Artemis: Assessing the similarity of event-interval sequences

Orestis Kostakis Panagiotis Papapetrou Jaakko Hollmén

Labs, F-Secure Corporation

Department of Information and Computer Science, Aalto University.

September 6, 2011

So far, previous work has focused on the knowledge discovery aspect.

Benefits of comparing:

- existence of a sequence in DB,
- new index structures,
- typical DM tasks,
- recommendation systems.

Event-interval sequences

Figure: Size: 5, $\sigma = \{A, B, C, D\}$, $\{(A, 1, 7), (B, 3, 19), (D, 4, 30), (C, 7, 15), (C, 23, 42)\}$.

Distance Functions

Problem Formulation

Given two e-sequences S and T, define a distance measure D, such that $\forall S, T$:

$$D(S,T) \geq 0$$
(1)

$$D(S,S) = 0$$
(2)

$$D(S,T) = D(T,S)$$
(3)

・ロ ・ ・ 一部 ・ く 言 ・ く 言 ・ こ の へ で 4/25 Sequences of instantaneous events do not depict all the important information:

Problem: Transforming the above arrangements to sequences of instantaneous events would yield the same result:

 $A_{start}, A_{end}, B_{start}, B_{end}.$

Solution: For each time-point, we must create an *event-vector* which records the number of occurrences of intervals for each label.

Figure: Encoding arrangements via event-vectors.

Bags of event-vectors can be handled as multi-dimensional time-series. Hence, *Dynamic Time Warping* (DTW) is applicable!

Problem: Vector-based DTW violates the *identity of indiscernibles* (aka Leibniz's law, $A \neq B \implies D(A, B) > 0$).

The event-vector multisets are: $\{(0), (1), (2), (1), (0)\}, \sigma = \{A\}$

Our approach

Focus on the relations between pairs of intervals.

Figure: The relations that we consider; based on Allen's temporal model. Allen, J. F., 'Maintaining knowledge about temporal intervals', *Communications of the ACM.* **Idea**: Attempt to find 'corresponding' intervals. Then, derive the overall distance based on the corresponding pairs.

Mapping step: Map each interval to sets of relations. **Matching step:** Calculate all pairwise scores. Apply minimum-weight maximum bipartite matching.

Artemis' Mapping step

For $S_i \in S$ and $S_j \in S, \forall j \neq i$ in the same e-sequence, compute:

•
$$r_{left}(S_i) = \{r(S_j, S_i) | 1 \le j < i\}$$

- $r_{right}(S_i) = \{r(S_i, S_j) | i < j \le |S|\}$
- $r_{\varnothing}(S_i) = \{r(\varnothing, S_i)\}$

Additionally: $r_{\varnothing left}(S_i) = r_{left}(S_i) \cup r_{\varnothing}(S_i)$.

$$Artemis(\mathcal{S},\mathcal{T}) = \sum_{i=1}^{\max\{|\mathcal{S}|,|\mathcal{T}|\}} d_m(S_i,h(S_i)), \quad S_i \in \mathcal{S}, h(S_i) \in \mathcal{T}.$$

based on the matching h returned by the Hungarian Algorithm, where the interval distances are:

$$d_m(S_i, T_j) = \begin{cases} 1 - \frac{|r_{\varnothing left}(S_i) \cap r_{\varnothing left}(T_j)| - |r_{right}(S_i) \cap r_{right}(T_j)|}{\max\{|\mathcal{S}|, |\mathcal{T}|\}}, & \text{if } E_{S_i} = E_{T_j} \\ 1, & \text{if } E_{S_i} \neq E_{T_j} \end{cases}$$

(日) (四) (注) (注) (三)

Problem solved: Artemis does not violate the identity of indiscernibles. (Proof is trivial, omitted)

New problem: Artemis $\in O(n^3)$, prohibitive for large databases.

New target: Devise a fast lower bounding technique.

Given an e-sequences S, we define an $|\sigma|$ -dimensional vector v^S , that stores, for each event label in σ , the count of event-intervals in S that share that label.

Theorem

Given S and T, the lower bound of Artemis(S,T) is defined as:

Artemis_{LB}(
$$S, T$$
) = $\frac{k}{2} + \left(m - \frac{k}{2}\right) \left(\frac{k}{2m}\right) = k - \frac{k^2}{4m}$, (4)

where $k = ||v^{S} - v^{T}||_{1}$ and m = max(|S|, |T|).

Experimental Setup

Datasets:

- American Sign Language
- Pioneer1 robot sensor data
- Hepatitis

Dataset	# of	# of	e-se	equen	ce size	$ \sigma $	# of
	e-sequences	intervals	min.	max.	average		classes
ASL	873	15675	4	41	18	216	5
Pioneer	160	8949	36	89	56	92	3
Hepatitis	498	53921	15	592	108	147	2

Experiments:

- A k-Nearest Neighbor classification
- Obtect identical phrases (ASL dataset)
- Solution Noise robustness
- Scalability

In addition, the lower bound was tested for its *tightness*, and its *pruning power* during 1-NN queries

Experiments: k-NN Classification

Dataset	Artemis 1-NN	Artemis 3-NN	DTW 1-NN	DTW 3-NN
HepData	0.72	0.78	0.74	0.80
Pioneer	0.97	0.97	0.93	0.93
ASL	0.43	0.40	0.43	0.41

Table: *k*-NN classification results.

Conclusion: The results depend on how the class label is encoded into the sequences.

Two types of artificial noise:

- Shifts of intervals back or forth.
- Swaps of interval labels.

The two methods were compared in terms of:

- nearest neighbor retrieval accuracy
- rank of nearest neighbor

Figure: ASL dataset, 'offset' noise.

□ > < @ > < ≧ > < ≧ > ≧ ⑦ < @ 19/25

Figure: Pioneer dataset, 'swaps' noise.

□ ▶ 《 ⓓ ▶ 《 틸 ▶ 《 틸 ▶ ○ 및 · · ○ Q (~ 20 / 25 Complexity of each method:

• Vector-based DTW: $O(n \cdot m \cdot |\sigma|)$

• Artemis: $O(m^3)$ using hashing, our implementation: $O(m^4)$, where $n = |\mathcal{A}|, m = |\mathcal{B}| (m > n)$.

Time includes transforming each sample in the appropriate form (i.e. bag of event vectors, relation sets) and searching the DB. The samples DB is already in the appropriate form.

Results: Scalability

□ ▶ < @ ▶ < 필 ▶ < 필 ▶] ♡ < ↔ 22 / 25

$$\mathsf{Tightness} = \frac{\mathsf{Artemis}_{\mathit{LB}}(\mathcal{S},\mathcal{T})}{\mathsf{Artemis}(\mathcal{S},\mathcal{T})} \in [0,1]$$

Dataset	LB Tightness	1-NN pruning power
ASL	0.8837	0.7931
Hepatitis	0.7166	0.7012
Pioneer	0.6189	0.4855

Table: Lower Bound tightness and pruning power.

Conclusions

- We presented 2 methods for comparing event-intervals sequences.
- O No clear choice for clustering e-sequences. Choice must be application dependent.

イロト 不得下 イヨト イヨト 二日

- Artemis is most noise-robust. DTW very fragile.
- **•** Promising lower bounding technique.

- Devise faster distance functions that are metric.
- Determine if Artemis satisfies the triangular inequality.
- Devise tighter constant-/linear-time lower bounds for Artemis.
- Devise algorithms for on-line comparison of e-sequences.