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Plan Recognition

dPredict an agent’s top-level plans based on the
observed actions

dAbductive reasoning involving inference of
cause from effect

d Applications
< Story Understanding
< Strategic Planning
< Intelligent User Interfaces



Plan Recognition in
Intelligent User Interfaces

v S cd test-dir
& € S cp testl.txt my-dir
" S rm test1.txt
What task is the user performing?

Which files and directories are
involved?
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Data is relational in nature - several files and directories
and several relations between them



Related Work

 First-order logic based approaches [kautz and Alien, 1986; Ng
and Mooney, 1992]

< Knowledge base of plans and actions

<> Default reasoning or logical abduction to predict the best plan
based on the observed actions

<> Unable to handle uncertainty in data or estimate likelihood of
alternative plans

1 Probabilistic graphical models [charniak and Goldman, 1989; Huber

et al., 1994; Pynadath and Wellman, 2000; Bui, 2003; Blaylock and Allen, 2005]

< Encode the domain knowledge using Bayesian networks,
abstract hidden Markov models, or statistical n-gram models

<> Unable to handle relational/structured data
[ Statistical Relational Learning based approaches

<> Markov Logic Networks for plan recognition [Kate and Mooney, 2009;
Singla and Mooney, 2011]



Our Approach

dExtend Bayesian Logic Programs (BLPS) ikersting
and De Raedt, 2001 fOr plan recognition

A BLPs integrate first-order logic and Bayesian
networks

dWhy BLPs?

< Efficient grounding mechanism that includes only those
variables that are relevant to the query

<> Easy to extend by incorporating any type of logical
inference to construct networks

<> Well suited for capturing causal relations in data



Outline

v Motivation

dBackground
<> Logical Abduction
<> Bayesian Logic Programs (BLPs)

d Extending BLPs for Plan Recognition
JExperiments
[ Conclusions



Logical Abduction
dAbduction

< Process of finding the best explanation for a set of
observations

1 Given

< Background knowledge, B, in the form of a set of (Horn)
clauses in first-order logic

< Observations, O, in the form of atomic facts in first-order
logic
JFind

<> A hypothesis, H, a set of assumptions (atomic facts) that
logically entail the observations given the theory:

BUHI|=0
<> Best explanation is the one with the fewest assumptions



Bayesian Logic Programs (BLPs)

[Kersting and De Raedt, 2001]

dSet of Bayesian clauses ala,,a,,....,a,
<> Definite clauses that are universally quantified

<> Range-restricted, i.e variables{head} C variables{body}
<> Associated conditional probability table (CPT)

o P(head|body)
dBayesian predicates a, a,, a,, ..., a, have finite
domains

<> Combining rule like noisy-or for mapping multiple CPTs
into a single CPT.



Inference in BLPs

[Kersting and De Raedt, 2001]

dLogical inference
< Given a BLP and a query, SLD resolution is used to
construct proofs for the query
dBayesian network construction
< Each ground atom is a random variable

<> Edges are added from ground atoms in the body to the
ground atom in head

<> CPTs specified by the conditional probability distribution for
the corresponding clause

< P(X) =11 P(X; | Pa(X)))

d Probabilistic inference
<> Marginal probability given evidence
< Most Probable Explanation (MPE) given evidence



BLPs for Plan Recognition

A SLD resolution is deductive inference, used for
predicting observations from top-level plans

JPlan recognition is abductive in nature and
involves predicting the top-level plan from
observations

BLPs cannot be used as is for plan recognition
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Extending BLPs for Plan Recognition

Logical
+

BALPs

BALPs — Bayesian Abductive Logic Programs



Logical Abduction in BALPs

dGiven
< A set of observation literals O ={0O,, O,,....0,} and a
knowledge base KB

d Compute a set abductive proofs of O using

Stickel’s abduction algorithm [stickei 19ss;
< Backchain on each O, until it is proved or assumed
<> Aliteral is said to be proved if it unifies with a fact or the
head of some rule in KB, otherwise it is said to be
assumed
 Construct a Bayesian network using the resulting

set of proofs as in BLPs.



Example — Intelligent User Interfaces

d Top-level plan predicates
<> copy-file, move-file, remove-file

dAction predicates
<-cp, rm

dKnowledge Base (KB)

< cp(Filename,Destdir) | copy-file(Filename,Destdir)
< cp(Filename,Destdir) | move-file(Filename,Destdir)
< rm(Filename) | move-file(Filename,Destdir)

< rm(Filename) | remove-file(Filename)

(1 Observed actions

< cp(test1.txt, mydir)
< rm(test1.txt)



Abductive Inference

Assumed literal

J

copy-file(test1.txt,mydir)

N\

cp(test1.txt,mydir)

cp(Filename,Destdir) | copy-file(Filename,Destdir)



Abductive Inference

Assumed literal

J

copy-file(test1.txt,mydir) move-file(test1.txt,mydir)

N\ /

cp(test1.txt,mydir)

cp(Filename,Destdir) | move-file(Filename,Destdir)
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Abductive Inference

Match existing assumption

J

copy-file(test1.txt,mydir) move-file(test1.txt,mydir)

NN

cp(test1.txt,mydir) rm(test1.txt)

rm(Filename) | move-file(Filename,Destdir)
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Abductive Inference

Assumed literal

J

copy-file(test1.txt,mydir) move-file(test1.txt,mydir) remove-file(test1)

N4

cp(test1.txt,mydir) rm(test1.txt)

rm(Filename) | remove-file(Filename)
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Structure of Bayesian network

copy-file(test1.txt,mydir) move-file(test1.txt,mydir) remove-file(test1)

NN

cp(test1.txt,mydir) rm(test1.txt)
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Probabillistic Inference

dSpecifying probabilistic parameters
<> Noisy-and

o Specify the CPT for combining the evidence from
conjuncts in the body of the clause

< Noisy-or
o Specify the CPT for combining the evidence from

disjunctive contributions from different ground clauses
with the same head

o Models “explaining away”

< Noisy-and and noisy-or models reduce the number of
parameters learned from data
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Probabillistic Inference

copy-file(test1.txt,mydir) move-file(test1.txt,mydir) remove-file(test1)

\NOisy-o / \dsy /

cp(test1.txt,mydir) rm(test1.txt)
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Probabillistic Inference

dMost Probable Explanation (MPE)

< For multiple plans, compute MPE, the most likely
combination of truth values to all unknown literals given
this evidence

dMarginal Probability

< For single top level plan prediction, compute marginal
probability for all instances of plan predicate and pick the
iInstance with maximum probability

<> When exact inference is intractable, SampleSearch [Gogate
and Dechter, 2007], an approximate inference algorithm for
graphical models with deterministic constraints is used



Probabillistic Inference

copy-file(test1.txt,mydir) move-file(test1.txt,mydir) remove-file(test1)

\NOisy-o / \dsy /

cp(test1.txt,mydir) rm(test1.txt)
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Probabillistic Inference

copy-file(test1.txt,mydir) move-file(test1.txt,mydir) remove-file(test1)

\NOisy-o / \dsy /

cp(test1.txt,mydir) rm(test1.txt)

Evidence
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Probabillistic Inference

Query variables

copy-file(test1.txt,mydir) move-file(test1.txt,mydir) remove-file(test1)

\NOisy_o / \msy /

cp(test1.txt,mydir) rm(test1.txt)

Evidence
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Probabillistic Inference

Query variables MPE
FALSE TRUE FALSE

copy-file(test1.txt,mydir) move-file(test1.txt,mydir) remove-file(test1)

oy / \msy /

cp(test1.txt,mydir) rm(test1.txt)

Evidence
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Probabillistic Inference

copy-file(test1.txt,mydir) MOVe -fl |e(test1 txt , myd | r) remove-file(test1)

\NOisy_o / \Oisy /

cp(test1.txt,mydir) rm(test1.txt)



Parameter Learning

dLearn noisy-or/noisy-and parameters using the

EM algorithm adapted for BLPS [Kersting and De Raedt,
2008]

 Partial observability

< In plan recognition domain, data is partially observable
<> Evidence is present only for observed actions and top-level
plans; sub-goals, noisy-or, and noisy-and nodes are not
observed
dSimplify learning problem
<> Learn noisy-or parameters only

<> Used logical-and instead of noisy-and to combine evidence
from conjuncts in the body of a clause



Experimental Evaluation

D M onroe (Strategic planning)
dLinux (Intelligent user interfaces)

Sto ry Understandin J (Story understanding)
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Monroe and Linux

[Blaylock and Allen, 2005]

d Task

< Monroe involves recognizing top level plans in an
emergency response domain (artificially generated using
HTN planner)

< Linux involves recognizing top-level plans based on /inux
commands

< Single correct plan in each example

D Data No. Avg. Total top-level | Total observed
examples | observations | plan action predicates
/ example predicates
Monroe 1000 10.19 10 30
Linux 457 6.1 19 43




Monroe and Linux
dMethodology

< Manually encoded the knowledge base
<> Learned noisy-or parameters using EM
<> Computed marginal probability for plan instances

dSystems compared
< BALPs
<> MLN-HCAM [Singla and Mooney, 2011]

o MLN-PC and MLN-HC do not run on Monroe and Linux due to scaling issues

< Blaylock and Allen’s system [Biayiock and Allen, 2005]

d Performance metric

< Convergence score - measures the fraction of examples
for which the plan predicate was predicted correctly



Results on Monroe

100 98.8
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Convergence Score

91
BALPs MLN-HCAM Blaylock & Allen

* - Differences are statistically significant wrt BALPs
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Results on Linux

50

46.6

45

40

35

30

Convergence Score

25
BALPs MLN-HCAM Blaylock & Allen

* - Differences are statistically significant wrt BALPs
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Experiments with partial observability

A Limitations of convergence score

<> Does not account for predicting the plan arguments
correctly

<> Requires all the observations to be seen before plans can
be predicted

A Early plan recognition with partial set of observations

< Perform plan recognition after observing the first 25%,
50%, 75%, and 100% of the observations

<> Accuracy — Assign partial credit for the predicting plan
predicate and a subset of the arguments correctly

1 Systems compared

<-BALPs
<> MLN-HCAM [singla and Mooney, 2011]



Accuracy

- N W b 01 O N O®
O O O O O O O O O

Results on Monroe

“*BALPs <“*MLN-HCAM
79.16

25 50 75 100

Percent observations seen »



Accuracy

40
35
30
25
20
15
10

Results on Linux

“BALPs <“*MLN-HCAM

36.32
34.06

28.84

16.3

25 50 75 100

Percent observations seen .



Story Understanding

[Charniak and Goldman, 1991; Ng and Mooney, 1992]

L Task

<> Recognize character’s top level plans based on actions
described in narrative text

< Multiple top-level plans in each example

dData

<25 examples in development set and 25 examples in test
set

<> 12.6 observations per example
<> 8 top-level plan predicates



Story Understanding
dMethodology

<> Knowledge base was created for ACCEL [Ng and Mooney, 1992]

< Parameters set manually

o Insufficient number of examples in the development set
to learn parameters

<> Computed MPE to get the best set of plans

dSystems compared

< BALPs
<> MLN-HCAM [Singla and Mooney, 2011]

o Best performing MLN model
<> ACCEL—SimpIiCity [Ng and Mooney, 1992]

<> ACCEL-Coherence [Ng and Mooney, 1992]
o Specific for Story Understanding



Results on Story Understanding

"BALPs ®MLN-HCAM ®ACCEL-Sim ®ACCEL-Coh

100
* *

90
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70 -

60 -

50 -

40 -

Precision Recall F1 Score

* - Differences are statistically significant wrt BALPs 18



Conclusion

ABALPS — Extension of BLPs for plan recognition
by employing logical abduction to construct
Bayesian networks

d Automatic learning of model parameters using
EM

d Empirical results on all benchmark datasets
demonstrate advantages over existing methods
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Future Work

dLearn abductive knowledge base automatically
from data

d Compare BALPs with other probabilistic logics
like ProbLog [De Raedt et. al, 2007], PRISM [Sato, 1995]and
Poole’s Horn Abduction roore, 19937 ON plan
recognition
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Questions
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