ト ・ ヨ ト

Probabilistic Model for Matrix Co-Factorization

13/24

・ロト ・日本 ・モト ・モト

Probabilistic Model for Matrix Co-Factorization

・ロ・・部・・ほ・・ ほ・ …… ほ

Variational Inference for Matrix Co-Factorization

• A set of relational data matrix:
$$\mathcal{X} = \left\{ \mathbf{X}^{(a,b)}
ight\}$$
 for $(a,b) \in \mathcal{R}.$

- A set of model parameters: $\mathcal{U} = \left\{ \mathbf{U}^{(a)} \right\}$ for $a \in \mathcal{E}$.
- Variational lower bound on the log marginal likelihood is given by

$$\log p(\mathcal{X}) \geq \int q(\mathcal{U}) \log rac{p(\mathcal{X}, \mathcal{U})}{q(\mathcal{U})} d\mathcal{U} = \mathcal{I}(q)$$

- Mean field approximation assumes that $q(\mathcal{U}) = \prod_{a \in \mathcal{E}} q\left(\mathsf{U}^{(a)}\right)$.
- Variational posterior distributions, which maximize $\mathcal{I}(q)$, are computed by

$$q_a\left(\mathbf{U}^{(a)}
ight)\propto \exp\left\{\mathbb{E}_{\mathcal{U}\setminus U^{(a)}}\left[\log p(\mathcal{X},\mathcal{U})
ight]
ight\}.$$

14/24

(日) (四) (日) (日) (日)

Variational Posterior Distributions over Factor Matrices

Variational posterior distribution over factor matrices, $q_a(\mathbf{U}^{(a)})$, are Gaussian, which are calculated as:

$$q_{a}\left(\mathsf{U}^{(a)}
ight)=\prod_{i_{a}}\mathcal{N}\left(\mathsf{u}_{i_{a}}^{(a)}|\overline{\mathsf{u}}_{i_{a}}^{(a)},\mathbf{\Phi}_{i_{a}}^{(a)}
ight),$$

Variational Posterior Distributions over Factor Matrices

Variational posterior distribution over factor matrices, $q_a \left(\mathbf{U}^{(a)} \right)$, are Gaussian, which are calculated as:

$$q_{a}\left(\mathsf{U}^{(a)}
ight)=\prod_{i_{a}}\mathcal{N}\left(\mathsf{u}_{i_{a}}^{(a)}|\overline{\mathsf{u}}_{i_{a}}^{(a)},\mathbf{\Phi}_{i_{a}}^{(a)}
ight),$$

where mean vectors and covariance matrices are given by

$$\begin{split} \mathbf{\bar{u}}_{i_{a}}^{(a)} &= \Phi_{i_{a}}^{(a)} \left(\sum_{b \mid (a,b) \in \mathcal{R}} \sum_{i_{b} \mid (i_{a},i_{b}) \in \mathcal{O}^{(a,b)}} \frac{1}{\rho^{(a,b)}} x_{i_{a}i_{b}}^{(a,b)} \mathbf{\bar{u}}_{i_{b}}^{(b)} \right), \\ \left(\Phi_{i_{a}}^{(a)} \right)^{-1} &= \left(\mathbf{\Sigma}^{(a)} \right)^{-1} + \sum_{b \mid (a,b) \in \mathcal{R}} \sum_{i_{b} \mid (i_{a},i_{b}) \in \mathcal{O}^{(a,b)}} \frac{\Phi_{i_{b}}^{(b)} + \mathbf{\bar{u}}_{i_{b}}^{(b)} \mathbf{\bar{u}}_{i_{b}}^{(b)\top}}{\rho^{(a,b)}}. \end{split}$$

Hyperparameter Learning

Hyperparameters $\rho^{(a,b)}$ and $\Sigma^{(a)}$ are estimated by maximizing the variational lower bound $\mathcal{I}(q)$.

$$\begin{split} \rho^{(a,b)} &= \frac{1}{\mathcal{N}^{(a,b)}} \sum_{(i_a,i_b) \in \mathcal{O}^{(a,b)}} \left\{ \left(x_{i_a i_b}^{(a,b)} \right)^2 - 2x_{i_a i_b}^{(a,b)} \overline{\mathbf{u}}_{i_a}^{(a)\top} \overline{\mathbf{u}}_{i_b}^{(b)} \right\} \\ &+ \frac{1}{\mathcal{N}^{(a,b)}} \sum_{(i_a,i_b) \in \mathcal{O}^{(a,b)}} \operatorname{tr} \left\{ \left(\mathbf{\Phi}_{i_a}^{(a)} + \overline{\mathbf{u}}_{i_a}^{(a)} \overline{\mathbf{u}}_{i_a}^{(a)\top} \right) \left(\mathbf{\Phi}_{i_b}^{(b)} + \overline{\mathbf{u}}_{i_b}^{(b)} \overline{\mathbf{u}}_{i_b}^{(b)\top} \right) \right\}, \\ \mathbf{\Sigma}^{(a)} &= \frac{1}{I^{(a)}} \operatorname{ddiag} \left(\sum_{i_a} \left[\mathbf{\Phi}_{i_a}^{(a)} + \overline{\mathbf{u}}_{i_a}^{(a)} \overline{\mathbf{u}}_{i_a}^{(a)\top} \right] \right). \end{split}$$

16/24

・ロット (日) (日) (日)

Predictive Distribution

Predictive distribution is computed by

$$p(x_{i_{a}^{*}i_{b}^{*}}) = \int \int p\left(x_{i_{a}^{*}i_{b}^{*}} \mid \mathbf{U}^{(a)}, \mathbf{U}^{(b)}\right) q_{a}^{*}\left(\mathbf{U}^{(a)}\right) q_{b}^{*}\left(\mathbf{U}^{(b)}\right) d\mathbf{U}^{(a)} d\mathbf{U}^{(b)}, \\ = \mathcal{N}(x_{i_{a}^{*}i_{b}^{*}} \mid \overline{\mathbf{u}}_{i_{a}^{*}}^{(a)\top} \overline{\mathbf{u}}_{i_{b}^{*}}^{(b)}, \rho^{(a,b)}),$$

which is Gaussian.

Hold-out prediction

$$x_{i^*_a i^*_b} = \overline{\mathbf{u}}_{i^*_a}^{(a)\top} \overline{\mathbf{u}}_{i^*_b}^{(b)}.$$

Fold-in prediction

$$\begin{split} \overline{\mathbf{u}}_{i_{a}^{*}}^{(a)} &= \Phi_{i_{a}^{*}}^{(a)} \left(\sum_{c \mid (a,c) \in \mathcal{R}} \sum_{i_{c} \mid (i_{a}^{*}, i_{c}) \in \mathcal{O}^{(a,c)}} \frac{1}{\rho^{(a,c)}} x_{i_{a}^{*} i_{c}}^{(a,c)} \overline{\mathbf{u}}_{i_{c}}^{(c)} \right), \\ \left(\Phi_{i_{a}^{*}}^{(a)} \right)^{-1} &= \left(\mathbf{\Sigma}^{(a)} \right)^{-1} + \sum_{c \mid (a,c) \in \mathcal{R}} \sum_{i_{c} \mid (i_{a}^{*}, i_{c}) \in \mathcal{O}^{(a,c)}} \frac{\Phi_{i_{c}}^{(c)} + \overline{\mathbf{u}}_{i_{c}}^{(c)} \overline{\mathbf{u}}_{i_{c}}^{(c) \top}}{\rho^{(a,c)}}. \end{split}$$

臣

Bayesian Cramér-Rao Bound

Cramér-Rao Bound

A lower-bound on the variance of unbiased estimators

$$\mathbb{E}\left\{(oldsymbol{ heta} - \hat{oldsymbol{ heta}})(oldsymbol{ heta} - \hat{oldsymbol{ heta}})^{ op}
ight\} \geq \mathcal{I}^{-1}.$$

Fisher Information Matrix is computed by

$$\mathcal{I}_{ij} = \mathbb{E}_{\mathbf{X}} \left\{ -\frac{\partial^2 \log p(\mathbf{x}|\boldsymbol{\theta})}{\partial \theta_i \partial \theta_j} \right\}.$$

Bayesian Cramér-Rao Bound

Cramér-Rao Bound

A lower-bound on the variance of unbiased estimators

$$\mathbb{E}\left\{(oldsymbol{ heta} - \hat{oldsymbol{ heta}})(oldsymbol{ heta} - \hat{oldsymbol{ heta}})^{ op}
ight\} \geq \mathcal{I}^{-1}.$$

Fisher Information Matrix is computed by

$$\mathcal{I}_{ij} = \mathbb{E}_{\mathbf{X}} \left\{ - rac{\partial^2 \log p(\mathbf{x}|\boldsymbol{ heta})}{\partial heta_i \partial heta_j}
ight\}.$$

Bayesian Cramér-Rao Bound

A lower-bound on the variance of any estimators

$$\mathcal{I}_{ij} = \mathbb{E}_{\mathbf{X}, \theta} \left\{ - rac{\partial^2 \log p(\mathbf{x}, \theta)}{\partial \theta_i \partial \theta_j}
ight\}.$$

18/24

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Fisher Information Matrices

Fisher Information Matrix in the case of Bayesian Matrix Co-Factorization

- Fisher information matrix turns out to be a diagonal matrix.
- Each diagonal entry becomes larger when more relational matrices are involved.
- Matrix Factorization

$$\mathbb{E}_{X,U}\left\{-\frac{\partial^2\log p(\mathcal{X},\mathcal{U})}{\partial u_{i_ak}^{(a)}\partial u_{i_ak}^{(a)}}\right\} = \frac{N_{i_a}^{(a,c)}\rho_k^{(c)}}{\rho^{(a,c)}} + \frac{1}{\rho_k^{(a)}},$$

Matrix Co-factorization

$$\mathbb{E}_{X,U}\left\{-\frac{\partial^2\log\rho(\mathcal{X},\mathcal{U})}{\partial u_{ki_a}^{(a)}\partial u_{ki_a}^{(a)}}\right\} = \sum_{c\mid (a,c)\in\mathcal{R}}\frac{N_{i_a}^{(a,c)}\rho_k^{(c)}}{\rho^{(a,c)}} + \frac{1}{\rho_k^{(a)}},$$

where $N^{(a,c)} = \left| \mathcal{O}^{(a,c)} \right|$ and $N^{(a,c)}_{i_a} = \left| \left\{ i_a \mid \mathcal{O}^{(a,c)} \right\} \right|$.

We evaluate a lower bound on the reconstruction error using BCRB.

$$\begin{split} \mathcal{E}_{ij} &= \mathbb{E}\left\{ (\widehat{\mathbf{x}}_{ij} - \mathbf{x}_{ij})^2 \right\} \\ &= \mathbb{E}\left\{ (\overline{\mathbf{u}}_i^\top \overline{\mathbf{v}}_j - \mathbf{u}_i^\top \mathbf{v}_j)^2 \right\} \\ &\geq \mathbf{v}_j^\top \left[\mathcal{I}^{-1} \right]_{u_i} \mathbf{v}_j + \operatorname{tr}\left(\left[\mathcal{I}^{-1} \right]_{u_i} \left[\mathcal{I}^{-1} \right]_{v_j} \right) + \mathbf{u}_i^\top \left[\mathcal{I}^{-1} \right]_{v_j} \mathbf{u}_i. \end{split}$$

Numerical Experiments

Experiment 1: BCRB Comparison

$$\mathcal{E} = \{1, 2, 3, 4\}$$

$$\mathcal{R} = \{(1,2), (2,3), (3,4)\}$$

- $\mathbf{U}^{(a)} \in \mathbb{R}^{5 \times 100}$ and $[\mathbf{U}^{(a)}]_{ij} \sim \mathcal{N}(\mathbf{U}^{(a)} | 0, 1).$
- \blacksquare Ratio of observed entries: 0% \sim 90%

Experiment 2: Collaborative Prediction

- MovieLens data: 943 users, 1682 movies
- User information: age(5), gender(2), and occupation(21)
- Movie information: genre(18)

21/24

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

BCRB Comparison on Synthetic Data

- BMCF had lower bound and performance compared to the BMF

Collaborative Prediction in the Cold-Start Situation

- BMCF performs better than BMF, especially in the cold-start situations

	User Cold Start							
ſ		BMF		BMCF				
Ĩ		MAE	RMSE	MAE	RMSE			
ſ	0	2.5403	2.7767	0.8238	1.0140			
	5	0.8281	1.0618	0.7895	0.9941			
	10	0.8032	1.0205	0.7446	0.9424			
	15	0.7474	0.9558	0.7426	0.9314			
	20	0.7421	0.9496	0.7348	0.9254			

... 110.

User and Item Cold Start (200 items out of 1682 are missing)

	BMF		BMCF	
	MAE	RMSE	MAE	RMSE
0	2.5098	2.7584	0.8843	1.0857
5	0.9333	1.2412	0.8332	1.0550
10	0.8956	1.1863	0.7778	0.9857
15	0.8991	1.1948	0.7716	0.9789
20	0.8618	1.1535	0.7527	0.9555

Conclusions

- Matrix co-factorization provides a principled approach to systematically exploiting side information.
- We have presented a Bayesian matrix co-factorization (BMCF) where we used variational Bayesian inference for collaborative prediction.
- We have also provided Bayesian Cramér-Rao bound (BCRB) for both BMF and BMCF, emphasizing that BMCF indeed yielding the smaller Cramér-Rao bound.
- Numerical experiments confirmed the useful behavior of BMCF in the case of user/item cold start.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・