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Plan Recognition 
 Predict an agent’s top-level plans based on the 

observed actions 

 Abductive reasoning involving inference of 
cause from effect 

 Applications 
 Story Understanding 
 Strategic Planning 
 Intelligent User Interfaces 
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$ cd test‐dir 
$ cp test1.txt my‐dir 
$ rm test1.txt 

What task is the user performing? 
move-file 

Which files and directories are 
involved? 
test1.txt and test-dir 

Plan Recognition in  
Intelligent User Interfaces 
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Data is relational in nature - several files and directories 
and several relations between them 



Related Work 
 First-order logic based approaches [Kautz and Allen, 1986; Ng 

and Mooney, 1992] 

 Knowledge base of plans and actions  
 Default reasoning or logical abduction to predict the best plan 

based on the observed actions  
 Unable to handle uncertainty in data or estimate likelihood of 

alternative plans 

 Probabilistic graphical models [Charniak and Goldman, 1989; Huber 
et al., 1994; Pynadath and Wellman, 2000; Bui, 2003; Blaylock and Allen, 2005] 

 Encode the domain knowledge using Bayesian networks, 
abstract hidden Markov models, or statistical n-gram models 

 Unable to handle relational/structured data 

 Statistical Relational Learning based approaches 
 Markov Logic Networks for plan recognition [Kate and Mooney, 2009; 

Singla and Mooney, 2011] 
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Our Approach 

 Extend Bayesian Logic Programs (BLPs) [Kersting 

and De Raedt, 2001] for plan recognition 
 BLPs integrate first-order logic and Bayesian 

networks 

 Why BLPs? 
 Efficient grounding mechanism that includes only those 

variables that are relevant to the query 
 Easy to extend by incorporating any type of logical 

inference to construct networks 
 Well suited for capturing causal relations in data 
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Outline 

 Motivation 
 Background 

 Logical Abduction 
 Bayesian Logic Programs (BLPs) 

 Extending BLPs for Plan Recognition 
 Experiments 
 Conclusions 
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Logical Abduction 
 Abduction 

 Process of finding the best explanation for a set of 
observations 

 Given 
 Background knowledge, B, in the form of a set of (Horn) 

clauses in first-order logic 
 Observations, O, in the form of atomic facts in first-order 

logic 

 Find 
 A hypothesis, H, a set of assumptions (atomic facts) that 

logically entail the observations given the theory: 
   B ∪ H |= O 

 Best explanation is the one with the fewest assumptions 7 



Bayesian Logic Programs (BLPs)  
[Kersting and De Raedt, 2001] 

 Set of Bayesian clauses a|a1,a2,....,an 
 Definite clauses that are universally quantified 
 Range-restricted, i.e variables{head}      variables{body} 
 Associated conditional probability table (CPT) 

o  P(head|body)  

 Bayesian predicates a, a1, a2, …, an have finite 
domains 
 Combining rule like noisy-or for mapping multiple CPTs 

into a single CPT. 
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Inference in BLPs 
[Kersting and De Raedt, 2001] 

 Logical inference 
 Given a BLP and a query, SLD resolution is used to 

construct proofs for the query 

 Bayesian network construction 
 Each ground atom is a random variable 
 Edges are added from ground atoms in the body to the 

ground atom in head 
 CPTs specified by the conditional probability distribution for 

the corresponding clause 
 P(X) =    P(Xi | Pa(Xi)) 

 Probabilistic inference 
 Marginal probability given evidence 
 Most Probable Explanation (MPE) given evidence 9 € 
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BLPs for Plan Recognition 

 SLD resolution is deductive inference, used for 
predicting observations from top-level plans 

 Plan recognition is abductive in nature and 
involves predicting the top-level plan from 
observations 
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BLPs cannot be used as is for plan recognition 



Extending BLPs for Plan Recognition 
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BLPs 
Logical 

Abduction 

BALPs 

BALPs – Bayesian Abductive Logic Programs 
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Logical Abduction in BALPs 

 Given  
  A set of observation literals  O = {O1, O2,….On} and a 

knowledge base KB 

 Compute a set abductive proofs of O using 
Stickel’s abduction algorithm [Stickel 1988] 

 Backchain on each Oi until it is proved or assumed 
 A literal is said to be proved if it unifies with a fact or the 

head of some rule in KB, otherwise it is said to be 
assumed 

 Construct a Bayesian network using the resulting 
set of proofs as in BLPs. 
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Example – Intelligent User Interfaces 
 Top-level plan predicates  

 copy-file, move-file, remove-file 

 Action predicates 
 cp, rm 

 Knowledge Base (KB) 
 cp(Filename,Destdir) | copy-file(Filename,Destdir) 
 cp(Filename,Destdir) | move-file(Filename,Destdir) 
 rm(Filename) | move-file(Filename,Destdir) 
 rm(Filename) | remove-file(Filename) 

 Observed actions 
 cp(test1.txt, mydir) 
 rm(test1.txt) 13 



Abductive Inference 
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copy-file(test1.txt,mydir) 

cp(test1.txt,mydir) 

cp(Filename,Destdir) | copy-file(Filename,Destdir) 

Assumed literal 



Abductive Inference 
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copy-file(test1.txt,mydir) 

cp(test1.txt,mydir) 

move-file(test1.txt,mydir) 

cp(Filename,Destdir) | move-file(Filename,Destdir) 

Assumed literal 



Abductive Inference 
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copy-file(test1.txt,mydir) 

cp(test1.txt,mydir) 

move-file(test1.txt,mydir) 

rm(Filename) | move-file(Filename,Destdir) 

rm(test1.txt) 

Match existing assumption 



Abductive Inference 
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copy-file(test1.txt,mydir) 

cp(test1.txt,mydir) 

move-file(test1.txt,mydir) 

rm(Filename) | remove-file(Filename) 

rm(test1.txt) 

remove-file(test1) 

Assumed literal 



Structure of Bayesian network 
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copy-file(test1.txt,mydir) 

cp(test1.txt,mydir) 

move-file(test1.txt,mydir) 

rm(test1.txt) 

remove-file(test1) 



Probabilistic Inference 

 Specifying probabilistic parameters 
 Noisy-and 

o Specify the CPT for combining the evidence from 
conjuncts in the body of the clause 

 Noisy-or 
o Specify the CPT for combining the evidence from 

disjunctive contributions from different ground clauses 
with the same head 

o Models “explaining away” 
 Noisy-and and noisy-or models reduce the number of 

parameters learned from data 
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Probabilistic Inference 
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copy-file(test1.txt,mydir) 

cp(test1.txt,mydir) 

move-file(test1.txt,mydir) 

rm(test1.txt) 

remove-file(test1) 

Noisy-or Noisy-or 



Probabilistic Inference 

 Most Probable Explanation (MPE) 
 For multiple plans, compute MPE, the most likely 

combination of truth values to all unknown literals given 
this evidence 

 Marginal Probability 
 For single top level plan prediction, compute marginal 

probability for all instances of plan predicate and pick the 
instance with maximum probability 

 When exact inference is intractable, SampleSearch [Gogate 

and Dechter, 2007], an approximate inference algorithm for 
graphical models with deterministic constraints is used 
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Probabilistic Inference 
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copy-file(test1.txt,mydir) 

cp(test1.txt,mydir) 

move-file(test1.txt,mydir) 

rm(test1.txt) 

remove-file(test1) 

Noisy-or Noisy-or 



Probabilistic Inference 
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copy-file(test1.txt,mydir) 

cp(test1.txt,mydir) 

move-file(test1.txt,mydir) 

rm(test1.txt) 

remove-file(test1) 

Noisy-or Noisy-or 

Evidence 



Probabilistic Inference 
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copy-file(test1.txt,mydir) 

cp(test1.txt,mydir) 

move-file(test1.txt,mydir) 

rm(test1.txt) 

remove-file(test1) 

Noisy-or Noisy-or 

Evidence 

Query variables 



Probabilistic Inference 
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copy-file(test1.txt,mydir) 

cp(test1.txt,mydir) 

move-file(test1.txt,mydir) 

rm(test1.txt) 

remove-file(test1) 

Noisy-or Noisy-or 

Evidence 

Query variables 
TRUE FALSE FALSE 

MPE 



Probabilistic Inference 
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copy-file(test1.txt,mydir) 

cp(test1.txt,mydir) 

move-file(test1.txt,mydir) 

rm(test1.txt) 

remove-file(test1) 

Noisy-or Noisy-or 

Evidence 

Query variables 
TRUE FALSE FALSE 

MPE 



Parameter Learning 

 Learn noisy-or/noisy-and parameters using the 
EM algorithm adapted for BLPs  [Kersting and De Raedt, 
2008] 

 Partial observability 
 In plan recognition domain, data is partially observable 
 Evidence is present only for observed actions and top-level 

plans; sub-goals, noisy-or, and noisy-and nodes are not 
observed 

 Simplify learning problem 
 Learn noisy-or parameters only 
 Used logical-and instead of noisy-and to combine evidence 

from conjuncts in the body of a clause 
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Experimental Evaluation 

 Monroe (Strategic planning) 

 Linux (Intelligent user interfaces) 

 Story Understanding (Story understanding) 
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Monroe and Linux  
[Blaylock and Allen, 2005] 

 Task 
 Monroe involves recognizing top level plans in an 

emergency response domain (artificially generated using 
HTN planner) 

 Linux involves recognizing top-level plans based on linux 
commands 

 Single correct plan in each example 

 Data 

29 

No. 
examples 

Avg. 
observations
/ example 

Total top‐level 
plan 
predicates 

Total observed 
action predicates 

Monroe 1000 10.19 10 30 
Linux 457 6.1 19 43 



Monroe and Linux  
 Methodology 

 Manually encoded the knowledge base  
 Learned noisy-or parameters using EM 
 Computed marginal probability for plan instances 

 Systems compared 
 BALPs 
 MLN-HCAM [Singla and Mooney, 2011] 

o  MLN-PC and MLN-HC do not run on Monroe and Linux due to scaling issues 

 Blaylock and Allen’s system [Blaylock and Allen, 2005] 

 Performance metric 
 Convergence score - measures the fraction of examples 

for which the plan predicate was predicted correctly 
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Results on Monroe 
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Results on Linux 
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Experiments with partial observability 
 Limitations of convergence score 

 Does not account for predicting the plan arguments 
correctly 

 Requires all the observations to be seen before plans can 
be predicted 

 Early plan recognition with partial set of observations 
 Perform plan recognition after observing the first 25%, 

50%, 75%, and 100% of the observations 
 Accuracy – Assign partial credit for the predicting plan 

predicate and a subset of the arguments correctly 
 Systems compared 

 BALPs 
 MLN-HCAM [Singla and Mooney, 2011]  
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Results on Monroe 
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Results on Linux 
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Story Understanding  
[Charniak and Goldman, 1991; Ng and Mooney, 1992] 

 Task 
 Recognize character’s top level plans based on actions 

described in narrative text 
 Multiple top-level plans in each example 

 Data 
 25 examples in development set and 25 examples in test 

set 
 12.6 observations per example 
 8 top-level plan predicates 
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Story Understanding 
 Methodology 

 Knowledge base was created for ACCEL [Ng and Mooney, 1992] 

 Parameters set manually 
o Insufficient number of examples in the development set 

to learn parameters 
 Computed MPE to get the best set of plans 

 Systems compared 
 BALPs 
 MLN-HCAM [Singla and Mooney, 2011] 

o  Best performing MLN model 

 ACCEL-Simplicity [Ng and Mooney, 1992] 

 ACCEL-Coherence [Ng and Mooney, 1992] 
o  Specific for Story Understanding 

37 



Results on Story Understanding 

38 * - Differences are statistically significant wrt BALPs 

* * 



Conclusion 

 BALPS – Extension of BLPs for plan recognition 
by employing logical abduction to construct 
Bayesian networks 

 Automatic learning of model parameters using 
EM 

 Empirical results on all benchmark datasets 
demonstrate advantages over existing methods 
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Future Work 

 Learn abductive knowledge base automatically 
from data 

 Compare BALPs with other probabilistic logics 
like ProbLog [De Raedt et. al, 2007], PRISM [Sato, 1995] and 
Poole’s Horn Abduction [Poole, 1993] on plan 
recognition 
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Questions 
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