# Aspects of Semi-Supervised and Active Learning in Conditional Random Fields

Nataliya Sokolovska

LRI, CNRS UMR 8623 & INRIA Saclay, University Paris Sud, Orsay, France

ECML 2011, Paper ID 243

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

## Outline

Motivation: Natural Language Processing & CRF

#### Introduction of Marginal Probability of Observations in CRF Semi-Supervised Probabilistic Criterion Pool-Based Active Learning

Experiments

Phonetisation Problem (NetTalk) Named Entity Recognition Task (CoNLL 2003)

Conclusions & Perspectives

## Motivation

 Problem of sequence labeling (text, biological data, audio data, etc.)

- Natural Language Processing
- Data with sequential underlying structure

∜

Model of Conditional Random Fields

Cheap unlabeled data vs. expensive labeled data

- ► Exploit unlabeled data ⇒ Semi-Supervised Learning
- ► Choose instances of high training quality ⇒ Active Learning

## Problem of Sequence Labeling: formalizations

Given N independent labeled sequences  $\mathcal{D} = \{\mathbf{x}^{(i)}, \mathbf{y}^{(i)}\}_{i=1}^N$ , where

- ▶  $\mathbf{x}^{(i)} = (x_1^{(i)}, \dots, x_{T_i}^{(i)})$  denotes an input sequence
- ▶  $\mathbf{y}^{(i)} = (y_1^{(i)}, \dots, y_{T_i}^{(i)})$  is an output sequence
- $T_i$  is a length of sequences  $\mathbf{x}^{(i)}$  and  $\mathbf{y}^{(i)}$

#### Problem of Sequence Labeling: formalizations

Given N independent labeled sequences  $\mathcal{D} = {\{\mathbf{x}^{(i)}, \mathbf{y}^{(i)}\}_{i=1}^{N}}$ , where

• 
$$\mathbf{x}^{(i)} = (x_1^{(i)}, \dots, x_{T_i}^{(i)})$$
 denotes an input sequence

- $\mathbf{y}^{(i)} = (y_1^{(i)}, \dots, y_{T_i}^{(i)})$  is an output sequence
- $T_i$  is a length of sequences  $\mathbf{x}^{(i)}$  and  $\mathbf{y}^{(i)}$

The aim is to minimize the negated conditional maximum likelihood

$$\ell(\mathcal{D}; \theta) = -\sum_{i=1}^{N} \log p_{\theta}(\mathbf{y}^{(i)} | \mathbf{x}^{(i)}) + \rho_2 \|\theta\|^2$$

with respect to the parameter  $\theta$ .

#### Model of Conditional Random Fields

Conditional Random Fields (*Lafferty, McCallum, Pereira, 2001*) are based on the discriminative probabilistic model

$$p_{\theta}(\mathbf{y}^{(i)}|\mathbf{x}^{(i)}) = rac{1}{Z_{\theta}(\mathbf{x}^{(i)})} \exp \left\{ \sum_{t=1}^{T_i} \sum_{k=1}^{K} \theta_k f_k(y_{t-1}^{(i)}, y_t^{(i)}, x_t^{(i)}) 
ight\},$$

- $\{f_k\}_{1 \le k \le K}$  is an arbitrary set of feature functions
- ► {θ<sub>k</sub>}<sub>1≤k≤K</sub> are real-valued parameters, associated with the feature functions
- the normalization factor

$$Z_{\theta}(\mathbf{x}^{(i)}) = \sum_{(y',y)\in\mathcal{Y}^2} \exp\left\{\sum_{t=1}^{T_i} \sum_{k=1}^{K} \theta_k f_k(y_{t-1}^{(i)}, y_t^{(i)}, x_t^{(i)})\right\}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

## Feature Functions



$$\sum_{k=1}^{K} \theta_k f_k(y_{t-1}, y_t, x_t) = \sum_{X \in \mathcal{X}} \left( \sum_{y \in Y, x \in X} \mu_{y, x} \mathbb{1}\{y_t = y, x_t = x\} + \sum_{(y', y) \in Y^2, x \in X} \lambda_{y', y, x} \mathbb{1}\{y_{t-1} = y', y_t = y, x_t = x\} \right).$$

We get  $|X| \cdot |Y| + |X| \cdot |Y|^2$  to estimate.

Application: Phonetization task (NetTalk Corpus)

Phonetization task: 20 000 English words and their transcriptions

$$X = \{ \text{letters} \}, |X| = 26,$$
  
 $Y = \{ \text{phonemes} \}, |Y| = 53.$ 

Ex. apple - [' æ p l]

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Training corpus – 16 000 sequences

# Application: Named-Entity Recognition Task (CoNLL 2003)

Predict a sequence of labels given 3 aligned sequences of observations.

| Word       | Part of Speech | Syntactic Tag | Label |
|------------|----------------|---------------|-------|
| Slovenia   | NNP            | I-NP          | I-LOC |
| and        | CC             | I-NP          | 0     |
| Poland     | NNP            | I-NP          | I-LOC |
| target     | NN             | I-NP          | 0     |
| EU         | NNP            | I-INTJ        | I-ORG |
| ,          | ,              | 0             | 0     |
| NATO       | NNP            | I-NP          | I-ORG |
| membership | NN             | I-NP          | 0     |
|            |                | 0             | 0     |

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Training corpus – 15 000 sequences

#### Motivation: Natural Language Processing & CRF

#### Introduction of Marginal Probability of Observations in CRF Semi-Supervised Probabilistic Criterion

Pool-Based Active Learning

#### Experiments

Phonetisation Problem (NetTalk) Named Entity Recognition Task (CoNLL 2003)

Conclusions & Perspectives

## Semi-Supervised Probabilistic Criterion

 $\{X_i, Y_i\}_{i=1}^n$  are observations and their labels

Let  $g(y|x; \theta)$  be the conditional probability function, parameterized by  $\theta$ . Then the standard conditional maximum likelihood estimator is defined by

$$\hat{\theta}_n = \arg\min_{\theta\in\Theta} \frac{1}{n} \sum_{i=1}^n \ell(Y_i | X_i; \theta),$$

where  $\ell(y|x;\theta) = -\log g(y|x;\theta)$  denotes the negated conditional log-likelihood function.

The asymptotically optimal semi-supervised estimator  $\hat{\theta}_n^s$  proposed by *Sokolovska et al.*, 2008 is defined by

$$\hat{\theta}_n^s = \arg\min_{\theta\in\Theta} \sum_{i=1}^n \frac{q(X_i)}{\sum_{j=1}^n \mathbb{1}\{X_j = X_i\}} \ell(Y_i | X_i; \theta),$$

where q(x) is the marginal probability of observations.

#### Semi-Supervised Probabilistic Criterion Applied to CRF

The semi-supervised criterion applied to the conditional random fields criterion, referred later to as weighted CRF, takes the form:

$$C(\theta) = \sum_{\mathbf{x} \in \mathcal{X}} -q(\mathbf{x}) \frac{1}{N_{\mathbf{x}}} \log p_{\theta}(\mathbf{y}|\mathbf{x}),$$

where  $N_{\mathbf{x}}$  is the number of times a sequence  $\mathbf{x}$  has been observed in the training corpus, and  $p_{\theta}(\mathbf{y}|\mathbf{x})$  is defined

$$p_{\theta}(\mathbf{y}|\mathbf{x}) = \frac{1}{Z_{\theta}(\mathbf{x})} \exp \left\{ \sum_{t=1}^{T} \sum_{k=1}^{K} \theta_k f_k(y_{t-1}, y_t, x_t) \right\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

## Semi-Supervised Criterion: Simulated Data

Artificial data simulated by a hidden Markov Model (first order); A – the state transition probabilities, B – the observation probabilities matrix.

$$q(\mathbf{x}) = \sum_{\mathbf{Y}} p(\mathbf{x}, \mathbf{y}) = \sum_{\mathbf{Y}} p(y_1) b_{y_1}(x_1) a_{x_1, x_2} b_{y_2}(x_2) \dots a_{x_{T-1}, x_T} b_{y_T}(x_T).$$



Figure: Simulated data. Difference of error rates of standard and weighted CRF by marginal probability. Weighted CRF performs better if *n* is small.

Approximation of Marginal Probability of Observations

We follow the idea of *n*-grams linguistic models:

$$q(\mathbf{x}) = q(x_1, \ldots, x_T) = \prod_t p(x_t | x_{t-1}, x_{t-2}, x_{t-3}),$$

where

 $p(x_t|x_{t-1}, x_{t-2}, x_{t-3}) \approx C(x_t, x_{t-1}, x_{t-2}, x_{t-3})/C(x_{t-1}, x_{t-2}, x_{t-3}),$  $C(\cdot) \text{ means counts.}$ 

#### For the realistic data sets:

- NetTalk: n-grams model, n = 3;
- CoNLL 2003: n-grams model, n = 2; p(x) = p(x<sub>word</sub>)p(x<sub>POS tag</sub>)p(x<sub>synt. tag</sub>).

#### Motivation: Natural Language Processing & CRF

#### Introduction of Marginal Probability of Observations in CRF Semi-Supervised Probabilistic Criterion Pool-Based Active Learning

#### Experiments

Phonetisation Problem (NetTalk) Named Entity Recognition Task (CoNLL 2003)

Conclusions & Perspectives

## Motivation for Pool-Based Active Learning

Quota Sampling instead of Stratified Sampling

Intuition: rare events are not less important than frequent ones

Use quota sampling to select training instances efficiently:

- Candidates for training are sorted according to their marginal probabilities
- Get *n* frequency groups of training points
- Choose (randomly) one training instance per frequency group

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

# Active Learning: random sampling vs. quota sampling CoNLL 2003



Figure: CoNLL 2003 data set. Comparison of error rates (for test A and test B sets) while training on n = 10 and n = 50 sequences. Active learning based on marginal probability (QS on the boxplots) is much more efficient than arbitrary choice of observations for training. Quota sampling outperforms random sampling.

# Active Learning: FuSAL/Fully Supervised Active Learning, (*Tomanek et al., 2009*), CoNLL 2003

m - number of examples selected within one loop  $\mathcal{D}_{I}$  - set of labeled instances  $\mathcal{D}_{u}$  - set of unlabeled instances  $u_{\theta}(\mathbf{x})$  - utility function

while stopping criterion is not met do train model M using  $D_l$ estimate  $u_{\theta}(\mathbf{x}_i) \ \forall \mathbf{x}_i \in \mathcal{D}_u$ choose m examples whose  $u_{\theta}(\mathbf{x})$  is maximal get labels for the m chosen instances move the m labeled examples from  $\mathcal{D}_u$  to  $\mathcal{D}_l$ end while



## Conclusions and Perspectives

#### Conclusions

- If the number of observations is small, state-of-the-art methods are not stable
- The quota-based active learning outperforms state-of-the art methods on real data sets
- Application of the semi-supervised criterion is problematic (marginal probability approximation)

#### Perspectives

- Approximation of marginal probability of structured data (graphical models)
- Theoretical analysis of the pool-based active learning method

 Theoretical analysis of the non-asymptotic case of the semi-supervised criterion