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Motivation

So far, previous work has focused on the knowledge discovery
aspect.
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Benefits of comparing:

existence of a sequence in DB,

new index structures,

typical DM tasks,

recommendation systems.
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Background

Event-interval sequences
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Figure: Size: 5, σ = {A,B,C ,D}, {(A, 1, 7), (B, 3, 19), (D, 4, 30),
(C , 7, 15), (C , 23, 42)}.
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Distance Functions

Problem Formulation

Given two e-sequences S and T , define a distance measure D,
such that ∀S, T :

D(S, T ) ≥ 0 (1)

D(S,S) = 0 (2)

D(S, T ) = D(T ,S) (3)
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Reducing to known problems

Sequences of instantaneous events do not depict all the important
information:
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Problem: Transforming the above arrangements to sequences of
instantaneous events would yield the same result:
Astart ,Aend ,Bstart ,Bend .

5 / 25



Solution: For each time-point, we must create an event-vector
which records the number of occurrences of intervals for each label.
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Figure: Encoding arrangements via event-vectors.

Bags of event-vectors can be handled as multi-dimensional
time-series. Hence, Dynamic Time Warping (DTW) is applicable!
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Problem: Vector-based DTW violates the identity of indiscernibles
(aka Leibniz’s law, A 6= B =⇒ D(A,B) > 0).
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The event-vector multisets are: {(0), (1), (2), (1), (0)}, σ = {A}
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Our approach

Focus on the relations between pairs of intervals.
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Figure: The relations that we consider; based on Allen’s temporal model.
Allen, J. F. , ’Maintaining knowledge about temporal intervals’,
Communications of the ACM.
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Artemis

Idea: Attempt to find ’corresponding’ intervals. Then, derive the
overall distance based on the corresponding pairs.
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Mapping step: Map each interval to sets of relations.
Matching step: Calculate all pairwise scores. Apply
minimum-weight maximum bipartite matching.
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Artemis’ Mapping step
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For Si ∈ S and Sj ∈ S,∀j 6= i in the same e-sequence, compute:

rleft(Si ) = {r(Sj , Si )|1 ≤ j < i}
rright(Si ) = {r(Si ,Sj)|i < j ≤ |S |}
r∅(Si ) = {r(∅,Si )}

Additionally: r∅left(Si ) = rleft(Si ) ∪ r∅(Si ).
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Artemis’ Matching step

Artemis(S, T ) =

max{|S|,|T |}∑
i=1

dm(Si , h(Si )), Si ∈ S, h(Si ) ∈ T .

based on the matching h returned by the Hungarian Algorithm, where the
interval distances are:

dm(Si ,Tj) =

1−
|r∅left(Si ) ∩ r∅left(Tj)| − |rright(Si ) ∩ rright(Tj)|

max{|S|, |T |}
, ifESi =ETj

1, ifESi 6=ETj
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Artemis overview

Problem solved: Artemis does not violate the identity of
indiscernibles. (Proof is trivial, omitted)

New problem: Artemis ∈ O(n3), prohibitive for large databases.

New target: Devise a fast lower bounding technique.
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Linear-time lower bound for Artemis

Given an e-sequences S, we define an |σ|-dimensional vector vS ,
that stores, for each event label in σ, the count of event-intervals
in S that share that label.

Theorem

Given S and T , the lower bound of Artemis(S, T ) is defined as:

ArtemisLB(S, T ) =
k

2
+

(
m − k

2

)(
k

2m

)
= k − k2

4m
, (4)

where k = ||vS − vT ||1 and m = max(|S|, |T |).
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Experimental Setup

Datasets:

American Sign Language

Pioneer1 robot sensor data

Hepatitis

Dataset # of # of e-sequence size |σ| # of
e-sequences intervals min. max. average classes

ASL 873 15675 4 41 18 216 5

Pioneer 160 8949 36 89 56 92 3

Hepatitis 498 53921 15 592 108 147 2
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Experimental Setup cnt

Experiments:

A k-Nearest Neighbor classification

B Detect identical phrases (ASL dataset)

C Noise robustness

D Scalability

In addition, the lower bound was tested for its tightness, and its
pruning power during 1-NN queries
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Experiments: k-NN Classification

Dataset Artemis 1-NN Artemis 3-NN DTW 1-NN DTW 3-NN

HepData 0.72 0.78 0.74 0.80
Pioneer 0.97 0.97 0.93 0.93
ASL 0.43 0.40 0.43 0.41

Table: k-NN classification results.

Conclusion: The results depend on how the class label is encoded
into the sequences.
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Experiments: Detect identical phrases in ASL dataset.
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(a) Identical phrase
found within k-NN
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(b) Ratio of total identical
phrases found within k-NN
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Experiments: Noise robustness

Two types of artificial noise:

A Shifts of intervals back or forth.

B Swaps of interval labels.

The two methods were compared in terms of:

A nearest neighbor retrieval accuracy

B rank of nearest neighbor
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Results: Noise robustness
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(c) Retrieval Accuracy
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(d) Rank of NN. Distortion prob: 1.0,
Offset limit: 1.0

Figure: ASL dataset, ’offset’ noise.
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Results: Noise robustness
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(a) Retrieval Accuracy

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

D
at

ab
as

e 
ra

tio
Rank of nearest neighbor ratio

 

 

DTW
Artemis

(b) Rank of NN. Swaps prob: 1.0

Figure: Pioneer dataset, ’swaps’ noise.
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Experiments: Scalability

Complexity of each method:

Vector-based DTW: O(n ·m · |σ|)
Artemis: O(m3) using hashing, our implementation: O(m4),

where n = |A|, m = |B| (m > n).

Time includes transforming each sample in the appropriate form
(i.e. bag of event vectors, relation sets) and searching the DB. The
samples DB is already in the appropriate form.
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Results: Scalability
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(a) Pioneer dataset
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(b) ASL dataset
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(c) Hepatitis dataset
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Experiments: ArtemisLB

Tightness =
ArtemisLB(S, T )

Artemis(S, T )
∈ [0, 1]

Dataset LB Tightness 1-NN pruning power

ASL 0.8837 0.7931

Hepatitis 0.7166 0.7012

Pioneer 0.6189 0.4855

Table: Lower Bound tightness and pruning power.
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Conclusions

A We presented 2 methods for comparing event-intervals
sequences.

B No clear choice for clustering e-sequences. Choice must be
application dependent.

C Artemis is most noise-robust. DTW very fragile.

D Promising lower bounding technique.
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Directions for future work

Devise faster distance functions that are metric.

Determine if Artemis satisfies the triangular inequality.

Devise tighter constant-/linear-time lower bounds for
Artemis.

Devise algorithms for on-line comparison of e-sequences.
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