Smooth Receiver Operating Characteristics Curves (smROC)

William Klement¹, Peter Flach², Nathalie Japkowicz¹, and Stan Matwin^{1,3}

 ¹ School of Electrical Engineering and Computer science University of Ottawa, Canada
 ² Dept. of computer Science, Bristol University, UK
 ³ Institute of Computer Science, Polish Academy of Science, Poland.

Acknowledgement: Natural Sciences and Engineering Research Council of Canada Ontario Centres of Excellence.

Contribution

We develop an evaluation method which:

- extends the ROC to include membership scores
- allows the visualization of individual scores
- depicts the combined performance of classification, ranking and scoring

Consider what information can be obtained from testing a given learning method.

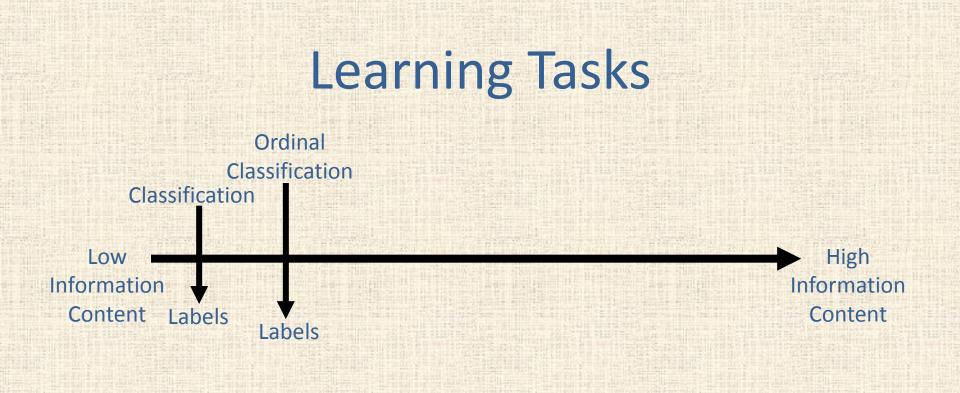
Learning Tasks

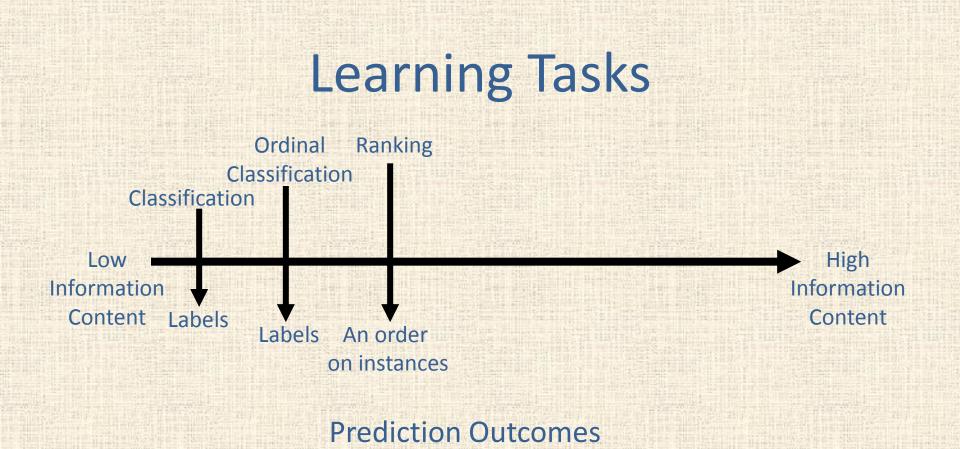
Low Information Content High Information Content

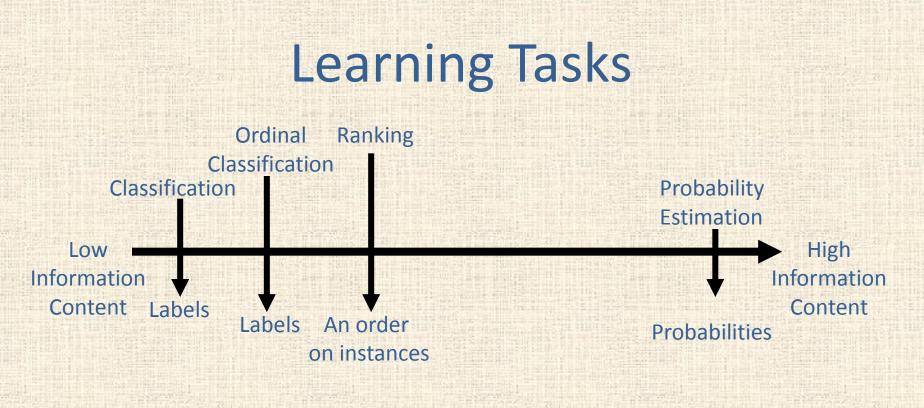
Learning Tasks

Classification

Low Information Content Labels High Information Content







Learning Tasks Ordinal Ranking Classification Classification Probability Estimation Scoring low High Information Information Content Content Labels Labels An order **Probabilities** Scores on instances

- Imposing a threshold (on the scores then ignoring them) reduces the task into a classification.
- Sorting the data points (by scores then ignoring them) reduces the task into a ranking.

Motivation

- With scores, one can:
 - compare classifications in terms of decisions, ranking, and scores (confidence)
 - visualize the margins of scores
 - find gaps in scores
- Of course, probabilities tell us all this plus more (theoretical), but not all scores are good estimates of probabilities!

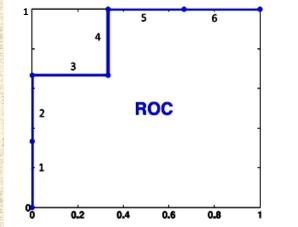
Applications

- Comparing user preferences
- Assessing relevance scores in search engines
- Magnitude-preserving ranking (Cortes et. al ICML'07)
- Research Tool (PET / DT / Naïve Bayes)
- Bioinformatics (gene expression)

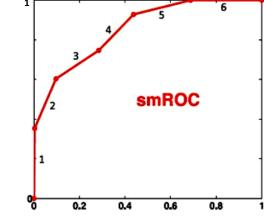
An Example: Movie Recommendation

Anna

ORD RINGS

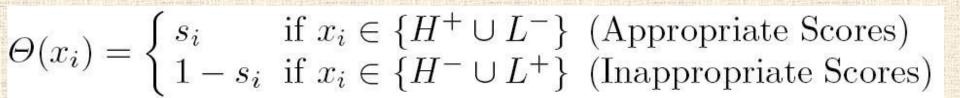


ORD & RINGS



Anna's Assessment									
i	Decision	Score							
1.	+	0.99							
2.	+	0.70							
3.	-	0.60							
4.	+	0.51							
5.	-	0.20							
6.	-	0.00							

Methodology

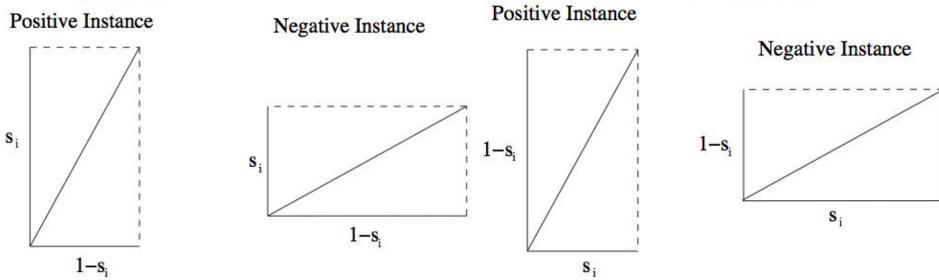


Methodology: Score Appropriateness

(Appropriateness of Scores)		(Accuracy of Appropriate Scores)			(Accuracy of Inappropriate Scores)					
Scores			Predicted				Predicted			
Label	l High	Low	Score I	Label	Y	N	Score I	Label	Y	N
+	yes	no	High	+	correct	incorrect	High	<u> </u>	incorrect	correct
1. 	no	yes	Low		incorrect	correct	Low	+	correct	incorrect

Inappropriate

Appropriate





smAUC

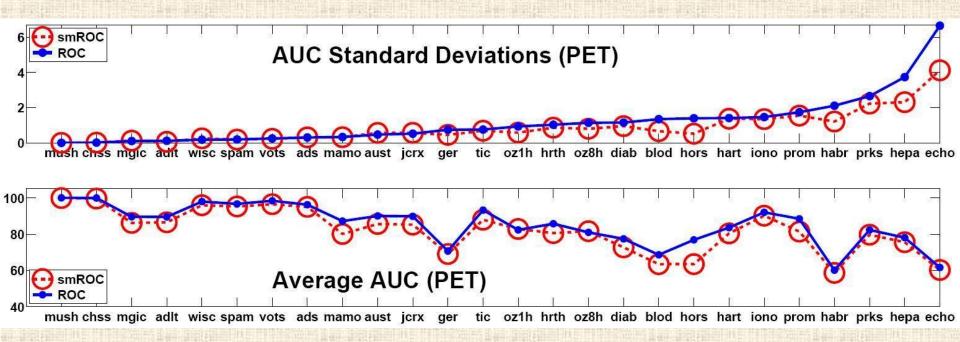
$$smAUC = \frac{1}{\alpha_v \alpha_h} \sum_{i=1}^n \sum_{j=1}^n \Theta(x_i) \Psi(x_i, x_j)$$

$$\Psi(x_i, x_j) = \begin{cases} 1 - \Theta(x_i) & \text{for } (S_i > S_j) \text{ and } (i \neq j) \\ \frac{1}{2}(1 - \Theta(x_i)) & \text{for } i = j \\ 0 & \text{otherwise} \end{cases}$$

Experiment

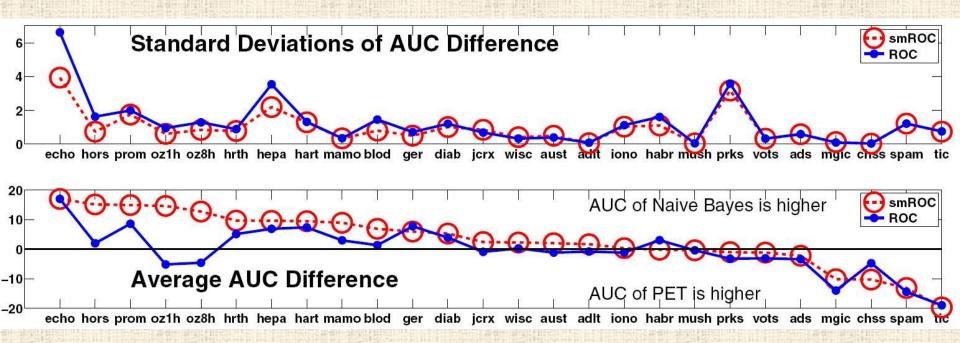
- Use 26 UCI data sets of binary classification problems.
- Classification by PET and Naïve Bayes.
- Test by 10-fold cross-validation repeated 10 times.
- Measure performance similarities among similar models (same learning method on various random splits of the same data).
- Verify well-documented performance differences of PET and NB (different methods on the same data).
- Record the average and standard deviation of smAUC and AUC.

Similar PET Models



Lower std. dev. for smAUC with increasing variations
smAUC is lower than AUC

PET & Naive Bayes Differences



- smAUC measures a higher difference in favour of Naive Bayes scores.
 AUC = smAUC in favour of PET.
- Lower std. dev. of smAUC difference.

Conclusions & Future Plans

- smROC is sensitive to scores assigned to data points by the classifier but retains sensitivity to ranking performance.
- smROC is more sensitive to performance similarities and differences between scores.
- For similarities models, smAUC produces lower std. deviations, and for different ones, the difference in the smROC space is higher.
- smROC can be sensitive to changes in the underlying distribution of data and scores (sensitivity to the mid point?).