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Plan Recognition 
 Predict an agent’s top-level plans based on the 

observed actions 

 Abductive reasoning involving inference of 
cause from effect 

 Applications 
 Story Understanding 
 Strategic Planning 
 Intelligent User Interfaces 
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$ cd test‐dir 
$ cp test1.txt my‐dir 
$ rm test1.txt 

What task is the user performing? 
move-file 

Which files and directories are 
involved? 
test1.txt and test-dir 

Plan Recognition in  
Intelligent User Interfaces 
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Data is relational in nature - several files and directories 
and several relations between them 



Related Work 
 First-order logic based approaches [Kautz and Allen, 1986; Ng 

and Mooney, 1992] 

 Knowledge base of plans and actions  
 Default reasoning or logical abduction to predict the best plan 

based on the observed actions  
 Unable to handle uncertainty in data or estimate likelihood of 

alternative plans 

 Probabilistic graphical models [Charniak and Goldman, 1989; Huber 
et al., 1994; Pynadath and Wellman, 2000; Bui, 2003; Blaylock and Allen, 2005] 

 Encode the domain knowledge using Bayesian networks, 
abstract hidden Markov models, or statistical n-gram models 

 Unable to handle relational/structured data 

 Statistical Relational Learning based approaches 
 Markov Logic Networks for plan recognition [Kate and Mooney, 2009; 

Singla and Mooney, 2011] 
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Our Approach 

 Extend Bayesian Logic Programs (BLPs) [Kersting 

and De Raedt, 2001] for plan recognition 
 BLPs integrate first-order logic and Bayesian 

networks 

 Why BLPs? 
 Efficient grounding mechanism that includes only those 

variables that are relevant to the query 
 Easy to extend by incorporating any type of logical 

inference to construct networks 
 Well suited for capturing causal relations in data 
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Outline 

 Motivation 
 Background 

 Logical Abduction 
 Bayesian Logic Programs (BLPs) 

 Extending BLPs for Plan Recognition 
 Experiments 
 Conclusions 
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Logical Abduction 
 Abduction 

 Process of finding the best explanation for a set of 
observations 

 Given 
 Background knowledge, B, in the form of a set of (Horn) 

clauses in first-order logic 
 Observations, O, in the form of atomic facts in first-order 

logic 

 Find 
 A hypothesis, H, a set of assumptions (atomic facts) that 

logically entail the observations given the theory: 
   B ∪ H |= O 

 Best explanation is the one with the fewest assumptions 7 



Bayesian Logic Programs (BLPs)  
[Kersting and De Raedt, 2001] 

 Set of Bayesian clauses a|a1,a2,....,an 
 Definite clauses that are universally quantified 
 Range-restricted, i.e variables{head}      variables{body} 
 Associated conditional probability table (CPT) 

o  P(head|body)  

 Bayesian predicates a, a1, a2, …, an have finite 
domains 
 Combining rule like noisy-or for mapping multiple CPTs 

into a single CPT. 
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Inference in BLPs 
[Kersting and De Raedt, 2001] 

 Logical inference 
 Given a BLP and a query, SLD resolution is used to 

construct proofs for the query 

 Bayesian network construction 
 Each ground atom is a random variable 
 Edges are added from ground atoms in the body to the 

ground atom in head 
 CPTs specified by the conditional probability distribution for 

the corresponding clause 
 P(X) =    P(Xi | Pa(Xi)) 

 Probabilistic inference 
 Marginal probability given evidence 
 Most Probable Explanation (MPE) given evidence 9 € 
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BLPs for Plan Recognition 

 SLD resolution is deductive inference, used for 
predicting observations from top-level plans 

 Plan recognition is abductive in nature and 
involves predicting the top-level plan from 
observations 
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BLPs cannot be used as is for plan recognition 



Extending BLPs for Plan Recognition 
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BLPs 
Logical 

Abduction 

BALPs 

BALPs – Bayesian Abductive Logic Programs 
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Logical Abduction in BALPs 

 Given  
  A set of observation literals  O = {O1, O2,….On} and a 

knowledge base KB 

 Compute a set abductive proofs of O using 
Stickel’s abduction algorithm [Stickel 1988] 

 Backchain on each Oi until it is proved or assumed 
 A literal is said to be proved if it unifies with a fact or the 

head of some rule in KB, otherwise it is said to be 
assumed 

 Construct a Bayesian network using the resulting 
set of proofs as in BLPs. 
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Example – Intelligent User Interfaces 
 Top-level plan predicates  

 copy-file, move-file, remove-file 

 Action predicates 
 cp, rm 

 Knowledge Base (KB) 
 cp(Filename,Destdir) | copy-file(Filename,Destdir) 
 cp(Filename,Destdir) | move-file(Filename,Destdir) 
 rm(Filename) | move-file(Filename,Destdir) 
 rm(Filename) | remove-file(Filename) 

 Observed actions 
 cp(test1.txt, mydir) 
 rm(test1.txt) 13 



Abductive Inference 
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copy-file(test1.txt,mydir) 

cp(test1.txt,mydir) 

cp(Filename,Destdir) | copy-file(Filename,Destdir) 

Assumed literal 



Abductive Inference 
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copy-file(test1.txt,mydir) 

cp(test1.txt,mydir) 

move-file(test1.txt,mydir) 

cp(Filename,Destdir) | move-file(Filename,Destdir) 

Assumed literal 



Abductive Inference 
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copy-file(test1.txt,mydir) 

cp(test1.txt,mydir) 

move-file(test1.txt,mydir) 

rm(Filename) | move-file(Filename,Destdir) 

rm(test1.txt) 

Match existing assumption 



Abductive Inference 

17 

copy-file(test1.txt,mydir) 

cp(test1.txt,mydir) 

move-file(test1.txt,mydir) 

rm(Filename) | remove-file(Filename) 

rm(test1.txt) 

remove-file(test1) 

Assumed literal 



Structure of Bayesian network 
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copy-file(test1.txt,mydir) 

cp(test1.txt,mydir) 

move-file(test1.txt,mydir) 

rm(test1.txt) 

remove-file(test1) 



Probabilistic Inference 

 Specifying probabilistic parameters 
 Noisy-and 

o Specify the CPT for combining the evidence from 
conjuncts in the body of the clause 

 Noisy-or 
o Specify the CPT for combining the evidence from 

disjunctive contributions from different ground clauses 
with the same head 

o Models “explaining away” 
 Noisy-and and noisy-or models reduce the number of 

parameters learned from data 
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Probabilistic Inference 
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copy-file(test1.txt,mydir) 

cp(test1.txt,mydir) 

move-file(test1.txt,mydir) 

rm(test1.txt) 

remove-file(test1) 

Noisy-or Noisy-or 



Probabilistic Inference 

 Most Probable Explanation (MPE) 
 For multiple plans, compute MPE, the most likely 

combination of truth values to all unknown literals given 
this evidence 

 Marginal Probability 
 For single top level plan prediction, compute marginal 

probability for all instances of plan predicate and pick the 
instance with maximum probability 

 When exact inference is intractable, SampleSearch [Gogate 

and Dechter, 2007], an approximate inference algorithm for 
graphical models with deterministic constraints is used 
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Probabilistic Inference 
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copy-file(test1.txt,mydir) 

cp(test1.txt,mydir) 

move-file(test1.txt,mydir) 

rm(test1.txt) 

remove-file(test1) 

Noisy-or Noisy-or 



Probabilistic Inference 
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copy-file(test1.txt,mydir) 

cp(test1.txt,mydir) 

move-file(test1.txt,mydir) 

rm(test1.txt) 

remove-file(test1) 

Noisy-or Noisy-or 

Evidence 



Probabilistic Inference 
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copy-file(test1.txt,mydir) 

cp(test1.txt,mydir) 

move-file(test1.txt,mydir) 

rm(test1.txt) 

remove-file(test1) 

Noisy-or Noisy-or 

Evidence 

Query variables 



Probabilistic Inference 
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copy-file(test1.txt,mydir) 

cp(test1.txt,mydir) 

move-file(test1.txt,mydir) 

rm(test1.txt) 

remove-file(test1) 

Noisy-or Noisy-or 

Evidence 

Query variables 
TRUE FALSE FALSE 

MPE 



Probabilistic Inference 
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copy-file(test1.txt,mydir) 

cp(test1.txt,mydir) 

move-file(test1.txt,mydir) 

rm(test1.txt) 

remove-file(test1) 

Noisy-or Noisy-or 

Evidence 

Query variables 
TRUE FALSE FALSE 

MPE 



Parameter Learning 

 Learn noisy-or/noisy-and parameters using the 
EM algorithm adapted for BLPs  [Kersting and De Raedt, 
2008] 

 Partial observability 
 In plan recognition domain, data is partially observable 
 Evidence is present only for observed actions and top-level 

plans; sub-goals, noisy-or, and noisy-and nodes are not 
observed 

 Simplify learning problem 
 Learn noisy-or parameters only 
 Used logical-and instead of noisy-and to combine evidence 

from conjuncts in the body of a clause 
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Experimental Evaluation 

 Monroe (Strategic planning) 

 Linux (Intelligent user interfaces) 

 Story Understanding (Story understanding) 
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Monroe and Linux  
[Blaylock and Allen, 2005] 

 Task 
 Monroe involves recognizing top level plans in an 

emergency response domain (artificially generated using 
HTN planner) 

 Linux involves recognizing top-level plans based on linux 
commands 

 Single correct plan in each example 

 Data 
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No. 
examples 

Avg. 
observations
/ example 

Total top‐level 
plan 
predicates 

Total observed 
action predicates 

Monroe 1000 10.19 10 30 
Linux 457 6.1 19 43 



Monroe and Linux  
 Methodology 

 Manually encoded the knowledge base  
 Learned noisy-or parameters using EM 
 Computed marginal probability for plan instances 

 Systems compared 
 BALPs 
 MLN-HCAM [Singla and Mooney, 2011] 

o  MLN-PC and MLN-HC do not run on Monroe and Linux due to scaling issues 

 Blaylock and Allen’s system [Blaylock and Allen, 2005] 

 Performance metric 
 Convergence score - measures the fraction of examples 

for which the plan predicate was predicted correctly 
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Results on Monroe 
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Results on Linux 
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Experiments with partial observability 
 Limitations of convergence score 

 Does not account for predicting the plan arguments 
correctly 

 Requires all the observations to be seen before plans can 
be predicted 

 Early plan recognition with partial set of observations 
 Perform plan recognition after observing the first 25%, 

50%, 75%, and 100% of the observations 
 Accuracy – Assign partial credit for the predicting plan 

predicate and a subset of the arguments correctly 
 Systems compared 

 BALPs 
 MLN-HCAM [Singla and Mooney, 2011]  

33 



Results on Monroe 
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Results on Linux 
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Story Understanding  
[Charniak and Goldman, 1991; Ng and Mooney, 1992] 

 Task 
 Recognize character’s top level plans based on actions 

described in narrative text 
 Multiple top-level plans in each example 

 Data 
 25 examples in development set and 25 examples in test 

set 
 12.6 observations per example 
 8 top-level plan predicates 
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Story Understanding 
 Methodology 

 Knowledge base was created for ACCEL [Ng and Mooney, 1992] 

 Parameters set manually 
o Insufficient number of examples in the development set 

to learn parameters 
 Computed MPE to get the best set of plans 

 Systems compared 
 BALPs 
 MLN-HCAM [Singla and Mooney, 2011] 

o  Best performing MLN model 

 ACCEL-Simplicity [Ng and Mooney, 1992] 

 ACCEL-Coherence [Ng and Mooney, 1992] 
o  Specific for Story Understanding 
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Results on Story Understanding 

38 * - Differences are statistically significant wrt BALPs 

* * 



Conclusion 

 BALPS – Extension of BLPs for plan recognition 
by employing logical abduction to construct 
Bayesian networks 

 Automatic learning of model parameters using 
EM 

 Empirical results on all benchmark datasets 
demonstrate advantages over existing methods 
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Future Work 

 Learn abductive knowledge base automatically 
from data 

 Compare BALPs with other probabilistic logics 
like ProbLog [De Raedt et. al, 2007], PRISM [Sato, 1995] and 
Poole’s Horn Abduction [Poole, 1993] on plan 
recognition 
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Questions 
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