SARSA (λ) In RKHS

Matthew W. Robards, Peter Sunehag, Scott Sanner

COLLEGE OF ENGINEERING AND COMPUTER SCIENCE

June 16, 2010

900

00000			
Motivation			

• We are primarily interested in reinforcement learning in large and continuous spaces which requires good feature selection

- 日本 - 御本 - 田本 - 田本 - 田

Introduction	RKHS-SARSA (λ)	Controlling The Memory!	Results 00000000	Conclusion	Questions
Motivation					

- We are primarily interested in reinforcement learning in large and continuous spaces which requires good feature selection
- Hand engineering features results in poor generalization in an agent across domains

3

イロト 不得 とくほ とくほとう

Introduction •••••	RKHS-SARSA (λ)	Controlling The Memory!	Results 00000000	Conclusion	Questions
Motivation					

- We are primarily interested in reinforcement learning in large and continuous spaces which requires good feature selection
- Hand engineering features results in poor generalization in an agent across domains
- We use kernels to automatically linearize a non-linear problem

白卜(檀卜(豆卜(豆卜)豆

Introduction •••••	RKHS-SARSA (λ)	Controlling The Memory!	Results 00000000	Conclusion	Questions
Motivation					

- We are primarily interested in reinforcement learning in large and continuous spaces which requires good feature selection
- Hand engineering features results in poor generalization in an agent across domains
- We use kernels to automatically linearize a non-linear problem
- We introduce the first memory efficient kernel TD algorithm which allows for eligibility traces

イロト 不得 トイヨト イヨト 二日

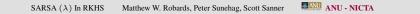
Introduction •••••	RKHS-SARSA (λ)	Controlling The Memory!	Results 00000000	Conclusion	Questions
Motivation					

- We are primarily interested in reinforcement learning in large and continuous spaces which requires good feature selection
- Hand engineering features results in poor generalization in an agent across domains
- We use kernels to automatically linearize a non-linear problem
- We introduce the first memory efficient kernel TD algorithm which allows for eligibility traces with sparsification
- Furthermore, this is a surprisingly easy to implement algorithm which gives a nice interpretation of the eligibility trace.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction	RKHS-SARSA (λ)	Controlling The Memory!	Results 00000000	Conclusion	Questions
Kernel Re	inforcement Lear	ming			

• Several previous methods have been proposed.



3

イロト 不得 とうほう うほう

Introduction 0 ● 0 0 0	RKHS-SARSA (λ)	Controlling The Memory!	Results 00000000	Conclusion	Questions
Kernel Re	inforcement Lear	ming			

- Several previous methods have been proposed.
- KLSTD is an interesting offline algorithm for offline policy evaluation, extending LSTD to kernel learning.

Э

イロト 不得 とうほう うほう

Introduction 0000	RKHS-SARSA (λ)	Controlling The Memory!	Results 00000000	Conclusion	Questions
Kernel Rei	nforcement Lear	ning			

- Several previous methods have been proposed.
- KLSTD is an interesting offline algorithm for offline policy evaluation, extending LSTD to kernel learning.
- KLSPI was introduced to do policy iteration as an extension of KLSTD, still in the offline (or batch) setting.

イロト 不得 トイヨト イヨト 二日

Introduction R	RKHS-SARSA (λ)	Controlling The Memory!	Results 00000000	Conclusion	Questions
Kernel Reinfo	orcement Learni	ng			

- Several previous methods have been proposed.
- KLSTD is an interesting offline algorithm for offline policy evaluation, extending LSTD to kernel learning.
- KLSPI was introduced to do policy iteration as an extension of KLSTD, still in the offline (or batch) setting.
- Gaussian Processes TD learning was proposed to do online kernel TD learning.

イロト 不得 トイヨト イヨト 二日

Introduction	RKHS-SARSA (λ)	Controlling The Memory!	Results 00000000	Conclusion	Questions
Kernel Rei	nforcement Lear	ning			

- Several previous methods have been proposed.
- KLSTD is an interesting offline algorithm for offline policy evaluation, extending LSTD to kernel learning.
- KLSPI was introduced to do policy iteration as an extension of KLSTD, still in the offline (or batch) setting.
- Gaussian Processes TD learning was proposed to do online kernel TD learning.
- These works proposed novel kernel algorithms with novel tricks for memory efficiency.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction	RKHS-SARSA (λ)	Controlling The Memory!	Results 00000000	Conclusion	Questions
Kernel Rei	nforcement Lear	ming			

- Several previous methods have been proposed.
- KLSTD is an interesting offline algorithm for offline policy evaluation, extending LSTD to kernel learning.
- KLSPI was introduced to do policy iteration as an extension of KLSTD, still in the offline (or batch) setting.
- Gaussian Processes TD learning was proposed to do online kernel TD learning.
- These works proposed novel kernel algorithms with novel tricks for memory efficiency.
- They do not allow for eligibility trace.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

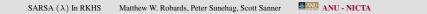
Introduction	RKHS-SARSA (λ)	Controlling The Memory!	Results 00000000	Conclusion	Questions
Markov D	ecision Processes				

• We assume a (finite, countable infinite, or even continuous) Markov decision process (MDP)

(日)(御)(王)(王)(王)

Introduction 00000	RKHS-SARSA (λ)	Controlling The Memory!	Results 00000000	Conclusion	Questions
Markov D	ecision Processes				

- We assume a (finite, countable infinite, or even continuous) Markov decision process (MDP)
- $\langle S, A, R, T, \gamma \rangle$



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction 00000	RKHS-SARSA (λ)	Controlling The Memory!	Results 00000000	Conclusion	Questions
Markov D	ecision Processes				

- We assume a (finite, countable infinite, or even continuous) Markov decision process (MDP)
- $\langle S, A, R, T, \gamma \rangle$
- $\bullet\,$ State space ${\cal S},$ action space ${\cal A}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction 00000	RKHS-SARSA (λ)	Controlling The Memory!	Results 00000000	Conclusion	Questions
Markov Dec	cision Processes				

- We assume a (finite, countable infinite, or even continuous) Markov decision process (MDP)
- $\langle S, A, R, T, \gamma \rangle$
- State space \mathcal{S} , action space \mathcal{A}
- *T* : *S* × *A* × *S* → [0, 1] is transition function where *T*(*s*, *a*, *s'*) defines probability of transitioning from state *s* to *s'* through action *a*

イロト 不得 トイヨト イヨト 二日

Introduction 00000	RKHS-SARSA (λ)	Controlling The Memory!	Results 00000000	Conclusion	Questions
Markov Dec	cision Processes				

- We assume a (finite, countable infinite, or even continuous) Markov decision process (MDP)
- $\langle S, A, R, T, \gamma \rangle$
- State space \mathcal{S} , action space \mathcal{A}
- *T* : *S* × *A* × *S* → [0, 1] is transition function where *T*(*s*, *a*, *s'*) defines probability of transitioning from state *s* to *s'* through action *a*
- $R: S \times A \times S \rightarrow \mathbb{R}$ is a (possibly stochastic) reward function

白下 不同下 不同下 不同下 一日.

Introduction	RKHS-SARSA (λ)	Controlling The Memory!	Results 00000000	Conclusion	Questions
Markov De	cision Processes				

- We assume a (finite, countable infinite, or even continuous) Markov decision process (MDP)
- $\langle S, A, R, T, \gamma \rangle$
- State space \mathcal{S} , action space \mathcal{A}
- *T* : *S* × *A* × *S* → [0, 1] is transition function where *T*(*s*, *a*, *s'*) defines probability of transitioning from state *s* to *s'* through action *a*
- $R: S \times A \times S \rightarrow \mathbb{R}$ is a (possibly stochastic) reward function
- $r_t = R(s_t, a_t, s' | s' = s_{t+1})$ defines the reward when action *a* in state *s* results in transition to state *s'*

(日) (日) (日) (日) (日) (日) (日) (日)

Introduction	RKHS-SARSA (λ)	Controlling The Memory!	Results 00000000	Conclusion	Questions
Markov De	cision Processes				

- We assume a (finite, countable infinite, or even continuous) Markov decision process (MDP)
- $\langle S, A, R, T, \gamma \rangle$
- State space \mathcal{S} , action space \mathcal{A}
- *T* : *S* × *A* × *S* → [0, 1] is transition function where *T*(*s*, *a*, *s'*) defines probability of transitioning from state *s* to *s'* through action *a*
- $R: S \times A \times S \rightarrow \mathbb{R}$ is a (possibly stochastic) reward function
- $r_t = R(s_t, a_t, s' | s' = s_{t+1})$ defines the reward when action *a* in state *s* results in transition to state *s'*
- R_t denotes *return* at time *t* which gives expected infinite discounted total reward given by $\sum_{i=t}^{\infty} \gamma^{i-t} r_t$, and $0 < \gamma < 1$

(日) (四) (日) (日) (日) (日) (日)

Introduction 00000	RKHS-SARSA (λ)	Controlling The Memory!	Results 00000000	Conclusion	Questions
Markov De	cision Processes				

- We assume a (finite, countable infinite, or even continuous) Markov decision process (MDP)
- $\langle S, A, R, T, \gamma \rangle$
- State space \mathcal{S} , action space \mathcal{A}
- *T* : *S* × *A* × *S* → [0, 1] is transition function where *T*(*s*, *a*, *s'*) defines probability of transitioning from state *s* to *s'* through action *a*
- $R: S \times A \times S \rightarrow \mathbb{R}$ is a (possibly stochastic) reward function
- $r_t = R(s_t, a_t, s' | s' = s_{t+1})$ defines the reward when action *a* in state *s* results in transition to state *s'*
- R_t denotes *return* at time *t* which gives expected infinite discounted total reward given by $\sum_{i=t}^{\infty} \gamma^{i-t} r_t$, and $0 < \gamma < 1$
- Assume first order Markov property. ie. $(s_{t+1}, a_{t+1}, r_{t+1})$ is independent of $(s_{t-1}, a_{t-1}, r_{t-1})$ given (s_t, a_t, r_t)

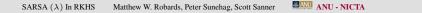
ANU - NICTA

ъ

ヘロト 不得 トイヨト 不良トー

$$Q(s,a) = \langle w, \phi(s,a) \rangle \tag{1}$$

ヘロト 不得 トイヨト 不良トー



ъ

$$Q(s,a) = \langle w, \phi(s,a) \rangle \tag{1}$$

ヘロト 不得 トイヨト 不良トー

• Traditional update rule for SARSA (λ) using function approximation with regularizer is

Э

$$Q(s,a) = \langle w, \phi(s,a) \rangle \tag{1}$$

ヘロト 不得 トイヨト 不良トー

• Traditional update rule for SARSA (λ) using function approximation with regularizer is

$$w_{t+1} = w_t - \eta_t \left[err(s_t, a_t, R_t) e_t - \xi w_t \right]$$
(2)

Э

$$Q(s,a) = \langle w, \phi(s,a) \rangle \tag{1}$$

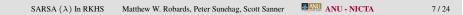
• Traditional update rule for SARSA (λ) using function approximation with regularizer is

$$w_{t+1} = w_t - \eta_t \left[err(s_t, a_t, R_t)e_t - \xi w_t \right]$$
(2)

• Where $err(s_t, a_t, R_t) = (Q(s_t, a_t) - R_t)$ and $R_t = r_t + \gamma Q(s_{t+1}, a_{t+1})$

- 日本 - 御本 - 田本 - 田本 - 田

Introduction ○○○○●	RKHS-SARSA (λ)	Controlling The Memory!	Results 00000000	Conclusion	Questions
$SARSA(\lambda)$					



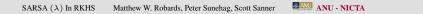
ヘロト ヘアト ヘビト ヘビト

ъ

990

Introduction ○○○○●	RKHS-SARSA (λ)	Controlling The Memory!	Results 00000000	Conclusion	Questions
$SARSA(\lambda)$					

$$e_t := \gamma \lambda e_{t-1} + \phi(s_t, a_t), \ \phi(s, a) = k((s, a), \cdot)$$
(3)



ъ

ヘロト ヘ週 ト ヘヨト ヘヨト

Introduction ○○○○●	RKHS-SARSA (λ)	Controlling The Memory!	Results 00000000	Conclusion	Questions
$SARSA(\lambda)$					

$$e_t := \gamma \lambda e_{t-1} + \phi(s_t, a_t), \ \phi(s, a) = k((s, a), \cdot)$$
(3)

• And is set to $\vec{0}$ at the beginning of each episode

ъ

ヘロト 不得 トイヨト 不良トー

Introduction ○○○○●	RKHS-SARSA (λ)	Controlling The Memory!	Results 00000000	Conclusion	Questions
$SARSA(\lambda)$					

$$e_t := \gamma \lambda e_{t-1} + \phi(s_t, a_t), \ \phi(s, a) = k((s, a), \cdot)$$
(3)

- And is set to $\vec{0}$ at the beginning of each episode
- Equivalently

ъ

ヘロト 不得 トイヨト 不良トー

Introduction ○○○○●	RKHS-SARSA (λ)	Controlling The Memory!	Results 00000000	Conclusion	Questions
$SARSA(\lambda)$					

$$e_t := \gamma \lambda e_{t-1} + \phi(s_t, a_t), \ \phi(s, a) = k((s, a), \cdot)$$
(3)

- And is set to $\vec{0}$ at the beginning of each episode
- Equivalently

$$e_t := \sum_{i=t_0}^t (\gamma \lambda)^{t-i} \phi(s_i, a_i).$$
(4)

ヘロト 不得 トイヨト 不良トー

ъ

Introduction ○○○○●	RKHS-SARSA (λ)	Controlling The Memory!	Results 00000000	Conclusion	Questions
$SARSA(\lambda)$					

$$e_t := \gamma \lambda e_{t-1} + \phi(s_t, a_t), \ \phi(s, a) = k((s, a), \cdot)$$
(3)

- And is set to $\vec{0}$ at the beginning of each episode
- Equivalently

$$e_t := \sum_{i=t_0}^t (\gamma \lambda)^{t-i} \phi(s_i, a_i).$$
(4)

イロト 不得 とうほう うほう

• Where t_0 is the time at which the current episode began

ъ

Introduction ○○○○●	RKHS-SARSA (λ)	Controlling The Memory!	Results 00000000	Conclusion	Questions
$SARSA(\lambda)$					

$$e_t := \gamma \lambda e_{t-1} + \phi(s_t, a_t), \ \phi(s, a) = k((s, a), \cdot)$$
(3)

- And is set to $\vec{0}$ at the beginning of each episode
- Equivalently

$$e_t := \sum_{i=t_0}^t (\gamma \lambda)^{t-i} \phi(s_i, a_i).$$
(4)

ロトス値とステレステレー

7/24

- Where t_0 is the time at which the current episode began
- Typically such a representation would be undesirable since it requires storing all past samples

Introduction ○○○○●	RKHS-SARSA (λ)	Controlling The Memory!	Results 00000000	Conclusion	Questions
$SARSA(\lambda)$					

$$e_t := \gamma \lambda e_{t-1} + \phi(s_t, a_t), \ \phi(s, a) = k((s, a), \cdot)$$
(3)

- And is set to $\vec{0}$ at the beginning of each episode
- Equivalently

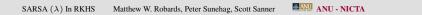
$$e_t := \sum_{i=t_0}^t (\gamma \lambda)^{t-i} \phi(s_i, a_i).$$
(4)

ANU - NICTA

- Where t_0 is the time at which the current episode began
- Typically such a representation would be undesirable since it requires storing all past samples
- For now lets assume that kernalizing our algorithm means storing all previously visited state action pairs anyway!

Introduction 00000	RKHS-SARSA (λ)	Controlling The Memory!	Results 00000000	Conclusion	Questions
RKHS-SA	$\operatorname{ARSA}(\lambda)$		j		

• We now do two things:



ъ

ヘロト ヘアト ヘビト ヘビト

Introduction 00000	RKHS-SARSA (λ)	Controlling The Memory!	Results 00000000	Conclusion	Questions
RKHS-SA	$RSA(\lambda)$				

- We now do two things:
 - We substitute the the summed form of the eligibility trace into the update equation, and

3

イロト 不得 とうほう うほう

Introduction 00000	RKHS-SARSA (λ)	Controlling The Memory!	Results 00000000	Conclusion	Questions
RKHS-SA	$RSA(\lambda)$				

- We now do two things:
 - We substitute the the summed form of the eligibility trace into the update equation, and
 - We note that by similarly summing the updates of $\boldsymbol{\theta}$ we get

$$\theta_t = \sum_{i=1}^t \alpha_i \phi(s_i, a_i) = \sum_{i=1}^t \alpha_i k((s_i, a_i), \cdot)$$

イロト 不得 トイヨト イヨト 二日

Introduction 00000	RKHS-SARSA (λ)	Controlling The Memory!	Results 00000000	Conclusion	Questions
RKHS-SAF	$RSA(\lambda)$				

- We now do two things:
 - We substitute the the summed form of the eligibility trace into the update equation, and
 - We note that by similarly summing the updates of θ we get $\theta_t = \sum_{i=1}^t \alpha_i \phi(s_i, a_i) = \sum_{i=1}^t \alpha_i k((s_i, a_i), \cdot)$
- By doing this we get nice update equations for the new dual parameters *α*:

(日) (四) (日) (日) (日) (日) (日)

8/24

Introduction 00000	RKHS-SARSA (λ)	Controlling The Memory!	Results 00000000	Conclusion	Questions
RKHS-SAI	$RSA(\lambda)$				

- We now do two things:
 - We substitute the the summed form of the eligibility trace into the update equation, and
 - We note that by similarly summing the updates of θ we get $\theta_t = \sum_{i=1}^t \alpha_i \phi(s_i, a_i) = \sum_{i=1}^t \alpha_i k((s_i, a_i), \cdot)$
- By doing this we get nice update equations for the new dual parameters *α*:

$$\alpha'_{i} = (1 - \eta \xi) \alpha_{i} \, i = 1, \dots, t_{0} - 1 \tag{5}$$

$$\alpha'_i = (1 - \eta\xi)\alpha_i - \eta_t err(s_t, a_t, R_t)(\gamma\lambda)^{t-i-1}, i = t_0, \dots, t-1$$
 (6)

$$\alpha'_t = \eta_t err(s_t, a_t, R_t). \tag{7}$$

(日) (四) (日) (日) (日) (日) (日)

Introduction 00000	RKHS-SARSA (λ)	Controlling The Memory!	Results 00000000	Conclusion	Questions
RKHS-SA	$RSA(\lambda)$				

- We now do two things:
 - We substitute the the summed form of the eligibility trace into the update equation, and
 - We note that by similarly summing the updates of θ we get $\theta_t = \sum_{i=1}^t \alpha_i \phi(s_i, a_i) = \sum_{i=1}^t \alpha_i k((s_i, a_i), \cdot)$
- By doing this we get nice update equations for the new dual parameters *α*:

$$\alpha'_{i} = (1 - \eta \xi) \alpha_{i} \, i = 1, \dots, t_{0} - 1 \tag{5}$$

$$\alpha'_{i} = (1 - \eta\xi)\alpha_{i} - \eta_{t} err(s_{t}, a_{t}, R_{t})(\gamma\lambda)^{t-i-1}, i = t_{0}, \dots, t-1$$
(6)

$$\alpha'_t = \eta_t err(s_t, a_t, R_t). \tag{7}$$

200

where t_0 is the time at which the current episode began

Introduction 00000	RKHS-SARSA (λ)	Controlling The Memory! ●00000	Results 00000000	Conclusion	Questions
Controlling	The Memory!				

• This provides the foundations for a powerful kernel based reinforcement learning algorithm.

3

イロト 不得 とうほう うほう

Introduction 00000	RKHS-SARSA (λ)	Controlling The Memory! ●000000	Results 00000000	Conclusion	Questions
Controlling	The Memory!				

- This provides the foundations for a powerful kernel based reinforcement learning algorithm.
- Number of samples grows linearly with time. PROBLEM!!!

ъ

イロト 不得 とうほう うほう

Introduction 00000	RKHS-SARSA (λ)	Controlling The Memory! ●00000	Results 00000000	Conclusion	Questions
Controlling	g The Memory!				

- This provides the foundations for a powerful kernel based reinforcement learning algorithm.
- Number of samples grows linearly with time. PROBLEM!!!
- We use ideas from the projectron method of Orabona et. al to make our algorithm more efficient in memory

ヘロト 不得 トイヨト 不良トー

Introduction 00000	RKHS-SARSA (λ)	Controlling The Memory!	Results 00000000	Conclusion	Questions
Controlling	g The Memory!				

• Before adding new sample, we ask ourselves:

Introduction 00000	RKHS-SARSA (λ)	Controlling The Memory!	Results 00000000	Conclusion	Questions
Controlling	g The Memory!				

- Before adding new sample, we ask ourselves:
 - How well can this new sample be represented as a linear combination of old ones

ъ

イロト 不得 とうほう うほう

Introduction 00000	RKHS-SARSA (λ)	Controlling The Memory!	Results 00000000	Conclusion	Questions
Controllin	g The Memory!				

- Before adding new sample, we ask ourselves:
 - How well can this new sample be represented as a linear combination of old ones
 - For poly kernels, in fact, we will eventually span the RKHS and never need to add new samples

Э

イロト 不得下 イヨト イヨト

Introduction 00000	RKHS-SARSA (λ)	Controlling The Memory!	Results 00000000	Conclusion	Questions
Controlli	ng The Memory!				

- Before adding new sample, we ask ourselves:
 - How well can this new sample be represented as a linear combination of old ones
 - For poly kernels, in fact, we will eventually span the RKHS and never need to add new samples
- Rather than storing all new samples, consider projecting the newest hypothesis in \mathcal{H}_t onto \mathcal{H}_{t-1}

イロト 不得 トイヨト 不良ト

Introduction 00000	RKHS-SARSA (λ)	Controlling The Memory!	Results 00000000	Conclusion	Questions
Projectron	RKHS-SARSA(λ)			
- Now	antheasthess under	ting the O function i	mmadiataly	wa aanaid	an tha

• Now rather than updating the Q function immediately, we consider the projection of Q_{t+1} onto \mathcal{H}_{t-1}

(日)(御)(王)(王)(王)

Introduction 00000	RKHS-SARSA (λ)	Controlling The Memory! ○○●○○○	Results 00000000	Conclusion	Questions
Projectron	RKHS-SARSA()	N)			

- Now rather than updating the Q function immediately, we consider the projection of Q_{t+1} onto \mathcal{H}_{t-1}
- Take "temporal hypothesis" $Q'_t = Q_{t+1}$ and its projection $Q''_t = P_{t-1}Q'_t$

<ロト < 同ト < 三ト < 三ト = 三 の < ○</p>

Introduction 00000	RKHS-SARSA (λ)	Controlling The Memory! 00●000	Results 00000000	Conclusion	Questions
Projectron	RKHS-SARSA((λ)			

- Now rather than updating the Q function immediately, we consider the projection of Q_{t+1} onto \mathcal{H}_{t-1}
- Take "temporal hypothesis" $Q'_t = Q_{t+1}$ and its projection $Q''_t = P_{t-1}Q'_t$
- Using linear projection operator P_{t-1}

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction 00000	RKHS-SARSA (λ)	Controlling The Memory! 00●000	Results 00000000	Conclusion	Questions
Projectron	RKHS-SARSA()	()			

- Now rather than updating the Q function immediately, we consider the projection of Q_{t+1} onto \mathcal{H}_{t-1}
- Take "temporal hypothesis" $Q'_t = Q_{t+1}$ and its projection $Q''_t = P_{t-1}Q'_t$
- Using linear projection operator P_{t-1}

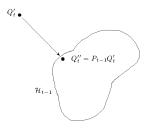


Figure: Projection of temporal hypothesis onto lower RKHS.

(日)(御)(王)(王)(王)

200

Introduction 00000	RKHS-SARSA (λ)	Controlling The Memory!	Results 00000000	Conclusion	Questions
Dealing V	Vith the Eligibility	y Trace			

• This now, however, breaks our previous vital assumption on the eligibility trace that we store all previous samples.

ヘロト 人間 トイヨト イヨト

3

nac

12/24

Introduction 00000	RKHS-SARSA (λ)	Controlling The Memory!	Results 00000000	Conclusion	Questions
Dealing W	ith the Eligibility	7 Trace			

- This now, however, breaks our previous vital assumption on the eligibility trace that we store all previous samples.
- Realize that the eligibility trace is now an eligibility *function* in \mathcal{H}_k given by

ъ

イロト 不得 とうほう うほう

Introduction 00000	RKHS-SARSA (λ)	Controlling The Memory!	Results 00000000	Conclusion	Questions
Dealing W	ith the Eligibility	7 Trace			

- This now, however, breaks our previous vital assumption on the eligibility trace that we store all previous samples.
- Realize that the eligibility trace is now an eligibility *function* in \mathcal{H}_k given by

$$e_t := \sum_{i=t_0}^t \beta_i k((s_i, a_i), \cdot) \tag{8}$$

イロト 不得 トイヨト イヨト 二日

Introduction 00000	RKHS-SARSA (λ)	Controlling The Memory!	Results 00000000	Conclusion	Questions
Dealing W	ith the Eligibility	/ Trace			

- This now, however, breaks our previous vital assumption on the eligibility trace that we store all previous samples.
- Realize that the eligibility trace is now an eligibility *function* in \mathcal{H}_k given by

$$e_t := \sum_{i=t_0}^t \beta_i k((s_i, a_i), \cdot) \tag{8}$$

イロト 不得 トイヨト イヨト 二日

200

12/24

• Where β is a second set of dual variables.

Introduction 00000	RKHS-SARSA (λ)	Controlling The Memory!	Results 00000000	Conclusion	Questions
Dealing W	ith the Eligibility	/ Trace			

- This now, however, breaks our previous vital assumption on the eligibility trace that we store all previous samples.
- Realize that the eligibility trace is now an eligibility *function* in \mathcal{H}_k given by

$$e_t := \sum_{i=t_0}^t \beta_i k((s_i, a_i), \cdot) \tag{8}$$

・ロト ・ ア・ ・ ビト ・ 日下 ・ 日下

200

- Where β is a second set of dual variables.
- Now we can also perform the projectron method on the eligibility trace.

Introduction 00000	RKHS-SARSA (λ)	Controlling The Memory! ○○○○●○	Results 00000000	Conclusion	Questions
Dealing V	Vith the Eligibility	y Trace			

• Our new update equations are given by

$$\alpha_i' = (1 - \eta \xi)\alpha_i - \eta err(s_t, a_t, R_t)\gamma\lambda\beta_i, \qquad \text{for } i = 1, \dots, |\mathbb{S}| \qquad (9)$$



ヘロト ヘ週 ト ヘヨト ヘヨト

3

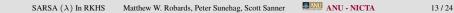
Sac

Introduction 00000	RKHS-SARSA (λ)	Controlling The Memory! ○○○○●○	Results 00000000	Conclusion	Questions
Dealing W	Vith the Eligibility	/ Trace			

• Our new update equations are given by

$$\alpha_i' = (1 - \eta\xi)\alpha_i - \eta err(s_t, a_t, R_t)\gamma\lambda\beta_i, \qquad \text{for } i = 1, \dots, |\mathbb{S}|$$
(9)

• and



ヘロトス 同トス ヨトス ヨト

ъ

nac

Introduction 00000	RKHS-SARSA (λ)	Controlling The Memory! ○○○○●○	Results 00000000	Conclusion	Questions
Dealing W	ith the Eligibility	7 Trace			

• Our new update equations are given by

$$\alpha'_{i} = (1 - \eta \xi)\alpha_{i} - \eta err(s_{t}, a_{t}, R_{t})\gamma\lambda\beta_{i}, \qquad \text{for } i = 1, \dots, |\mathbb{S}| \qquad (9)$$

and

$$\beta'_i = \gamma \lambda \beta_i + \mathbf{d}_i, \quad \text{for } i = 1, ..., |\mathbb{S}|.$$
 (10)

イロト 不得 トイヨト イヨト 二日

200

- If $\delta_t < \epsilon$ where δ is the norm of the difference between the temporal hypothesis and its projection.
- Moreover *d_i*'s are the parameters of the projection and $|\mathbb{S}|$ is the support set of stored basis functions.

Introduction 00000 RKHS-SARSA (λ)

Controlling The Memory!

Results 00000000 nclusion

ヘロトス 同トス ヨトス ヨト

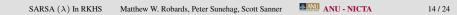
Э

nac

Questions

Projectron RKHS-SARSA(λ) Updates

• If $\delta_t > \epsilon$ we use the old updates for α



• If $\delta_t > \epsilon$ we use the old updates for α

$$\alpha'_{i} = (1 - \eta \xi) \alpha_{i} \, i = 1, \dots, t_{0} - 1 \tag{11}$$

$$\alpha_i' = (1 - \eta\xi)\alpha_i - \eta_t err(s_t, a_t, R_t)(\gamma\lambda)\beta_i, i = t_0, \dots, |\mathbb{S}|$$
(12)

$$\alpha'_{|\mathbb{S}|+1} = \eta_t err(s_t, a_t, R_t).$$
(13)

and simply update β through $\beta'_i = \gamma \lambda \beta_i$ for $i = 1, \dots, |S|$ and $\beta_{|S|+1} = 1$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Manager	a				
			0000000		
Introduction	RKHS-SARSA(λ)	Controlling The Memory!	Results	Conclusion	Questions

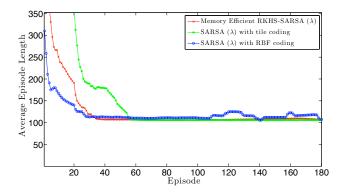


Figure: Moving average time per episode with window 10 evaluated for various algorithms at the end of each episode on mountain car.

イロト イロト イヨト

3 1 3

DQA

Introduction 00000	RKHS-SARSA (λ)	Controlling The Memory!	Results 0000000	Conclusion	Questions
Mountain	Car				

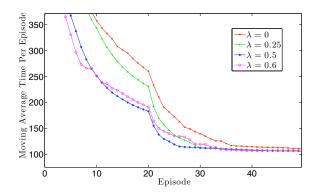


Figure: Moving average time per episode with window 10 evaluated for our algorithm with various values of λ on the mountain car problem 2.

Þ

Introduction	RKHS-SARSA (λ)	Controlling The Memory!	Results	Conclusion	Questions
			0000000		

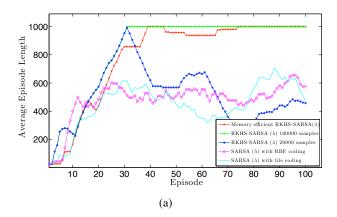


Figure: Moving average time per episode with window 10 evaluated for various algorithms at the end of each episode on the cart pole problem.

1

Þ

Sac

Introduction 00000	RKHS-SARSA (λ)	Controlling The Memory!	Results	Conclusion	Questions
Cart Pole					

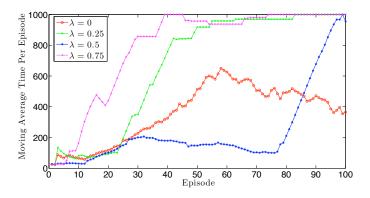


Figure: Moving average time per episode with window 10 evaluated for our algorithm with various values of λ on the cart pole problem.

< <p>I > < </p>

Þ

Sac

Introduction 00000	RKHS-SARSA (λ)	Controlling The Memory!	Results	Conclusion	Questions
Memory I	Efficiency				

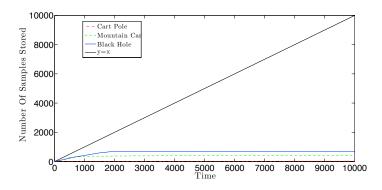


Figure: Number of samples stored by the memory efficient version of our algorithm on each problem.

Э

= 900

Introduction 00000	RKHS-SARSA (λ)	Controlling The Memory!	Results 00000000	Conclusion	Questions
Algorithm	In Summary				

• Novel easy to implement algorithm with nice update equations

3

ヘロト 人間 トイヨト イヨト

Introduction 00000	RKHS-SARSA (λ)	Controlling The Memory!	Results 00000000	Conclusion	Questions
Algorithm	In Summary				

- Novel easy to implement algorithm with nice update equations
- Nice way to constrain memory growth

ъ

ヘロト 不得 トイヨト 不良トー

Introduction 00000	RKHS-SARSA (λ)	Controlling The Memory!	Results 00000000	Conclusion	Questions
Algorithm	In Summary				

- Novel easy to implement algorithm with nice update equations
- Nice way to constrain memory growth
- First online kernel TD algorithm to incorporate eligibility traces.

イロト 不得 トイヨト イヨト

Introduction 00000	RKHS-SARSA (λ)	Controlling The Memory!	Results 00000000	Conclusion	Questions
Questions					

QUESTIONS???

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner **ANU - NICTA**

Э

イロト 不得 とくほ とくほとう