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Motivation

» Enable systems to learn from natural instruction methods

From a theoretical perspective

» Assumptions about teachers
They have a good understanding of the target concept

Non-experts in knowledge representation and ML

» Examples include...
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xample: Autonomous UAV
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- StudentfTeacher Intesaction
Student: What should I do instesd?
T : Do sometiing slise.
: An existing or new behavior?
: An existing bulevior.
: Which betavior?
: The circla belawion
Student: When should I use this alternative?
Teacher: Always (for cuorrent procedurs).
Student: 0K .
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268 lyou wish to complete this lesSon?
Y resson 1s complets. :
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xample: Web Tasks

) ML Skistings Property Search Results - Mozila Firefox
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Steps (A i
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["nTep://www.mlslistings.cor Property Search Results

* enter "94301" into the
|"Seaxch by Zip Code"™
|textbox

|* click the "Search by 2ip & << Privious " ﬁ Next >> j
|Code:"'s "Continue® button

Listings 1 through 2 of 2 listings displayed

9 Piey

|t ckick che: Toontinue® Photo Price Bd/Ba Addressand Area MLS#  More | Virtual
|* enter "1b§ﬂ' into the - Eckad s By % | (Chickfor ;‘:t.;:
|"TC" textbo. view) view).

* turn on the "Two

-

1
) T L] -
Bedrooms™ radio button - $£48,000 21 102 KINGSLEY AV
[* select "20" from the L Single Res Palo Alio, CA 24301 (Palo Altc)
|"number of properties per 730 | Keller Williams Palo Alto

{page™ listbox
|* click the "Begin search"

:

| 143808
button 2 @ $995.000 | 5 4 |111CHURCHILL AV a
‘ \m S Palo Alto, CA 54201 (Palo Alto) —~
‘!.J Hot New Uisting 800 |Coldwell Banker-Los Gatos-South
Personal Database K =
(el s < i o ) Gcn)
| fll name = James Ln — :
| Work City = San Jose Listings 1 through 2 of 2 listings displayed
| Work Zip Code = 95120
| Home City = San Frandsco Pr 5
i operty Type(s) Selected:
i iz Fenagis Single Family Residence
——put secret stuff after this ine—
‘ Location(s) Selected:
‘94301
Done
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Motivation

» Most learning algorithms consume only positive and
negative examples

Positive Negative

Concept
Knight-Fork
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Information about Objects

» Relevant objects

» “Which objects are relevant in this example?”

» Object pairings
» “Given these examples, which objects have the same ‘role’?”
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Framework: Exact learning from queries

» Exactly learn first-order definite theories

mother(X,Y), father(y,z) -> grandfather(X,z)
father(X,Y), father(y,z) -> grandfather(X,z)

» Learn via various query types (introduce later)
Equivalence Queries
Membership Queries
Relevant Object Queries

Pairing Queries

» Goal: Quantify number of queries to exactly learn definite
theory

In particular, can object-based queries help!?
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Queries from Previous Work
» Equivalence Queries (EQs)

Is this the correct

Source of new examples definition for “King-In-
Check™?

Stopping point

» Membership Queries (MQs) h

Source of example labelings

Is this an example of
. “King-In-Check’?
» Prior work:

Angluin et al 1992
Reddy and Tadepalli 1997
Khardon 1999
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Problems with MQs

» Teacher effort required can be high
» Algorithm may present nonsensical examples
» Small amount of information

s this a valid example of
“In-Check™?

» Can we reduce the number of MQs using object-based
queries!?

9 11/28/201 1



Learning with Relevant Object Queries

» Definition: A relevant object query (ROQ) takes a
positive example as input and returns a minimal set of
objects bound in a substitution for some clause in the

target hypothesis.
» How best to leverage this information?

Please mark the
relevant objects.
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Algorithm schema

repeat

if E(Q) returns done then return the hypothesis H

Get a new counter-example from the previous EQ.
Minimize the example by removing unnecessary objects
Merge the example (if possible) into remembered examples
Generate a new hypothesis H.

end
Algorithm Learn-MQ: Learns using EQ and MQ queries.
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Algorithm schema: Minimization

- Example family tree with node color representing eye

color
- FOL representation:

blue(a), brown(b), blue(c), brown(d), blue(e),
blue(f), blue(g), mother(a,c), father(a,b),
mother(b,e), father(b,d), mother(c,qg), father(c,f)

-> grandfather(a,d)

L
B o

<

Gertrude

grandfather(x,z) :

mother(X,Y),
father(y,z).

grandfather(x,z) :

father(X,Y),
father(y,z).
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Algorithm schema: Minimization

» FOL representation:

blue(a), brown(b), blue(c), brown(d), blue(e),

blue(f), blue(g), mother(a,c), father(a,b),

mother(b,e), father(b,d), mother(c,g), father(c,f)
-> grandfather(a,d)

mother(X,Y),
father(y,z).

Bob
grandfather(x,z) :

father(y,z).

grandfather(x,z) :

father(X,Y),
<

Gertrude
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Algorithm schema: Minimization

» FOL representation:

blue(a), blue(c), brown(d), blue(e), blue(f),

mother(a,c), mother(c,g), father(c,f)

-> grandfather(a,d)

-
\
o N

Result of MQ on above example: FALSE

Gertrude

blue(g),

grandfather(x,z) :

mother(X,Y),
father(y,z).

grandfather(x,z) :

father(X,Y),
father(y,z).
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Algorithm schema: Minimization

» FOL representation:

blue(a), brown(b), brown(d), blue(e), blue(f),
blue(g), father(a,b), mother(b,e), father(b,d)
-> grandfather(a,d)

mother(X,Y),
father(y,z).

father(X,Y),
father(y,z).

grandfather(x,z) :

grandfather(x,z) :

lii%iii!!#!

Result of MQ on above example: True
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Algorithm schema: Minimization

» FOL representation:

blue(a), brown(b), brown(d), blue(f), blue(g),
father(a,b), father(b,d)
-> grandfather(a,d)

mother(X,Y),

m father(y,z).
. o

father(X,Y),

grandfather(x,z) :

grandfather(x,z) :

. / father(y,2).

lii%iii!!#!

Result of MQ on above example: True
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Algorithm schema: Minimization

» FOL representation:

blue(a), brown(b), brown(d), blue(g), father(a,b),
father(b,d)
-> grandfather(a,d)

mother(X,Y),

m father(y,z).
. o

father(X,Y),
father(y,z).

grandfather(x,z) :

grandfather(x,z) :

=

Result of MQ on above example: True
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Algorithm schema: Minimization

» FOL representation:

blue(a), brown(b), brown(d), father(a,b), father(b,d)
-> grandfather(a,d)

grandfather(x,z) :
mother(X,Y),

m father(y,z).
. o

grandfather(x,z) :
father(X,Y),
father(y,z).

=

Result of MQ on above example: True
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Algorithm Schema: Merging

» E = grandfathercCh,j) :=
blueCh), blue(i), blue(3),
fatherCh,1), father(i,j).

» S = grandfather(a,d) :=
blue(a), brown(b), brown(d),
father(a,b), father(b,d).

E= Harry saiah Jack

19 11/28/201 1



Algorithm Schema: Merging

» S1’ = grandfather(h,j) :=
blueCh), father(a,b),
father(b,d).

» MQ(SI’) returns true

S= m—[ Isaiah ]—[ Jack ]
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Result 1 (Learn-MQ-ROQ)

» n = max # of objects in an example
» k = max # of variables in a clause in target clause
» a = max arity of a predicate

» Compared to (Khardon 1999), Learn-MQ-ROQ reduces the
number of MQs by O(nk”a) by introducing O(k”*a) ROQs

# of queries no longer depends on n

» MQs are still used in merging step
Can we completely eliminate MQs!?
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Negatively-Biased EQ Oracle

» An oracle is negatively-biased if it answers equivalence
queries by always providing a negative counter-example if
one exists

If none exists, returns a positive counter-example (or halt)
» Embeds the merging test in the EQ

» Can be simulated given a large number of negative
examples

Or large set of unlabeled examples that are mostly negative
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Result 2 (Learn-ROQ)

» Using a negatively-biased EQ oracle and ROQs, Learn-
ROQ is efficient and eliminates MQs.

Now requires an EQ for every MQ used during merging

» May be beneficial in situations with a large number of
mostly negative examples
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Inexact ROQs

» Allow an oracle that answers ROQs to error (in a
restricted way)

» An oracle is (j,f)-verbose if for j of the clauses it marks f
extra objects as relevant

» Similarly, an oracle is (j,f)-conservative if for j of the
clauses it misses f of the relevant objects
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Result 3 (inexact ROQs)

» (j,f)-verbose oracle

Can use previous algorithms directly
Increase of O((k+f)*a) EQs and ROQs!

» (j,f)-conservative oracle
Algorithm appears to require MQs
Adds at most n-(k+f) MQs for every error

» Above results suggest a conservative oracle is preferable
when MQs are available
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Learning with Pairing Queries

» Definition: A pairing query (PQ) is a query that, given
two positive examples, returns false if there is no clause
in T that covers them both. Otherwise,a |-1 mapping
between objects in El and E2 is returned where objects

are mapped together if they correspond to the same
variable in T.

Please match objects
with the same “role.”
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Result 4 (pairing queries)

» Using PQs, we can learn with no MQs or ROQs and
O(k*a) PQ:s.

» Likely not easy to answer in practice

» Inexact pairing queries!?

Please match objects
with the same “role.”
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Future work

» User study

» Probabilistic model of oracle mistakes

» New query types
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Questions?
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