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Motivation

So far, previous work has focused on the knowledge discovery
aspect.
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Benefits of comparing:
@ existence of a sequence in DB,
@ new index structures,
@ typical DM tasks,

@ recommendation systems.
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Background

Event-interval sequences
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Figure: Size: 5, 0 = {A, B, C, D}, {(A,1,7), (B,3,19), (D, 4,30),
(C,7,15), (C,23,42)}.



Distance Functions

Problem Formulation

Given two e-sequences S and 7, define a distance measure D,
such that VS, T

D(S,T)
D(S,S) = 0 (2)
D(S,T) = D(T.S) (3)
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Reducing to known problems

Sequences of instantaneous events do not depict all the important
information:

Problem: Transforming the above arrangements to sequences of
instantaneous events would yield the same result:
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Solution: For each time-point, we must create an event-vector
which records the number of occurrences of intervals for each label.

| .
| ! |
| } |
I I
I ! I
|

OO IO IO IS

Figure: Encoding arrangements via event-vectors.
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Bags of event-vectors can be handled as multi-dimensional
time-series. Hence, Dynamic Time Warping (DTW) is applicable!
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Problem: Vector-based DTW violates the identity of indiscernibles
(aka Leibniz's law, A # B = D(A,B) > 0).
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The event-vector multisets are: {(0),(1),(2),(1),(0)}, o ={A}
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Our approach

Focus on the relations between pairs of intervals.
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Figure: The relations that we consider; based on Allen’s temporal model.

Allen, J. F. , '"Maintaining knowledge about temporal intervals’,
Communications of the ACM.



Artemis

Idea: Attempt to find 'corresponding’ intervals. Then, derive the
overall distance based on the corresponding pairs.

@ (b)
Mapping step: Map each interval to sets of relations.
Matching step: Calculate all pairwise scores. Apply
minimum-weight maximum bipartite matching.



Artemis’ Mapping step

For 5 € S and 5; € S,Vj # i in the same e-sequence, compute:
° riee(Si) = {r(S5), Si)[1 <Jj < i}
o rright(Si) = {r(Si, S)Ii <j < [S[}
o ry(Si) ={r(2,5)}

Additionally: rger(Si) = riere(Si) U ra(Si).
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Artemis’ Matching step

max{|S},|T1}
Artemis(S,T) = Z dm(5i7 h(SI))7 Sie S, h(sl) eT.

i=1

based on the matching h returned by the Hungarian Algorithm, where the
interval distances are:

1 |rostere(Si) N raier(T;)| — |rright (Si) N Fright (T})|
dm(S,‘, 7—J) = max{|S|, |T|} ’

ifEs, = E7,
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Artemis overview

Problem solved: Artemis does not violate the identity of
indiscernibles. (Proof is trivial, omitted)

New problem: Artemis € O(n®), prohibitive for large databases.

New target: Devise a fast lower bounding technique.
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Linear-time lower bound for Artemis

Given an e-sequences S, we define an |o|-dimensional vector v,

that stores, for each event label in o, the count of event-intervals
in S that share that label.

Theorem
Given S and T, the lower bound of Artemis(S,T) is defined as:

k k k k?
Artemis g(S,T) = > + (m = 2) <2m> =k — am’ (4)

where k = ||v® — VT ||y and m = max(|S], |T]).
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Experimental

Datasets:

Setup

@ American Sign Language

@ Pioneerl robot sensor data

o Hepatitis
Dataset # of # of | e-sequence size ||o|| # of
e-sequences|intervals/min./max.|average classes
ASL 873 15675 | 4 | 41 18 [216] 5
Pioneer 160 8949 | 36 | 89 56 92| 3
Hepatitis 498 53921 | 15 |592| 108 (147, 2
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Experimental Setup cnt

Experiments:

@ k-Nearest Neighbor classification

@ Detect identical phrases (ASL dataset)
@ Noise robustness

@ Scalability

In addition, the lower bound was tested for its tightness, and its
pruning power during 1-NN queries
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Experiments: k-NN Classification

l Dataset [ Artemis 1-NN [ Artemis 3-NN [ DTW 1-NN [ DTW 3-NN ]

HepData 0.72 0.78 0.74 0.80
Pioneer 0.97 0.97 0.93 0.93
ASL 0.43 0.40 0.43 0.41

Conclusion: The results depend on how the class label is encoded

Table: k-NN classification results.

into the sequences.
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Experiments: Detect identical phrases in ASL dataset.
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Experiments: Noise robustness

Two types of artificial noise:
@ Shifts of intervals back or forth.
@ Swaps of interval labels.

The two methods were compared in terms of:
@ nearest neighbor retrieval accuracy

@ rank of nearest neighbor
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Results: Noise robustness
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Figure: ASL dataset, 'offset’ noise.



Results: Noise robustness
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Figure: Pioneer dataset, 'swaps' noise.
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Experiments: Scalability

Complexity of each method:

e Vector-based DTW: O(n-m - |o|)

o Artemis: O(m®) using hashing, our implementation: O(m*),
where n = |A|, m=|B| (m > n).

Time includes transforming each sample in the appropriate form

(i.e. bag of event vectors, relation sets) and searching the DB. The
samples DB is already in the appropriate form.
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Results: Scalability
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Experiments: Artemis;pg

Artemis; (S, T)
Artemis(S,T)

Tightness = € [0,1]

Dataset | LB Tightness \ 1-NN pruning power ‘

ASL 0.8837 0.7931
Hepatitis 0.7166 0.7012
Pioneer 0.6189 0.4855

Table: Lower Bound tightness and pruning power.
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Conclusions

@ We presented 2 methods for comparing event-intervals
sequences.

@ No clear choice for clustering e-sequences. Choice must be
application dependent.

@ Artemis is most noise-robust. DTW very fragile.

@ Promising lower bounding technique.
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Directions for future work

@ Devise faster distance functions that are metric.
@ Determine if Artemis satisfies the triangular inequality.

@ Devise tighter constant-/linear-time lower bounds for
Artemis.

@ Devise algorithms for on-line comparison of e-sequences.
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