Learning Good Edit Similarities with Generalization Guarantees

Aurélien Bellet¹ Amaury Habrard² Marc Sebban¹

¹Laboratoire Hubert Curien, UMR CNRS 5516, Université de Saint-Etienne {aurelien.bellet,marc.sebban}@univ-st-etienne.fr

²Laboratoire d'Informatique Fondamentale, UMR CNRS 6166, Aix-Marseille Université amaury.habrard@lif.univ-mrs.fr

ECML PKDD '11, Athens

Introduction: Similarity Learning

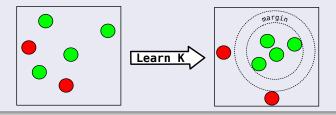
Similarity functions in classification

- Common approach in supervised classification: learn to classify objects using a pairwise similarity (or distance) function.
- Successful examples: k-Nearest Neighbor (k-NN), Support Vector Machines (SVM).
- Best way to get a "good" similarity function for a specific task: learn it from data!

Similarity learning

Similarity learning overview

Learning a similarity function K(x,x') implying a new instance space where the performance of a given algorithm is improved.



Very popular approach for numerical data

Learn the transformation matrix A of a Mahalanobis distance:

$$d(x,y) = (x-y)A^{T}A(x-y)$$

Goals of our work

Goals of our work

- Learn a similarity function for string classification;
- which is guaranteed to generalize well to new examples;
- 3 and provably induce low-error classifiers for the task at hand.

Building block

Make use of the theory of learning with (ϵ, γ, τ) -good similarity functions (Balcan et al.).

(ϵ, γ, τ) -good similarity functions

Definition

Balcan et al. (2006, 2008) wanted a definition of **good similarity function** that

- 1 talks in terms of natural, direct properties;
- includes the usual notion of good kernel, without PSD requirement;
- provides guarantees for learning.

Definition (Balcan et al., 2008)

A similarity function $K \in [-1,1]$ is an (ϵ,γ,τ) -good similarity function for a learning problem P if there exists an indicator function R(x) defining a set of "reasonable points" such that the following conditions hold:

① A $1 - \epsilon$ probability mass of examples (x, ℓ) satisfy:

$$\mathbf{E}_{(x',\ell')\sim P}\left[\ell\ell'K(x,x')|R(x')\right]\geq \gamma$$

2 $\Pr_{x'}[R(x')] \ge \tau$.

 $\epsilon, \gamma, \tau \in [0, 1]$

Definition

Balcan et al. (2006, 2008) wanted a definition of good similarity function that

- talks in terms of natural, direct properties;
- includes the usual notion of good kernel, without PSD requirement;
- provides guarantees for learning.

Definition (Balcan et al., 2008)

A similarity function $K \in [-1, 1]$ is an (ϵ, γ, τ) -good similarity function for a learning problem P if there exists an indicator function R(x) defining a set of "reasonable points" such that the following conditions hold:

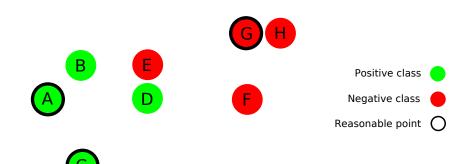
1 A $1 - \epsilon$ probability mass of examples (x, ℓ) satisfy:

$$\mathbf{E}_{(x',\ell')\sim P}\left[\ell\ell'K(x,x')|R(x')\right]\geq \gamma$$

2 $\Pr_{x'}[R(x')] \geq \tau$.

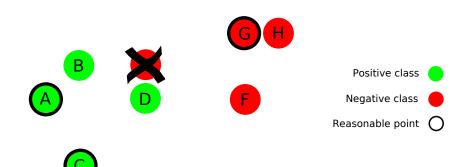
 $\epsilon, \gamma, \tau \in [0, 1]$

Intuition behind the definition



$$K(x, x') = -\|x - x'\|_2$$
 is good with $\epsilon = 0$, $\gamma = 0.03$, $\tau = 3/8$

Intuition behind the definition



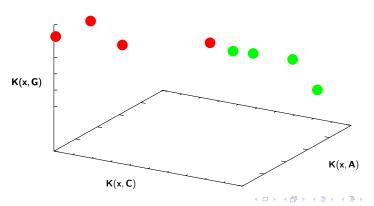
$$K(x,x') = -\|x - x'\|_2$$
 is good with $\epsilon = 1/8$, $\gamma = 0.12$, $\tau = 3/8$



Implications for learning

Strategy

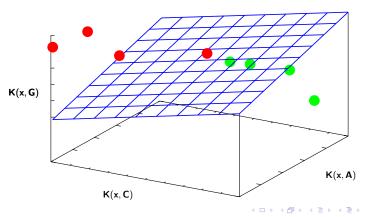
Each example is mapped to the space of "the similarity scores with the reasonable points".



Implications for learning

Theorem (Balcan et al., 2008)

Given K is (ϵ, γ, τ) -good, there exists a linear separator α in the above-defined projection space that has error close to ϵ at margin γ .



Learning rule

Learning the separator α with a linear program

$$\min_{\boldsymbol{\alpha}} \sum_{i=1}^{d_l} \left[1 - \sum_{j=1}^{d_u} \alpha_j \ell_i K(\mathbf{x}_i, \mathbf{x}_j') \right]_+ + \lambda \|\boldsymbol{\alpha}\|_1$$

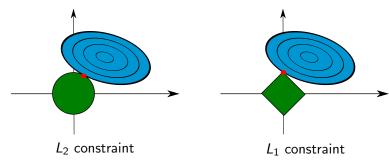
where $[1-c]_+ = max(1-c,0)$ is the hinge-loss.

Automatic selection of reasonable points

The best set of reasonable points is automatically chosen among the examples thanks to the L_1 -regularization on α .

L₁-norm and Sparsity

• Why does L_1 -norm constraint/regularization induce sparsity? Geometric interpretation:



• Examples corresponding to non-zero coordinates in α are the reasonable points.

Learning good edit similarities

Motivations for our work

Two main motivations for our work:

Motivation 1

The definition of (ϵ, γ, τ) -good similarity function gives us **a natural objective to optimize**:

$$\mathbf{E}_{(x',\ell')\sim P}\left[\ell\ell'K(x,x')|R(x')\right]\geq \gamma.$$

If we satisfy this, then we can find a low-error classifier for the task.

Motivation 2

Similarity functions for **structured data** (strings, trees...) are often **not PSD**. Not so easy to use in SVM.

The string edit distance

Standard (Levenshtein) edit distance $\mathbf{e}_{\mathbf{L}}$ between two strings x and y: minimum number of operations to transform x into y. Allowable operations are insertion, deletion and substitution of symbols.

Example 1

$$e_L(abb, aa) = C(b, a) + C(b, \$) = 1 + 1 = 2$$

Generalized version e_C : use a **cost** for each operation.

Example 2

C	\$	a	b
\$	-	1	0
а	1	-	3
b	0	3	-

$$\implies$$
 $e_C(abb, aa) = C(b,\$) + C(b,\$) + C(\$, a) = 1$

\$: empty symbol

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 へ ⊙

There exists a decent amount of literature on **learning edit costs** (or probabilities) from data. See Ristad & Yianilos (1998), Bilenko & Mooney (2003), Oncina & Sebban (2006), Takasu (2009)...

- most of them use an iterative procedure, which can be costly.
- they often make use of positive pairs only (i.e., moving examples of
- above all, they are **not learned to be** (ϵ, γ, τ) -**good**.
 - \hookrightarrow they are not guaranteed to perform well for the task at hand.

There exists a decent amount of literature on **learning edit costs** (or probabilities) from data. See Ristad & Yianilos (1998), Bilenko & Mooney (2003), Oncina & Sebban (2006), Takasu (2009)...

Drawbacks of the state-of-the-art

- most of them use an iterative procedure, which can be costly.
- they often make use of positive pairs only (i.e., moving examples of
- above all, they are **not learned to be** (ϵ, γ, τ) **-good**.

There exists a decent amount of literature on **learning edit costs** (or probabilities) from data. See Ristad & Yianilos (1998), Bilenko & Mooney (2003), Oncina & Sebban (2006), Takasu (2009)...

Drawbacks of the state-of-the-art

- most of them use an iterative procedure, which can be costly.
- they often make use of **positive pairs only** (i.e., moving examples of the same class "closer" together). What about negative pairs?
- above all, they are **not learned to be** (ϵ, γ, τ) -**good**.

There exists a decent amount of literature on **learning edit costs** (or probabilities) from data. See Ristad & Yianilos (1998), Bilenko & Mooney (2003), Oncina & Sebban (2006), Takasu (2009)...

Drawbacks of the state-of-the-art

- most of them use an iterative procedure, which can be costly.
- they often make use of **positive pairs only** (i.e., moving examples of the same class "closer" together). What about negative pairs?
- above all, they are **not learned to be** (ϵ, γ, τ) -**good**.
 - \hookrightarrow they are not guaranteed to perform well for the task at hand.

Our edit similarity function

An iterative approach is usually needed because the optimal edit script

- (= best sequence of operations) **depends on the edit costs**.
- Solution: define a different type of edit function!

Definition of e_{c}

$$e_G(x,x') = \sum_{0 \le i,j \le A} C_{i,j} \times \#_{i,j}(x,x')$$

where A is the size of the alphabet, C the edit cost matrix and $\#_{i,j}(x,x')$ the number of times the operation (i,j) appears in the Levenshtein script. We will optimize:

Definition of $K_{\mathcal{C}}$

$$K_G(x,x') = 2e^{-e_G(x,x')} - 1 \in [-1,1]$$

Our edit similarity function

An iterative approach is usually needed because the optimal edit script

- (= best sequence of operations) **depends on the edit costs**.
- Solution: define a different type of edit function!

Definition of e_G

$$e_G(x,x') = \sum_{0 \le i,j \le A} C_{i,j} \times \#_{i,j}(x,x')$$

where A is the size of the alphabet, C the edit cost matrix and $\#_{i,j}(x,x')$ the number of times the operation (i,j) appears in the Levenshtein script. We will optimize:

Definition of $K_{\mathcal{C}}$

$$K_G(x,x') = 2e^{-e_G(x,x')} - 1 \in [-1,1]$$

< □ > < 同 > < 目 > < 目 > < 目 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Our edit similarity function

An iterative approach is usually needed because the optimal edit script

- (= best sequence of operations) **depends on the edit costs**.
- Solution: define a different type of edit function!

Definition of e_G

$$e_G(x,x') = \sum_{0 \le i,j \le A} C_{i,j} \times \#_{i,j}(x,x')$$

where A is the size of the alphabet, C the edit cost matrix and $\#_{i,j}(x,x')$ the number of times the operation (i,j) appears in the Levenshtein script. We will optimize:

Definition of K_G

$$K_G(x,x') = 2e^{-e_G(x,x')} - 1 \in [-1,1]$$

- 4 ロ b 4 個 b 4 医 b 4 医 b 9 9

Optimize the goodness

Optimizing the (ϵ, γ, τ) -goodness of K_G is difficult for two reasons:

- Optimizing the definition directly would result in nonconvexity (summing/subtracting up exponential terms).
- ② We do not know the set of reasonable points R at this point.

Solution to the first issue

Optimize a criterion that bounds goodness:

$$\mathbf{E}_{(x,\ell)}\left[\mathbf{E}_{(x',\ell')}\left[\left[1-\ell\ell'K_G(x,x')/\gamma\right]_+|R(x')\right]\right] \leq \epsilon'.$$

Interpretation: goodness is required with respect to each reasonable point (instead of considering the average similarity to these points).

Optimize the goodness ctd

What about the second issue?

- Taking all points as reasonable is **not** a good idea (defines an overconstrained problem).
- Reasonable points can be seen as good representatives of a subset of the class examples.

Solution to second issue

Use an indicator matching function $f_{land}: T \times S_L \to \{0,1\}$ that associates each training example in T with N_L examples in S_L .

In our experiments, we matched each example with its P nearest-neighbors of same class and its P farthest-neighbor of opposite class in T using the Levenshtein distance.

Convex formulation of the problem

Recall the underlying idea

Moving closer pairs of the same class and further those of opposite class.

Our convex formulation

$$\begin{split} \min_{C,B_1,B_2} \quad & \frac{1}{N_T N_L} \sum_{\substack{1 \leq i \leq N_L, \\ 1 \leq j \leq N_T, \\ f_{land}(x_i,x_j') = 1}} V(C,z_i,z_j') \ + \ \beta \|C\|^2 \\ s.t. \quad & V(C,z_i,z_j') = \left\{ \begin{array}{l} [B1 - e_G(x_i,x_j')]_+ \text{ if } \ell_i \neq \ell_j' \\ [e_G(x_i,x_j') - B2]_+ \text{ if } \ell_i = \ell_j' \\ B_1 \geq -\log(\frac{1}{2}), \quad 0 \leq B_2 \leq -\log(\frac{1}{2}), \quad B_1 - B_2 = \eta_\gamma \\ C_{i,j} \geq 0, \quad 0 \leq i,j \leq A \end{array} \right. \end{split}$$

Parameters:

- β : regularization parameter on the edit costs.
- η_{γ} : the "desired margin".

Learning guarantees

Bounding the true error of an edit model C

$$L(C) = \mathbf{E}_{z_k, z'_j}[V(C, z_k, z'_j)]$$

Uniform stability [Bousquet et al. 02, Jin et al. 09]

Idea: study the impact of a small change in the training sample.

$$\forall (T,z), |T| = N_T, \forall i, \sup_{z_1,z_2} |V(C_T,z_1,z_2) - V(C_{T^{i,z}},z_1,z_2)| \leq \frac{\kappa}{N_T}$$

 $T^{i,z}$ set obtained by replacing $z_i \in T$ by z

Generalization bound

4□▶ 4□▶ 4□▶ 4□▶ 4□ ♥ 90°

Convergence and learning guarantees

Theorem: Algorithm has a uniform stability in κ/N_T

$$\kappa = \frac{2(2+\alpha)W^2}{\beta\alpha}$$

W is a bound on the string sizes; $0 \le \alpha \le 1$ such that $N_L = \alpha N_T$.

Theorem: Generalization bound - Convergence in $O(\sqrt{1/N_T})$

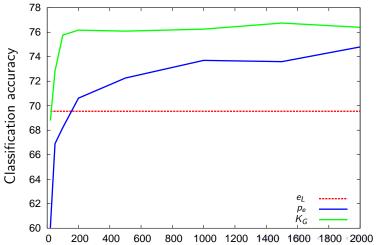
$$L(C) < \hat{L}(C) + 2\frac{\kappa}{N_T} + (2\kappa + B)\sqrt{\frac{\ln(2/\delta)}{2N_T}}$$

 $\hat{L}(C)$: empirical error on learning sample.

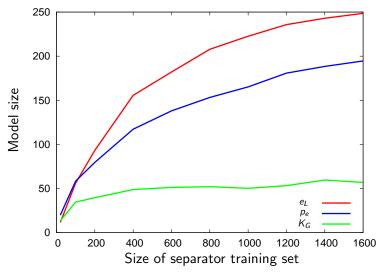
← Independence from the size of the alphabet

Convergence rate: accuracy

Task: **classify words** as either French or English (top words lists from Wiktionary).



Classification performance: sparsity



Conclusions

Recap

- We made use of the framework of Balcan et al. to create a novel, efficient way to learn string similarities.
- The resulting similarities provably generalize well to new examples and induce low-error classifiers for the task at hand.

Future work

- Adapt our method to tree edit cost learning (straightforward).
- Learn **other types of similarities** (e.g. numerical distances such as Mahalanobis distance).

Reasonable points

	English		French			
high	showed	holy	economiques	americaines	decouverte	
liked	hardly		britannique	informatique	couverture	

Table 1: Example of a set of 11 reasonable points.

	W	У	k	q	nn	gh	ai	ed\$	ly\$	ques?\$
English	146	144	83	14	5	34	39	151	51	0
French	7	19	5	72	35	0	114	51	0	43

Table 2: Some discriminative patterns extracted from the reasonable points of Table 1 (^: start of word, \$: end of word, ?: 0 or 1 occurrence of preceding letter).