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Link prediction

Given current friendship edges, predict future edges.

Application: Facebook.

Popular method: Scores computed from graph topology,
e.g. betweenness.
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Collaborative filtering

Given ratings of movies by users, predict other ratings.

Application: Netflix.

Popular method: Matrix factorization.
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Item response theory

Given answers by students to exam questions, predict
performance on other questions.

Applications: Adaptive testing, diagnosis of skills.

Popular method: Latent trait (i.e. hidden feature) models.
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Dyadic prediction in general

Given labels for some pairs of items (some dyads), predict labels
for other pairs.

What if we have side-information, e.g. mobility data for people
in a social network?
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Matrix factorization

Associate latent feature values with each user and movie.

Each rating is the dot-product of corresponding latent vectors.

Learn the most predictive vector for each user and movie.
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Side-information solves the cold-start problem

Standard: All users and movies have training data.

Cold-start users: No ratings for 50 random users.

Double cold-start:
No ratings for 50 random users and their movies.
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Link prediction

Link prediction: Given a partially observed graph, predict
whether or not edges exist for the unknown-status dyads.

?

?

?

?

Classic methods are unsupervised (non-learning) scores,
e.g. betweenness, common neighbors, Katz, Adamic-Adar.
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The bigger picture

Solve a predictive problem.
I Contrast: Non-predictive task, e.g. community detection.

Maximize objective defined by an application, e.g. AUC.
I Contrast: Algorithm but no goal function, e.g. betweenness.

Learn from all available data.
I Contrast: Use only graph structure, e.g. commute time.

Allow hubs, overlapping groups, etc.
I Contrast: Clusters, modularity.

Make training time linear in number of edges.
I Contrast: MCMC, betweenness, SVD.

Compare accuracy to best current results.
I Contrast: Compare only to classic methods.
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Combined latent/explicit feature approach

Each node’s identity influences its linking behavior.

The identity of a node determines its latent features.

Nodes also can have side-information predictive of linking.
I For author-author linking, side-information can be words in

authors’ papers.

Edges may also possess side-information.
I For country-country conflict, side-information is geographic

distance, trade volume, etc.
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Latent feature model

LFL model for binary link prediction has parameters
I latent vectors αi ∈ Rk for each node i
I scaling factors Λ ∈ Rk×k
I weights W ∈ Rd×d for node features
I weights v ∈ Rd′ for edge features.

Node i has features xi, dyad ij has features zij.

Predicted label is

Ĝij = σ(αTi Λαj + xTi Wxj + vT zij)

for sigmoid function σ(x) = 1
1+exp(−x)

.
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Latent feature training

True label is Gij, predicted label is Ĝij.

Minimize regularized training loss:

min
α,Λ,W,v

∑
(i,j)∈O

`(Gij, Ĝij) + Ω(α,Λ,W, v)

Sum is only over known edges and known non-edges.

Stochastic gradient descent (SGD) converges quickly.
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Challenge: Class imbalance

Vast majority of node-pairs do not link with each other.

Area under ROC curve (AUC) is standard performance measure.

For a random pair of positive and negative examples, AUC is the
probability that the positive one has higher score.

I Not influenced by relative size of positive and negative classes.

Models trained to maximize accuracy are suboptimal.
I Sampling is popular, but loses information.
I Weighting is merely heuristic.

15 / 26



Optimizing AUC

Empirical AUC counts concordant pairs

AUC ∝
∑

p∈+,q∈−

1[fp − fq > 0]

Train LFL model to maximize approximation to AUC:

min
α,Λ,W,v

∑
(i,j,k)∈D

`(Ĝij − Ĝik, 1) + Ω(α,Λ,W, v)

where D = {(i, j, k) : Gij = 1, Gik = 0}.
With stochastic gradient descent, a fraction of one epoch is
enough for convergence.
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Experimental comparison

Compare
I latent features versus unsupervised scores
I latent features versus explicit features.

Datasets from applications of link prediction:
I Computational biology: Protein-protein interaction network,

metabolic interaction network
I Citation networks: NIPS authors, condensed matter physicists
I Social phenomena: Military conflicts between countries,

U.S. electric power grid, multiclass relationships.
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Multiclass link prediction

Alyawarra dataset has kinship relations for 104 people
{brother, sister, father, . . . }.
LFL outperforms Bayesian models, even infinite ones.
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Binary link prediction datasets

nodes |O+| |O−| +ve:−ve ratio mean degree
Prot-Prot 2617 23710 6,824,979 1 : 300 9.1
Metabolic 668 5564 440,660 1 : 80 8.3
NIPS 2865 9466 8,198,759 1 : 866 3.3
Condmat 14230 2392 429,232 1 : 179 0.17
Conflict 130 320 16580 1 : 52 2.5
PowerGrid 4941 13188 24,400,293 1 : 2000 2.7

Protein-protein interaction data from Noble. Per protein: 76 features.

Metabolic interactions of S. cerevisiae from the KEGG/PATHWAY database. Per protein:
157 phylogenetic features, 145 gene expression features, 23 location features.

NIPS. Per author: 100 LSI features from vocabulary of 14,035 words.

Condensed-matter physicists [Newman]. Use node-pairs 2 hops away in first five years.

Military disputes [MID 3.0]. Per country: population, GDP, polity. Per dyad: 6 features,
e.g. geographic distance.

US electric power grid network [Watts and Strogatz].
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Latent features versus unsupervised scores

Latent features are more predictive of linking behavior.
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Learning curves

Unsupervised scores need many edges to be known.

Latent features are predictive with fewer known edges.

For the military conflicts dataset:
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Latent features combined with side-information

Difficult to infer latent structure more predictive than
side-information.

But combining the two is beneficial:
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Related paper in Session 19, Thursday am

Kernels for Link Prediction with Latent Feature Models,
Nguyen and Mamitsuka, ECML 2011.

Fruit fly protein-protein interaction network, 2007 data.

Connected component with minimum degree 8: 701 nodes
(713).

100 latent features, tenfold CV: AUC 0.756 +/− 0.012.

Better than IBP (0.725), comparable to kernel method.
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If time allowed

Scaling up to Facebook-size datasets: better AUC than
supervised random walks.

Predicting labels for nodes, e.g. who will play Farmville
(within network/collective/semi-supervised classification).
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Conclusions

Many prediction tasks involve pairs of entities:
collaborative filtering, friend suggestion, and more.

Learning latent features always gives better accuracy than any
non-learning method.

The most accurate predictions combine latent features with
explicit features of nodes and of dyads.

You don’t need EM, variational Bayes, MCMC, infinite number
of parameters, etc.
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