

Universiteit Utrecht

[Faculty of Science Information and Computing Sciences]

Non-Redundant Subgroup Discovery in Large and Complex Data

Matthijs van Leeuwen¹ & Arno Knobbe²

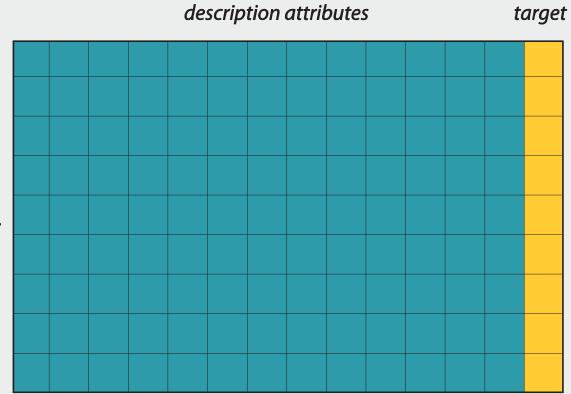
¹ Algorithmic Data Analysis, Universiteit Utrecht ² Data Mining Group, Universiteit Leiden

Universiteit Leiden

Subgroup Discovery

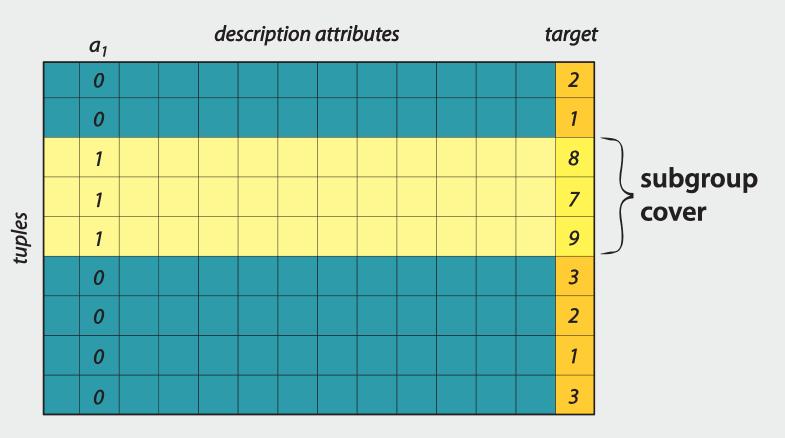
The task

 Find regions in the data that deviate from the rest, with respect to a given target

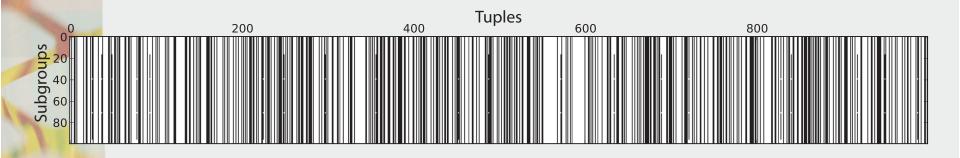

Some details

- Patterns (or descriptions) define subgroups
- Quality measure scores subgroups
- Return top-k wrt quality
- Exhaustive or heuristic search
- Data can be binary, ordinal, numeric, ...

Example



Example


Description: Quality:

a₁ = 1 very good

[Faculty of Science Information and Computing Sciences]

- Subgroup covers for top-100, using exhaustive search
- Dataset: Credit-G
- Quality measure: weighted relative accuracy

[Faculty of Science Information and Computing Sciences]

- Top-4 descriptions
 - checking_status != <0 && checking_status != 0<=X<200 && other_parties != co_applicant && other_payment_plans != bank</p>
 - checking_status != <0 && checking_status != 0<=X<200 && other_parties != co_applicant && other_payment_plans != bank && purpose != vacation</p>
 - checking_status != <0 && checking_status != 0<=X<200 && other_parties != co_applicant && other_payment_plans != bank && purpose != other
 - checking_status != <0 && checking_status != 0<=X<200 && other_parties != co_applicant && other_payment_plans != bank && personal_status != female_single

- Top-4 descriptions
 - checking_status != <0 && checking_status != 0<=X<200 && other_parties != co_applicant && other_payment_plans != bank</p>
 - checking_status != <0 && checking_status != 0<=X<200 && other_parties != co_applicant && other_payment_plans != bank && purpose != vacation</p>
 - checking_status != <0 && checking_status != 0<=X<200 && other_parties != co_applicant && other_payment_plans != bank && purpose != other</p>
 - checking_status != <0 && checking_status != 0<=X<200 && other_parties != co_applicant && other_payment_plans != bank && personal_status != female_single
 - Identical subgroup covers: 390 tuples, quality = 0.78

Redundancy

- Top-k contains many variations of the same theme
- Other interesting patterns not found

Top-k mining is inappropriate, as each subgroup is only considered individually

Variations of pattern 1 Variations of pattern 2 Variations of pattern 3 Variations of pattern 4 Variations of pattern 5

quality decreases \longrightarrow

top-k

Non-Redundant Subgroup Set Mining

Subgroup sets

- Considering individual subgroups not good enough
- Consider *subgroup sets* instead
- Goal
 - Find a non-redundant set of k high-quality subgroups

k = 5

quality decreases \longrightarrow

[Faculty of Science Information and Computing Sciences]

- Complex and large data
 - Search space explosion
 - Many attributes
 - Attributes of high cardinality (numeric attributes!)
 - Correlated attributes
 - Multiple target attributes (= Exceptional Model Mining):
 - Candidate testing time-consuming
 - Often no optimistic estimates available

Exhaustive search not the way to go

Heuristic Search

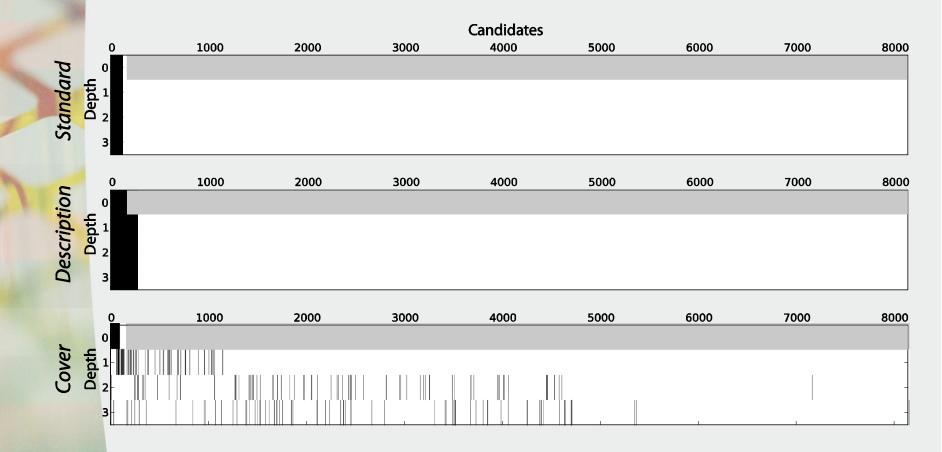
- Beam search
 - Commonly used for subgroup discovery
 - Fast and effective
 - But ... suffers from the same redundancy problems as exhaustive search

Goal

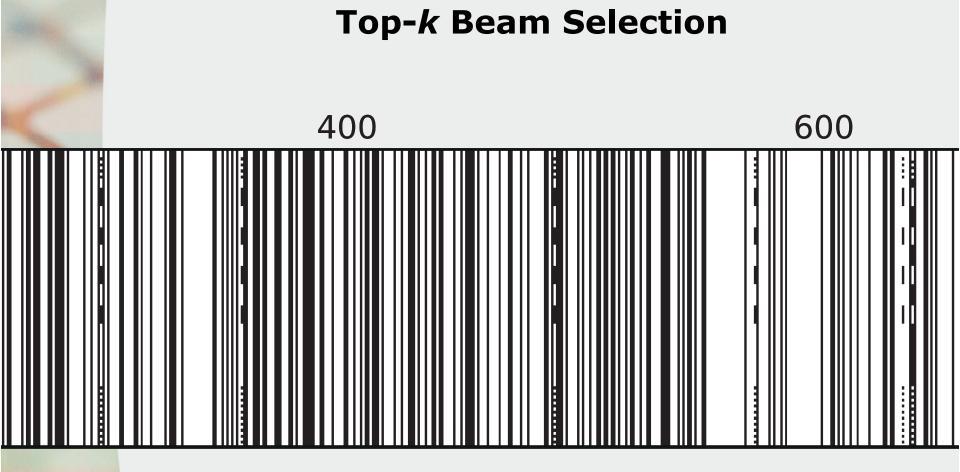
 Modify standard beam search such that it can be used to mine non-redundant subgroup sets

Degrees of Redundancy

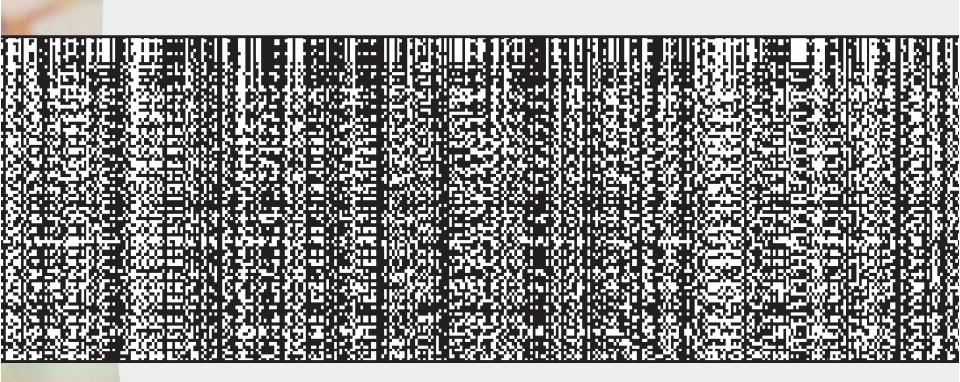
- A subgroup set is non-redundant if all its subgroups have substantially different
 - 1. subgroup descriptions / patterns, or
 - 2. subgroup covers, or
 - 3. exceptional models (in case of EMM).
- Each degree is more strict than its predecessor.


Non-Redundant Beam Search

- Algorithm
 - Standard beam search
 - Except: do not use top-k as beam
 - Instead, select diverse subgroup set
- Beam selection strategies
 - Depends on desired degree of redundancy elimination
 - Heuristic strategy for each of the three degrees



Beam Selection Strategies in Action



Description-based Beam Selection

Cover-based Beam Selection

Subgroup Discovery Results

- Aggregated over 3 datasets
 - Adult
 - Credit-G
 - Mushroom

Aggregated over 2 quality measures

- Weighted relative accuracy
- Weighted KL-based measure
- Averages per experiment are shown

Subgroup Discovery Results

Search	#cands	time (m)	CR
DFS	403801872	1553	1.10
Standard	88641	0.3	1.23
Description	88508	1.0	0.98
Cover	89116	49	0.37

- CR = Cover Redundancy (lower is more diverse)
- No significant differences in highest obtained qualities
 - Beam search allows larger search spaces, i.e. multiple constraints on a single attribute
 - This regularly leads to better solutions than achievable with DFS

[Faculty of Science Information and Computing Sciences]

Exceptional Model Mining Results

Aggregated over 4 datasets

- Adult (different variant)
- Emotions
- Mammals
- Yeast

Aggregated over 2 quality measures

- Weighted KL-based measure
- Weighted Krimp Gain
- Averages per experiment are shown

Exceptional Model Mining Results

Search	#cands	time (m)	CR
Standard	244830	8	1.53
Description	244659	49	1.36
Cover	244830	62	0.48
Model	255993	143	1.07

- CR = Cover Redundancy (lower is more diverse)
- No significant differences in highest obtained qualities

Conclusions

- Non-Redundant Subgroup Set Mining
 - Consider subgroup sets instead of individual subgroups
 - Applies to both classical SD and EMM
- Non-Redundant Beam Search
 - Standard beam search with modified beam selection
 - Experiments show that algorithm is fast and effective
 - Optimal subgroups are discovered
- No need for exhaustive search?
 - Proposed methods find diverse yet high-quality subgroup sets
 - Much larger search spaces can be tackled

Thank you for your attention!

