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Contribution 

We develop an evaluation method which: 
• extends the ROC to include membership scores 
• allows the visualization of individual scores 
• depicts the combined performance of 

classification, ranking and scoring 
 

Consider what information can be obtained from 
testing a given learning method. 
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• Imposing a threshold (on the scores then ignoring them) 
reduces the task into a classification. 

• Sorting the data points (by scores then ignoring them) reduces 
the task into a ranking. 

Learning Tasks 



Motivation 

• With scores, one can: 

– compare classifications in terms of decisions, 
ranking, and scores (confidence) 

– visualize the margins of scores 

– find gaps in scores 

• Of course, probabilities tell us all this plus 
more (theoretical), but not all scores are good 
estimates of probabilities! 



Applications 

•Comparing user preferences 

•Assessing relevance scores in search engines 

•Magnitude-preserving ranking (Cortes et. al ICML’07) 

•Research Tool (PET / DT / Naïve Bayes) 

•  Bioinformatics (gene expression) 



An Example: Movie Recommendation 
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Methodology: Score Appropriateness 



Constructing the smROC Curve 

smFPR =  smTPR =  



smAUC 



Experiment 

• Use 26 UCI data sets of binary classification problems. 

• Classification by PET and Naïve Bayes. 

• Test by 10-fold cross-validation repeated 10 times. 

• Measure performance similarities among similar 
models (same learning method on various random 
splits of the same data). 

• Verify well-documented performance differences of 
PET and NB (different methods on the same data). 

• Record the average and standard deviation of smAUC 
and AUC. 



Similar PET Models 

• Lower std. dev. for smAUC with increasing variations 
• smAUC is lower than AUC 



PET & Naive Bayes Differences 

• smAUC measures a higher difference in favour of 
Naive Bayes scores. 

•AUC = smAUC in favour of PET. 
• Lower std. dev. of smAUC difference. 



Conclusions & Future Plans 

• smROC is sensitive to scores assigned to data 
points by the classifier but retains sensitivity to 
ranking performance. 

• smROC is more sensitive to performance 
similarities and differences between scores. 

• For similarities models, smAUC produces lower 
std. deviations, and for different ones, the 
difference in the smROC space is higher. 

• smROC can be sensitive to changes in the 
underlying distribution of data and scores 
(sensitivity to the mid point?). 
 


