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8 Motivation

General Motivation

Is it possible to include the classical preprocessing step into the
learning process (for classification) ?
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8 Motivation

General Motivation

Is it possible to include the classical preprocessing step into the
learning process (for classification) ?

Applications:
o Text: Building dictionary, mapping documents to vectors.

o Image: applying image transformation operators, building visual
dictionary,...

o Numerical Data : Features selection, Features acquisition,
features construction, etc...
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8 Motivation

General Motivation

Is it possible to include the classical preprocessing step into the
learning process (for classification) 7
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8 Motivation

General Motivation

Is it possible to include the classical preprocessing step into the
learning process (for classification) 7

Proposed Solution

o Consider the whole process as a sequential process:

- Start with some preprocessing steps...
- ...then apply a classification step

o Use Sequential Learning Methods (Reinforcement Learning,...)

Here: we focus on the problem of selecting as few features as
possible for classification (Sparse classification)
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PMain Approaches to Sparsity

Three main types of approaches to Sparsity/Features Selection for
classification:

o Wrapper Approaches : Exhaustive Search of Features-Space

o Filter Approaches : Independent Ranking of Features

o Embedded Approaches : Minimization of a regularized loss
function
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PMain Approaches to Sparsity

Three main types of approaches to Sparsity/Features Selection for
classification:

o Wrapper Approaches : Exhaustive Search of Features-Space
o Filter Approaches : Independent Ranking of Features

o Embedded Approaches : Minimization of a regularized loss
function

Some drawbacks
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PMain Approaches to Sparsity

Three main types of approaches to Sparsity/Features Selection for
classification:

o Wrapper Approaches : Exhaustive Search of Features-Space

- Searches are poorly directed and quickly intractable.

o Filter Approaches : Independent Ranking of Features

o Embedded Approaches : Minimization of a regularized loss
function

Some drawbacks
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PMain Approaches to Sparsity

Three main types of approaches to Sparsity/Features Selection for
classification:

o Wrapper Approaches : Exhaustive Search of Features-Space

- Searches are poorly directed and quickly intractable.
o Filter Approaches : Independent Ranking of Features
- Feature inter-dependencies are ignored, metrics are heuristic.

o Embedded Approaches : Minimization of a regularized loss
function

Some drawbacks
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PMain Approaches to Sparsity

Three main types of approaches to Sparsity/Features Selection for
classification:

o Wrapper Approaches : Exhaustive Search of Features-Space

- Searches are poorly directed and quickly intractable.
o Filter Approaches : Independent Ranking of Features
- Feature inter-dependencies are ignored, metrics are heuristic.

o Embedded Approaches : Minimization of a regularized loss
function
- Kernel choice must be made in terms of problem, feature
inter-dependencies are ignored. Usually restricted to convex
loss-functions.

Some drawbacks
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PGlobal Methods

Most feature-selection approaches try to find the subset of
features, F, that best represents the entire dataset.
There are two main drawbacks:

o Fs is the same for the entire dataset, even if different
generating distributions are present.

o All of of the features in F; are used for every new datapoint,
even if some points are easily classified with only one or two
features.

General Idea

Learn a classifier able to select the best subset of features to use
for classifying each new input. The subset depends on the input
to classify.
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8 Loss Function

Classical L regularized loss minimization problem
L
" = argmin > A(fy(%i), yi) + Alwla. (1)
i=1

Ideally, the Ly norm would be used, but that makes for an
non-continuous non-derivable risk function.
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8 Loss Function

Classical L regularized loss minimization problem

N
1
0" = argémnNZA(fb(xi),yi)JrAIWIl- (1)
i=1

Proposed problem

We define a new type of classifier, that provides both the label of
the datum and the features considered:

X —=>YXZ
fo :
{fo(X)=(y,Z)

The vector z is the set of features used to infer that point x should
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8 Loss Function

Classical L regularized loss minimization problem

N
1
" = argmin > A(fy(%i), yi) + Alwla. (1)
i=1

Proposed problem
X —=>YxZ
fo :
fo(x) = (v,2)

The obtained loss is:

N N
0 = arg‘;m Z (Yo (xi), i) Z |20 (xi)llo
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8 Loss Function

Classical L regularized loss minimization problem

N
1
" = argmin > A(fy(%i), yi) + Alwla. (1)
i=1

Proposed problem
N
0* :arg;ni Z (Yo (xi), yi) + A+ ZHZ@ xi)llo

N
> |lzo(xi)|lo attemps to reduce the average number of features
i=1

used over the entire dataset.
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6 . . .
Sequential Decision Process

Minimization Problem

N N
. 1 1
0" = CIEli ; A(ys(xi), yi) + AN ; l|zo(xi)lo

The optimization problem is a discrete optimization problem which
is hard to solve:

o We propose to model the classifier as a sequential decision
process...

o ...the Optimal Policy is the solution of the loss minimization
problem
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8 lHlustration

o In a particular state (x, z), the agent is currently classifying a
specific datum x, with the features specified by z having been
selected in the past.

o Two types of possible actions:

- Get a new feature (in the set of unknown features)
- New state is (x, z') where 2’ = z + fj.
- Reward received is —\
- Classify (and stop the process
- Reward is —1 is the chosen category is a bad one, 0 elsewhere.
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¢ Policy

We define a (linear) parameterized policy g, which, for each state
(x,z), returns the best action as defined by a scoring function
so(x,z,a):

7o X x Z — A and mp(x,z) = argmax(®P(x, z, a); 0)
a

where ®(x, z, a) contains information about:

o Which features have been previously acquired
o The value of these features

The optimal policy is found by using Monte Carlo techniques
(Rollout)

o & = Ha
Ui mc Gabriel Dulac-Arnold, Ludovic D@V Rz (p]pRrI0ik} 9/14




() Motivation Overview Formalization Experiments

sRoHout

Random State (x,z) Simulation of the current policy

ffffffffffff ®s

We obtain a set of learning examples {(®(s, a), reward)} used for
learning new policy (regression/classification).

The learning complexity is quite high - able to process datasets
with hundred of features

Inference is as fast as linear classification
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¢ Sparsity vs. Accuracy

o Made on 14 (binary/multiclass) UCI datasets

Sparsity
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PFeature Use w/ Breast Cancer Dataset
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6 .
Conclusion

o

We have proposed a new type of classifier...

...that is able to decice which features to use for classifying a
particular input

...which can learn to use on average as few features as
possible (sparse classifier)

o

o

(@]

It has a high learning complexity but a low inference
complexity

It is able to outperforms classical L; methdods at the same
level of sparsity

o

It is a first step to develop sequential classifiers which learn how to
preprocess data for maximizing classification accuracy.
o We have to reduce the learning complexity
o We are applying this idea to more compelx problems like
image classification, face recognition and problems where you

have an underlying structure between group of features.
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Questions?
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