# Datum-Wise Classification: A Sequential Approach to Sparsity

# Gabriel Dulac-Arnold<sup>1</sup>, **Ludovic Denoyer**<sup>1</sup>, Philippe Preux<sup>2</sup>, Patrick Gallinari<sup>1</sup>

LIP6 - University Pierre et Marie Curie - Paris

LIFL & INRIA

September 7, 2011

# Motivation Outline

121

- Motivation
- Classical Features Selection Methods
- Datum-wise classifiers
- Sparsity as a Sequential Process
- Learning
- Experiments
- Conclusion and Perspectives

Is it possible to include the classical **preprocessing** step into the learning process (for classification) ?

# Manual

Preprocessing

# Automated

Classification

Is it possible to include the classical **preprocessing** step into the learning process (for classification) ?

## **Applications:**

- Text: Building dictionary, mapping documents to vectors.
- Image: applying image transformation operators, building visual dictionary,...
- Numerical Data : Features selection, Features acquisition, features construction, etc...

Gabriel Dulac-Arnold, Ludovic D ECML PKDD 2011

Is it possible to include the classical **preprocessing** step into the learning process (for classification) ?

# Manual

Preprocessing

# Automated

Classification

Is it possible to include the classical **preprocessing** step into the learning process (for classification) ?



Is it possible to include the classical **preprocessing** step into the learning process (for classification) ?

#### **Proposed Solution**

- Consider the whole process as a sequential process:
  - Start with some preprocessing steps...
  - ...then apply a classification step
- Use Sequential Learning Methods (Reinforcement Learning,...)

**Here:** we focus on the problem of selecting as few features as possible for classification (Sparse classification)

• Wrapper Approaches : Exhaustive Search of Features-Space

- Filter Approaches : Independent Ranking of Features
- **Embedded Approaches :** Minimization of a regularized loss function

**SORBONNE** UNIVERSITÉS

• Wrapper Approaches : Exhaustive Search of Features-Space

- Filter Approaches : Independent Ranking of Features
- **Embedded Approaches :** Minimization of a regularized loss function

### Some drawbacks

Gabriel Dulac-Arnold, Ludovic D ECML PKDD 2011

- Wrapper Approaches : Exhaustive Search of Features-Space
  - Searches are poorly directed and quickly intractable.
- Filter Approaches : Independent Ranking of Features
- **Embedded Approaches :** Minimization of a regularized loss function

## Some drawbacks

function

## Some drawbacks

Three main types of approaches to Sparsity/Features Selection for classification:

- Wrapper Approaches : Exhaustive Search of Features-Space
  - Searches are poorly directed and quickly intractable.
- Filter Approaches : Independent Ranking of Features
  - Feature inter-dependencies are ignored, metrics are heuristic.
- **Embedded Approaches :** Minimization of a regularized loss

- Wrapper Approaches : Exhaustive Search of Features-Space
  - Searches are poorly directed and quickly intractable.
- Filter Approaches : Independent Ranking of Features
  - Feature inter-dependencies are ignored, metrics are heuristic.
- **Embedded Approaches :** Minimization of a regularized loss function
  - Kernel choice must be made in terms of problem, feature inter-dependencies are ignored. Usually restricted to convex loss-functions.

### Some drawbacks

# Global Methods

Most feature-selection approaches try to find the subset of features,  $\mathcal{F}_s$ , that best represents the **entire dataset**. There are two main drawbacks:

- $\circ~\mathcal{F}_{s}$  is the same for the entire dataset, even if different generating distributions are present.
- All of of the features in  $\mathcal{F}_s$  are used for every new datapoint, even if some points are easily classified with only one or two features.

#### General Idea

Learn a classifier able to select the best subset of features to use for classifying each new input. The subset **depends on** the input to classify.

Gabriel Dulac-Arnold, Ludovic D ECML PKDD 2011

Classical  $L_1$  regularized loss minimization problem

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} \Delta(f_{\theta}(\mathbf{x}_i), y_i) + \lambda |\mathbf{w}|_1.$$
(1)

Ideally, the  $L_0$  norm would be used, but that makes for an non-continuous non-derivable risk function.

Gabriel Dulac-Arnold, Ludovic D ECML PKDD 2011

121

Classical  $L_1$  regularized loss minimization problem

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} \Delta(f_{\theta}(\mathbf{x_i}), y_i) + \lambda |\mathbf{w}|_1. \tag{1}$$

#### Proposed problem

We define a new type of classifier, that provides both the label of the datum and the features considered:

$$f_{ heta}: egin{cases} \mathcal{X} o \mathcal{Y} imes \mathcal{Z} \ f_{ heta}(\mathbf{x}) = (y, \mathbf{z}) \end{cases}$$

The vector  $\mathbf{z}$  is the set of features used to infer that point  $\mathbf{x}$  should be bold as y.

**SORBONNE** UNIVERSITÉS

## Classical $L_1$ regularized loss minimization problem

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} \Delta(f_{\theta}(\mathbf{x_i}), y_i) + \lambda |\mathbf{w}|_1.$$
(1)

#### Proposed problem

$$f_{ heta}: egin{cases} \mathcal{X} o \mathcal{Y} imes \mathcal{Z} \ f_{ heta}(\mathbf{x}) = (y, \mathbf{z}) \end{cases}$$

The obtained loss is:

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} \Delta(y_{\theta}(\mathbf{x}_i), y_i) + \lambda \frac{1}{N} \sum_{i=1}^{N} ||z_{\theta}(\mathbf{x}_i)||_0$$
Gabriel Dulac-Arnold, Ludovic D ECML PKDD 2011

**SORBONNE UNIVERSITÉS** 

**U2U** 

## Classical $L_1$ regularized loss minimization problem

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} \Delta(f_{\theta}(\mathbf{x}_i), y_i) + \lambda |\mathbf{w}|_1.$$
(1)

#### Proposed problem

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} \Delta(y_{\theta}(\mathbf{x_i}), y_i) + \lambda \frac{1}{N} \sum_{i=1}^{N} \|z_{\theta}(\mathbf{x_i})\|_0$$

Ν  $\sum ||z_{\theta}(\mathbf{x_i})||_0$  attemps to reduce the *average* number of features i-1used over the entire dataset.

## Minimization Problem

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \frac{1}{N} \sum_{i=1}^{N} \Delta(y_{\theta}(\mathbf{x_i}), y_i) + \lambda \frac{1}{N} \sum_{i=1}^{N} \|z_{\theta}(\mathbf{x_i})\|_0$$

The optimization problem is a discrete optimization problem which is hard to solve:

#### MDP

UNIVERSITÉS

SORBONNE

- We propose to model the classifier as a sequential decision process...
- ...the **Optimal Policy** is the solution of the loss minimization problem

# Illustration



æ

- \* @ \* \* 注 \* \* 注 \*



- In a particular state (x, z), the agent is currently classifying a specific datum x, with the features specified by z having been selected in the past.
- Two types of possible actions:
  - Get a new feature (in the set of unknown features)
    - New state is (x, z') where  $\mathbf{z}' = \mathbf{z} + \mathbf{f}_{\mathbf{j}}$ .
  - · Reward received is  $-\lambda$
  - Classify (and stop the process
    - $\cdot\,$  Reward is -1 is the chosen category is a bad one, 0 elsewhere.

We define a (linear) parameterized policy  $\pi_{\theta}$ , which, for each state  $(\mathbf{x}, \mathbf{z})$ , returns the best action as defined by a scoring function  $s_{\theta}(\mathbf{x}, \mathbf{z}, a)$ :

$$\pi_{\theta}: \mathcal{X} \times \mathcal{Z} \to \mathcal{A} \text{ and } \pi_{\theta}(\mathbf{x}, \mathbf{z}) = \operatorname*{argmax}_{a} \langle \Phi(\mathbf{x}, \mathbf{z}, a); \theta \rangle$$

where  $\Phi(\mathbf{x}, \mathbf{z}, \mathbf{a})$  contains information about:

- · Which features have been previously acquired
- The value of these features

The optimal policy is found by using Monte Carlo techniques (Rollout)



We obtain a set of learning examples  $\{(\Phi(s, a), reward)\}$  used for learning new policy (regression/classification).

The learning complexity is quite high - able to process datasets with hundred of features

## Inference is as fast as linear classification



50

45

0

0.2

Gabriel Dulac-Arnold, Ludovic D

Sparsity

0.4

0.6

DWSM-Ur

0.8





A 10

Overview

# Conclusion

- We have proposed a new type of classifier...
- ...that is able to decice which features to use for classifying a particular input
- ...which can learn to use *on average* as few features as possible (sparse classifier)
- It has a high learning complexity but a low inference complexity
- $\circ\,$  It is able to outperforms classical  $L_1$  methdods at the same level of sparsity

It is a first step to develop sequential classifiers which learn how to preprocess data for maximizing classification accuracy.

- $\,\circ\,$  We have to reduce the learning complexity
- We are applying this idea to more compelx problems like image classification, face recognition and problems where you
   have an underlying structure between group of features.



Questions?

Gabriel Dulac-Arnold, Ludovic D

Formalization

Experiments

æ

▲ 同 ▶ → ● 三