Abductive Plan Recognition By Extending Bayesian Logic Programs

Sindhu V. Raghavan & Raymond J. Mooney The University of Texas at Austin

Plan Recognition

Predict an agent's top-level plans based on the observed actions

Abductive reasoning involving inference of cause from effect

Applications

- \diamond Story Understanding
- ♦ Strategic Planning
- ♦ Intelligent User Interfaces

Plan Recognition in Intelligent User Interfaces

\$ cd test-dir \$ cp test1.txt my-dir \$ rm test1.txt

What task is the user performing? **move-file**

Which files and directories are involved? test1.txt and test-dir

3

Data is relational in nature - several files and directories and several relations between them

Related Work

First-order logic based approaches [Kautz and Allen, 1986; Ng and Mooney, 1992]

- \diamond Knowledge base of plans and actions
- Default reasoning or logical abduction to predict the best plan based on the observed actions
- Onable to handle uncertainty in data or estimate likelihood of alternative plans
- Probabilistic graphical models [Charniak and Goldman, 1989; Huber et al., 1994; Pynadath and Wellman, 2000; Bui, 2003; Blaylock and Allen, 2005]
 - Encode the domain knowledge using Bayesian networks, abstract hidden Markov models, or statistical n-gram models
 - \diamond Unable to handle relational/structured data

Statistical Relational Learning based approaches

Arkov Logic Networks for plan recognition [Kate and Mooney, 2009; Singla and Mooney, 2011]

Our Approach

Extend Bayesian Logic Programs (BLPs) [Kersting and De Raedt, 2001] for plan recognition

BLPs integrate first-order logic and Bayesian networks

UWhy BLPs?

Efficient grounding mechanism that includes only those variables that are relevant to the query

- Easy to extend by incorporating any type of *logical* inference to construct networks
- Well suited for capturing *causal relations* in data

Outline

✓ Motivation

Background

- ♦ Logical Abduction
- ♦ Bayesian Logic Programs (BLPs)
- Extending BLPs for Plan Recognition
- Experiments
- Conclusions

Logical Abduction

Abduction

Process of finding the best explanation for a set of observations

- Background knowledge, B, in the form of a set of (Horn) clauses in first-order logic
- Observations, O, in the form of atomic facts in first-order logic

↔ A hypothesis, *H*, a set of assumptions (atomic facts) that logically entail the observations given the theory: B ∪ H |= O

 \diamond Best explanation is the one with the fewest assumptions

7

Bayesian Logic Programs (BLPs) [Kersting and De Raedt, 2001]

Set of Bayesian clauses $a|a_1, a_2, \dots, a_n$

- \diamond Definite clauses that are universally quantified
- \diamond Range-restricted, i.e variables{head} \subseteq variables{body}
- \diamond Associated conditional probability table (CPT)
 - o P(head|body)

Bayesian predicates a, a₁, a₂, ..., a_n have finite domains

♦ Combining rule like noisy-or for mapping multiple CPTs into a single CPT.

Inference in BLPs

[Kersting and De Raedt, 2001]

Logical inference

Given a BLP and a query, SLD resolution is used to
 construct proofs for the query

Bayesian network construction

- \diamond Each ground atom is a random variable
- Edges are added from ground atoms in the body to the ground atom in head
- CPTs specified by the conditional probability distribution for the corresponding clause

 $\diamond \mathsf{P}(\mathsf{X}) = \prod_{i} \mathsf{P}(\mathsf{X}_i | \mathsf{Pa}(\mathsf{X}_i))$

Probabilistic inference

- *Marginal probability* given evidence
- Most Probable Explanation (MPE) given evidence

BLPs for Plan Recognition

SLD resolution is deductive inference, used for predicting observations from top-level plans

Plan recognition is abductive in nature and involves predicting the top-level plan from observations

BLPs cannot be used as is for plan recognition

Extending BLPs for Plan Recognition

BALPs – Bayesian Abductive Logic Programs

Logical Abduction in BALPs

Given

- \diamond A set of observation literals O = {O₁, O₂,...O_n} and a knowledge base KB
- Compute a set abductive proofs of O using Stickel's abduction algorithm [Stickel 1988]
 - \diamond Backchain on each $O_{\rm i}$ until it is proved or assumed
 - A literal is said to be *proved* if it unifies with a fact or the head of some rule in KB, otherwise it is said to be *assumed*
- Construct a Bayesian network using the resulting set of proofs as in BLPs.

Example – Intelligent User Interfaces

□ Top-level plan predicates

 \diamond copy-file, move-file, remove-file

Action predicates

 \diamond cp, rm

□Knowledge Base (KB)

♦ cp(Filename,Destdir) | copy-file(Filename,Destdir)
♦ cp(Filename,Destdir) | move-file(Filename,Destdir)
♦ rm(Filename) | move-file(Filename,Destdir)
♦ rm(Filename) | remove-file(Filename)

Observed actions

Abductive Inference

Assumed literal

copy-file(test1.txt,mydir)

cp(test1.txt,mydir)

cp(Filename,Destdir) | copy-file(Filename,Destdir)

cp(Filename,Destdir) | move-file(Filename,Destdir)

rm(Filename) | move-file(Filename,Destdir)

rm(Filename) | remove-file(Filename)

Structure of Bayesian network

□ Specifying probabilistic parameters

- \diamond Noisy-and
 - Specify the CPT for combining the evidence from conjuncts in the body of the clause
- \diamond Noisy-or
 - Specify the CPT for combining the evidence from disjunctive contributions from different ground clauses with the same head
 - Models "explaining away"
- Noisy-and and noisy-or models reduce the number of parameters learned from data

□ Most Probable Explanation (MPE)

♦ For multiple plans, compute MPE, the most likely combination of truth values to all unknown literals given this evidence

Marginal Probability

- For single top level plan prediction, compute marginal probability for all instances of plan predicate and pick the instance with maximum probability
- When exact inference is intractable, SampleSearch [Gogate and Dechter, 2007], an approximate inference algorithm for graphical models with deterministic constraints is used

Query variables

Parameter Learning

- Learn noisy-or/noisy-and parameters using the EM algorithm adapted for BLPs [Kersting and De Raedt, 2008]
- Partial observability
 - \diamond In plan recognition domain, data is partially observable
 - Evidence is present only for observed actions and top-level plans; sub-goals, noisy-or, and noisy-and nodes are not observed

Simplify learning problem

- ♦ Learn noisy-or parameters only
- Used logical-and instead of noisy-and to combine evidence from conjuncts in the body of a clause

Experimental Evaluation

Monroe (Strategic planning)
 Linux (Intelligent user interfaces)
 Story Understanding (Story understanding)

Monroe and Linux

[Blaylock and Allen, 2005]

Task

- Monroe involves recognizing top level plans in an
 emergency response domain (artificially generated using
 HTN planner)
- Linux involves recognizing top-level plans based on *linux* commands
- ♦ Single correct plan in each example

Data		No. examples	Avg. observations / example	Total top-level plan predicates	Total observed action predicates
	Monroe	1000	10.19	10	30
	Linux	457	6.1	19	43

Monroe and Linux

Methodology

- \diamond Manually encoded the knowledge base
- \diamond Learned noisy-or parameters using EM
- Computed marginal probability for plan instances

Systems compared

- \diamond BALPs
- ♦ MLN-HCAM [Singla and Mooney, 2011]
 - $\circ~$ MLN-PC and MLN-HC do not run on Monroe and Linux due to scaling issues
- ♦ Blaylock and Allen's system [Blaylock and Allen, 2005]

□ Performance metric

Convergence score - measures the fraction of examples for which the plan predicate was predicted correctly

Results on Monroe

BALPs MLN-HCAM Blaylock & Allen

* - Differences are statistically significant wrt BALPs

Results on Linux

BALPs MLN-HCAM Blaylock & Allen

* - Differences are statistically significant wrt BALPs

Experiments with partial observability

Limitations of convergence score

- Ooes not account for predicting the plan arguments correctly
- Requires all the observations to be seen before plans can be predicted

Early plan recognition with partial set of observations

- Perform plan recognition after observing the *first* 25%, 50%, 75%, and 100% of the observations
- Accuracy Assign partial credit for the predicting plan predicate and a subset of the arguments correctly

□ Systems compared

- \diamond BALPs
- \diamond MLN-HCAM [Singla and Mooney, 2011]

Results on Monroe

BALPs —MLN-HCAM

Percent observations seen

Results on Linux

-BALPs -MLN-HCAM

Percent observations seen

Story Understanding

[Charniak and Goldman, 1991; Ng and Mooney, 1992]

Task

Recognize character's top level plans based on actions described in narrative text

♦ Multiple top-level plans in each example

Data

 \diamond 25 examples in development set and 25 examples in test set

- \diamond 12.6 observations per example
- \diamond 8 top-level plan predicates

Story Understanding

Methodology

- ♦ Knowledge base was created for ACCEL [Ng and Mooney, 1992]
- \diamond Parameters set manually

 Insufficient number of examples in the development set to learn parameters

♦ Computed MPE to get the best set of plans

Systems compared

- \diamond BALPs
- ♦ MLN-HCAM [Singla and Mooney, 2011]
 - Best performing MLN model
- ♦ ACCEL-Simplicity [Ng and Mooney, 1992]
- ♦ ACCEL-Coherence [Ng and Mooney, 1992]
 - Specific for Story Understanding

Results on Story Understanding

BALPs MLN-HCAM ACCEL-Sim ACCEL-Coh

* - Differences are statistically significant wrt BALPs

Conclusion

BALPS – Extension of BLPs for plan recognition by employing logical abduction to construct Bayesian networks

Automatic learning of model parameters using EM

Empirical results on all benchmark datasets demonstrate advantages over existing methods

Future Work

Learn abductive knowledge base automatically from data

Compare BALPs with other probabilistic logics like ProbLog [De Raedt et. al, 2007], PRISM [Sato, 1995] and Poole's Horn Abduction [Poole, 1993] on plan recognition

Questions