
SARSA (λ) In RKHS

Matthew W. Robards, Peter Sunehag, Scott Sanner

COLLEGE OF ENGINEERING AND COMPUTER SCIENCE

June 16, 2010

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

Motivation

We are primarily interested in reinforcement learning in large and
continuous spaces which requires good feature selection

Hand engineering features results in poor generalization in an agent
across domains
We use kernels to automatically linearize a non-linear problem
We introduce the first memory efficient kernel TD algorithm which
allows for eligibility traces
Furthermore, this is a surprisingly easy to implement algorithm which
gives a nice interpretation of the eligibility trace.

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 3 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

Motivation

We are primarily interested in reinforcement learning in large and
continuous spaces which requires good feature selection
Hand engineering features results in poor generalization in an agent
across domains

We use kernels to automatically linearize a non-linear problem
We introduce the first memory efficient kernel TD algorithm which
allows for eligibility traces
Furthermore, this is a surprisingly easy to implement algorithm which
gives a nice interpretation of the eligibility trace.

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 3 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

Motivation

We are primarily interested in reinforcement learning in large and
continuous spaces which requires good feature selection
Hand engineering features results in poor generalization in an agent
across domains
We use kernels to automatically linearize a non-linear problem

We introduce the first memory efficient kernel TD algorithm which
allows for eligibility traces
Furthermore, this is a surprisingly easy to implement algorithm which
gives a nice interpretation of the eligibility trace.

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 3 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

Motivation

We are primarily interested in reinforcement learning in large and
continuous spaces which requires good feature selection
Hand engineering features results in poor generalization in an agent
across domains
We use kernels to automatically linearize a non-linear problem
We introduce the first memory efficient kernel TD algorithm which
allows for eligibility traces

Furthermore, this is a surprisingly easy to implement algorithm which
gives a nice interpretation of the eligibility trace.

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 3 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

Motivation

We are primarily interested in reinforcement learning in large and
continuous spaces which requires good feature selection
Hand engineering features results in poor generalization in an agent
across domains
We use kernels to automatically linearize a non-linear problem
We introduce the first memory efficient kernel TD algorithm which
allows for eligibility traces
Furthermore, this is a surprisingly easy to implement algorithm which
gives a nice interpretation of the eligibility trace.

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 3 / 24

Matthew Robards
 with sparsification

Matthew Robards

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

Kernel Reinforcement Learning

Several previous methods have been proposed.

KLSTD is an interesting offline algorithm for offline policy evaluation,
extending LSTD to kernel learning.
KLSPI was introduced to do policy iteration as an extension of KLSTD,
still in the offline (or batch) setting.
Gaussian Processes TD learning was proposed to do online kernel TD
learning.
These works proposed novel kernel algorithms with novel tricks for
memory efficiency.
They do not allow for eligibility trace.

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 4 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

Kernel Reinforcement Learning

Several previous methods have been proposed.
KLSTD is an interesting offline algorithm for offline policy evaluation,
extending LSTD to kernel learning.

KLSPI was introduced to do policy iteration as an extension of KLSTD,
still in the offline (or batch) setting.
Gaussian Processes TD learning was proposed to do online kernel TD
learning.
These works proposed novel kernel algorithms with novel tricks for
memory efficiency.
They do not allow for eligibility trace.

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 4 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

Kernel Reinforcement Learning

Several previous methods have been proposed.
KLSTD is an interesting offline algorithm for offline policy evaluation,
extending LSTD to kernel learning.
KLSPI was introduced to do policy iteration as an extension of KLSTD,
still in the offline (or batch) setting.

Gaussian Processes TD learning was proposed to do online kernel TD
learning.
These works proposed novel kernel algorithms with novel tricks for
memory efficiency.
They do not allow for eligibility trace.

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 4 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

Kernel Reinforcement Learning

Several previous methods have been proposed.
KLSTD is an interesting offline algorithm for offline policy evaluation,
extending LSTD to kernel learning.
KLSPI was introduced to do policy iteration as an extension of KLSTD,
still in the offline (or batch) setting.
Gaussian Processes TD learning was proposed to do online kernel TD
learning.

These works proposed novel kernel algorithms with novel tricks for
memory efficiency.
They do not allow for eligibility trace.

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 4 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

Kernel Reinforcement Learning

Several previous methods have been proposed.
KLSTD is an interesting offline algorithm for offline policy evaluation,
extending LSTD to kernel learning.
KLSPI was introduced to do policy iteration as an extension of KLSTD,
still in the offline (or batch) setting.
Gaussian Processes TD learning was proposed to do online kernel TD
learning.
These works proposed novel kernel algorithms with novel tricks for
memory efficiency.

They do not allow for eligibility trace.

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 4 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

Kernel Reinforcement Learning

Several previous methods have been proposed.
KLSTD is an interesting offline algorithm for offline policy evaluation,
extending LSTD to kernel learning.
KLSPI was introduced to do policy iteration as an extension of KLSTD,
still in the offline (or batch) setting.
Gaussian Processes TD learning was proposed to do online kernel TD
learning.
These works proposed novel kernel algorithms with novel tricks for
memory efficiency.
They do not allow for eligibility trace.

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 4 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

Markov Decision Processes

We assume a (finite, countable infinite, or even continuous) Markov
decision process (MDP)

�S,A, R, T, γ�

State space S, action space A
T : S ×A× S → [0, 1] is transition function where T(s, a, s�) defines
probability of transitioning from state s to s� through action a
R : S ×A× S → R is a (possibly stochastic) reward function
rt = R(st, at, s�|s� = st+1) defines the reward when action a in state s
results in transition to state s�

Rt denotes return at time t which gives expected infinite discounted total
reward given by

�∞
i=t γ

i−trt, and 0 < γ < 1
Assume first order Markov property. ie. (st+1, at+1, rt+1) is independent
of (st−1, at−1, rt−1) given (st, at, rt)

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 5 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

Markov Decision Processes

We assume a (finite, countable infinite, or even continuous) Markov
decision process (MDP)
�S,A, R, T, γ�

State space S, action space A
T : S ×A× S → [0, 1] is transition function where T(s, a, s�) defines
probability of transitioning from state s to s� through action a
R : S ×A× S → R is a (possibly stochastic) reward function
rt = R(st, at, s�|s� = st+1) defines the reward when action a in state s
results in transition to state s�

Rt denotes return at time t which gives expected infinite discounted total
reward given by

�∞
i=t γ

i−trt, and 0 < γ < 1
Assume first order Markov property. ie. (st+1, at+1, rt+1) is independent
of (st−1, at−1, rt−1) given (st, at, rt)

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 5 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

Markov Decision Processes

We assume a (finite, countable infinite, or even continuous) Markov
decision process (MDP)
�S,A, R, T, γ�

State space S, action space A

T : S ×A× S → [0, 1] is transition function where T(s, a, s�) defines
probability of transitioning from state s to s� through action a
R : S ×A× S → R is a (possibly stochastic) reward function
rt = R(st, at, s�|s� = st+1) defines the reward when action a in state s
results in transition to state s�

Rt denotes return at time t which gives expected infinite discounted total
reward given by

�∞
i=t γ

i−trt, and 0 < γ < 1
Assume first order Markov property. ie. (st+1, at+1, rt+1) is independent
of (st−1, at−1, rt−1) given (st, at, rt)

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 5 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

Markov Decision Processes

We assume a (finite, countable infinite, or even continuous) Markov
decision process (MDP)
�S,A, R, T, γ�

State space S, action space A
T : S ×A× S → [0, 1] is transition function where T(s, a, s�) defines
probability of transitioning from state s to s� through action a

R : S ×A× S → R is a (possibly stochastic) reward function
rt = R(st, at, s�|s� = st+1) defines the reward when action a in state s
results in transition to state s�

Rt denotes return at time t which gives expected infinite discounted total
reward given by

�∞
i=t γ

i−trt, and 0 < γ < 1
Assume first order Markov property. ie. (st+1, at+1, rt+1) is independent
of (st−1, at−1, rt−1) given (st, at, rt)

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 5 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

Markov Decision Processes

We assume a (finite, countable infinite, or even continuous) Markov
decision process (MDP)
�S,A, R, T, γ�

State space S, action space A
T : S ×A× S → [0, 1] is transition function where T(s, a, s�) defines
probability of transitioning from state s to s� through action a
R : S ×A× S → R is a (possibly stochastic) reward function

rt = R(st, at, s�|s� = st+1) defines the reward when action a in state s
results in transition to state s�

Rt denotes return at time t which gives expected infinite discounted total
reward given by

�∞
i=t γ

i−trt, and 0 < γ < 1
Assume first order Markov property. ie. (st+1, at+1, rt+1) is independent
of (st−1, at−1, rt−1) given (st, at, rt)

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 5 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

Markov Decision Processes

We assume a (finite, countable infinite, or even continuous) Markov
decision process (MDP)
�S,A, R, T, γ�

State space S, action space A
T : S ×A× S → [0, 1] is transition function where T(s, a, s�) defines
probability of transitioning from state s to s� through action a
R : S ×A× S → R is a (possibly stochastic) reward function
rt = R(st, at, s�|s� = st+1) defines the reward when action a in state s
results in transition to state s�

Rt denotes return at time t which gives expected infinite discounted total
reward given by

�∞
i=t γ

i−trt, and 0 < γ < 1
Assume first order Markov property. ie. (st+1, at+1, rt+1) is independent
of (st−1, at−1, rt−1) given (st, at, rt)

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 5 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

Markov Decision Processes

We assume a (finite, countable infinite, or even continuous) Markov
decision process (MDP)
�S,A, R, T, γ�

State space S, action space A
T : S ×A× S → [0, 1] is transition function where T(s, a, s�) defines
probability of transitioning from state s to s� through action a
R : S ×A× S → R is a (possibly stochastic) reward function
rt = R(st, at, s�|s� = st+1) defines the reward when action a in state s
results in transition to state s�

Rt denotes return at time t which gives expected infinite discounted total
reward given by

�∞
i=t γ

i−trt, and 0 < γ < 1

Assume first order Markov property. ie. (st+1, at+1, rt+1) is independent
of (st−1, at−1, rt−1) given (st, at, rt)

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 5 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

Markov Decision Processes

We assume a (finite, countable infinite, or even continuous) Markov
decision process (MDP)
�S,A, R, T, γ�

State space S, action space A
T : S ×A× S → [0, 1] is transition function where T(s, a, s�) defines
probability of transitioning from state s to s� through action a
R : S ×A× S → R is a (possibly stochastic) reward function
rt = R(st, at, s�|s� = st+1) defines the reward when action a in state s
results in transition to state s�

Rt denotes return at time t which gives expected infinite discounted total
reward given by

�∞
i=t γ

i−trt, and 0 < γ < 1
Assume first order Markov property. ie. (st+1, at+1, rt+1) is independent
of (st−1, at−1, rt−1) given (st, at, rt)

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 5 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

SARSA(λ)

For larger MDPs, SARSA (λ) is performed using linear function
approximation:

Q(s, a) = �w, φ(s, a)� (1)

Traditional update rule for SARSA (λ) using function approximation
with regularizer is

wt+1 = wt − ηt

�
err(st, at, Rt)et − ξwt

�
(2)

Where err(st, at, Rt) = (Q(st, at)− Rt) and Rt = rt + γQ(st+1, at+1)

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 6 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

SARSA(λ)

For larger MDPs, SARSA (λ) is performed using linear function
approximation:

Q(s, a) = �w, φ(s, a)� (1)

Traditional update rule for SARSA (λ) using function approximation
with regularizer is

wt+1 = wt − ηt

�
err(st, at, Rt)et − ξwt

�
(2)

Where err(st, at, Rt) = (Q(st, at)− Rt) and Rt = rt + γQ(st+1, at+1)

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 6 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

SARSA(λ)

For larger MDPs, SARSA (λ) is performed using linear function
approximation:

Q(s, a) = �w, φ(s, a)� (1)

Traditional update rule for SARSA (λ) using function approximation
with regularizer is

wt+1 = wt − ηt

�
err(st, at, Rt)et − ξwt

�
(2)

Where err(st, at, Rt) = (Q(st, at)− Rt) and Rt = rt + γQ(st+1, at+1)

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 6 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

SARSA(λ)

For larger MDPs, SARSA (λ) is performed using linear function
approximation:

Q(s, a) = �w, φ(s, a)� (1)

Traditional update rule for SARSA (λ) using function approximation
with regularizer is

wt+1 = wt − ηt

�
err(st, at, Rt)et − ξwt

�
(2)

Where err(st, at, Rt) = (Q(st, at)− Rt) and Rt = rt + γQ(st+1, at+1)

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 6 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

SARSA(λ)

For larger MDPs, SARSA (λ) is performed using linear function
approximation:

Q(s, a) = �w, φ(s, a)� (1)

Traditional update rule for SARSA (λ) using function approximation
with regularizer is

wt+1 = wt − ηt

�
err(st, at, Rt)et − ξwt

�
(2)

Where err(st, at, Rt) = (Q(st, at)− Rt) and Rt = rt + γQ(st+1, at+1)

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 6 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

SARSA(λ)

Where et is updated through

et := γλet−1 + φ(st, at), φ(s, a) = k((s, a), ·) (3)

And is set to �0 at the beginning of each episode
Equivalently

et :=
t�

i=t0

(γλ)t−iφ(si, ai). (4)

Where t0 is the time at which the current episode began
Typically such a representation would be undesirable since it requires
storing all past samples
For now lets assume that kernalizing our algorithm means storing all
previously visited state action pairs anyway!

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 7 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

SARSA(λ)

Where et is updated through

et := γλet−1 + φ(st, at), φ(s, a) = k((s, a), ·) (3)

And is set to �0 at the beginning of each episode
Equivalently

et :=
t�

i=t0

(γλ)t−iφ(si, ai). (4)

Where t0 is the time at which the current episode began
Typically such a representation would be undesirable since it requires
storing all past samples
For now lets assume that kernalizing our algorithm means storing all
previously visited state action pairs anyway!

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 7 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

SARSA(λ)

Where et is updated through

et := γλet−1 + φ(st, at), φ(s, a) = k((s, a), ·) (3)

And is set to �0 at the beginning of each episode

Equivalently

et :=
t�

i=t0

(γλ)t−iφ(si, ai). (4)

Where t0 is the time at which the current episode began
Typically such a representation would be undesirable since it requires
storing all past samples
For now lets assume that kernalizing our algorithm means storing all
previously visited state action pairs anyway!

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 7 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

SARSA(λ)

Where et is updated through

et := γλet−1 + φ(st, at), φ(s, a) = k((s, a), ·) (3)

And is set to �0 at the beginning of each episode
Equivalently

et :=
t�

i=t0

(γλ)t−iφ(si, ai). (4)

Where t0 is the time at which the current episode began
Typically such a representation would be undesirable since it requires
storing all past samples
For now lets assume that kernalizing our algorithm means storing all
previously visited state action pairs anyway!

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 7 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

SARSA(λ)

Where et is updated through

et := γλet−1 + φ(st, at), φ(s, a) = k((s, a), ·) (3)

And is set to �0 at the beginning of each episode
Equivalently

et :=
t�

i=t0

(γλ)t−iφ(si, ai). (4)

Where t0 is the time at which the current episode began
Typically such a representation would be undesirable since it requires
storing all past samples
For now lets assume that kernalizing our algorithm means storing all
previously visited state action pairs anyway!

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 7 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

SARSA(λ)

Where et is updated through

et := γλet−1 + φ(st, at), φ(s, a) = k((s, a), ·) (3)

And is set to �0 at the beginning of each episode
Equivalently

et :=
t�

i=t0

(γλ)t−iφ(si, ai). (4)

Where t0 is the time at which the current episode began

Typically such a representation would be undesirable since it requires
storing all past samples
For now lets assume that kernalizing our algorithm means storing all
previously visited state action pairs anyway!

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 7 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

SARSA(λ)

Where et is updated through

et := γλet−1 + φ(st, at), φ(s, a) = k((s, a), ·) (3)

And is set to �0 at the beginning of each episode
Equivalently

et :=
t�

i=t0

(γλ)t−iφ(si, ai). (4)

Where t0 is the time at which the current episode began
Typically such a representation would be undesirable since it requires
storing all past samples

For now lets assume that kernalizing our algorithm means storing all
previously visited state action pairs anyway!

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 7 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

SARSA(λ)

Where et is updated through

et := γλet−1 + φ(st, at), φ(s, a) = k((s, a), ·) (3)

And is set to �0 at the beginning of each episode
Equivalently

et :=
t�

i=t0

(γλ)t−iφ(si, ai). (4)

Where t0 is the time at which the current episode began
Typically such a representation would be undesirable since it requires
storing all past samples
For now lets assume that kernalizing our algorithm means storing all
previously visited state action pairs anyway!

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 7 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

RKHS-SARSA(λ)

We now do two things:

We substitute the the summed form of the eligibility trace into the update
equation, and
We note that by similarly summing the updates of θ we get
θt =

�t
i=1 αiφ(si, ai) =

�t
i=1 αik((si, ai), ·)

By doing this we get nice update equations for the new dual parameters
α:

α�i = (1− ηξ)αi i = 1, . . . , t0 − 1 (5)

α�i = (1− ηξ)αi − ηterr(st, at, Rt)(γλ)t−i−1, i = t0, . . . , t − 1 (6)
α�t = ηterr(st, at, Rt). (7)

where t0 is the time at which the current episode began

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 8 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

RKHS-SARSA(λ)

We now do two things:
We substitute the the summed form of the eligibility trace into the update
equation, and

We note that by similarly summing the updates of θ we get
θt =

�t
i=1 αiφ(si, ai) =

�t
i=1 αik((si, ai), ·)

By doing this we get nice update equations for the new dual parameters
α:

α�i = (1− ηξ)αi i = 1, . . . , t0 − 1 (5)

α�i = (1− ηξ)αi − ηterr(st, at, Rt)(γλ)t−i−1, i = t0, . . . , t − 1 (6)
α�t = ηterr(st, at, Rt). (7)

where t0 is the time at which the current episode began

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 8 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

RKHS-SARSA(λ)

We now do two things:
We substitute the the summed form of the eligibility trace into the update
equation, and
We note that by similarly summing the updates of θ we get
θt =

�t
i=1 αiφ(si, ai) =

�t
i=1 αik((si, ai), ·)

By doing this we get nice update equations for the new dual parameters
α:

α�i = (1− ηξ)αi i = 1, . . . , t0 − 1 (5)

α�i = (1− ηξ)αi − ηterr(st, at, Rt)(γλ)t−i−1, i = t0, . . . , t − 1 (6)
α�t = ηterr(st, at, Rt). (7)

where t0 is the time at which the current episode began

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 8 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

RKHS-SARSA(λ)

We now do two things:
We substitute the the summed form of the eligibility trace into the update
equation, and
We note that by similarly summing the updates of θ we get
θt =

�t
i=1 αiφ(si, ai) =

�t
i=1 αik((si, ai), ·)

By doing this we get nice update equations for the new dual parameters
α:

α�i = (1− ηξ)αi i = 1, . . . , t0 − 1 (5)

α�i = (1− ηξ)αi − ηterr(st, at, Rt)(γλ)t−i−1, i = t0, . . . , t − 1 (6)
α�t = ηterr(st, at, Rt). (7)

where t0 is the time at which the current episode began

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 8 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

RKHS-SARSA(λ)

We now do two things:
We substitute the the summed form of the eligibility trace into the update
equation, and
We note that by similarly summing the updates of θ we get
θt =

�t
i=1 αiφ(si, ai) =

�t
i=1 αik((si, ai), ·)

By doing this we get nice update equations for the new dual parameters
α:

α�i = (1− ηξ)αi i = 1, . . . , t0 − 1 (5)

α�i = (1− ηξ)αi − ηterr(st, at, Rt)(γλ)t−i−1, i = t0, . . . , t − 1 (6)
α�t = ηterr(st, at, Rt). (7)

where t0 is the time at which the current episode began

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 8 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

RKHS-SARSA(λ)

We now do two things:
We substitute the the summed form of the eligibility trace into the update
equation, and
We note that by similarly summing the updates of θ we get
θt =

�t
i=1 αiφ(si, ai) =

�t
i=1 αik((si, ai), ·)

By doing this we get nice update equations for the new dual parameters
α:

α�i = (1− ηξ)αi i = 1, . . . , t0 − 1 (5)

α�i = (1− ηξ)αi − ηterr(st, at, Rt)(γλ)t−i−1, i = t0, . . . , t − 1 (6)
α�t = ηterr(st, at, Rt). (7)

where t0 is the time at which the current episode began

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 8 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

Controlling The Memory!

This provides the foundations for a powerful kernel based reinforcement
learning algorithm.

Number of samples grows linearly with time. PROBLEM!!!
We use ideas from the projectron method of Orabona et. al to make our
algorithm more efficient in memory

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 9 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

Controlling The Memory!

This provides the foundations for a powerful kernel based reinforcement
learning algorithm.
Number of samples grows linearly with time. PROBLEM!!!

We use ideas from the projectron method of Orabona et. al to make our
algorithm more efficient in memory

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 9 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

Controlling The Memory!

This provides the foundations for a powerful kernel based reinforcement
learning algorithm.
Number of samples grows linearly with time. PROBLEM!!!
We use ideas from the projectron method of Orabona et. al to make our
algorithm more efficient in memory

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 9 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

Controlling The Memory!

Before adding new sample, we ask ourselves:

How well can this new sample be represented as a linear combination of
old ones
For poly kernels, in fact, we will eventually span the RKHS and never
need to add new samples

Rather than storing all new samples, consider projecting the newest
hypothesis in Ht onto Ht−1

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 10 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

Controlling The Memory!

Before adding new sample, we ask ourselves:
How well can this new sample be represented as a linear combination of
old ones

For poly kernels, in fact, we will eventually span the RKHS and never
need to add new samples

Rather than storing all new samples, consider projecting the newest
hypothesis in Ht onto Ht−1

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 10 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

Controlling The Memory!

Before adding new sample, we ask ourselves:
How well can this new sample be represented as a linear combination of
old ones
For poly kernels, in fact, we will eventually span the RKHS and never
need to add new samples

Rather than storing all new samples, consider projecting the newest
hypothesis in Ht onto Ht−1

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 10 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

Controlling The Memory!

Before adding new sample, we ask ourselves:
How well can this new sample be represented as a linear combination of
old ones
For poly kernels, in fact, we will eventually span the RKHS and never
need to add new samples

Rather than storing all new samples, consider projecting the newest
hypothesis in Ht onto Ht−1

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 10 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

Projectron RKHS-SARSA(λ)

Now rather than updating the Q function immediately, we consider the
projection of Qt+1 onto Ht−1

Take “temporal hypothesis” Q�t = Qt+1 and its projection Q��t = Pt−1Q�t
Using linear projection operator Pt−1

Figure: Projection of temporal hypothesis onto lower RKHS.

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 11 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

Projectron RKHS-SARSA(λ)

Now rather than updating the Q function immediately, we consider the
projection of Qt+1 onto Ht−1

Take “temporal hypothesis” Q�t = Qt+1 and its projection Q��t = Pt−1Q�t

Using linear projection operator Pt−1

Figure: Projection of temporal hypothesis onto lower RKHS.

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 11 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

Projectron RKHS-SARSA(λ)

Now rather than updating the Q function immediately, we consider the
projection of Qt+1 onto Ht−1

Take “temporal hypothesis” Q�t = Qt+1 and its projection Q��t = Pt−1Q�t
Using linear projection operator Pt−1

Figure: Projection of temporal hypothesis onto lower RKHS.

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 11 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

Projectron RKHS-SARSA(λ)

Now rather than updating the Q function immediately, we consider the
projection of Qt+1 onto Ht−1

Take “temporal hypothesis” Q�t = Qt+1 and its projection Q��t = Pt−1Q�t
Using linear projection operator Pt−1

Figure: Projection of temporal hypothesis onto lower RKHS.

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 11 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

Dealing With the Eligibility Trace

This now, however, breaks our previous vital assumption on the
eligibility trace that we store all previous samples.

Realize that the eligibility trace is now an eligibility function in Hk given
by

et :=
t�

i=t0

βik((si, ai), ·) (8)

Where β is a second set of dual variables.
Now we can also perform the projectron method on the eligibility trace.

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 12 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

Dealing With the Eligibility Trace

This now, however, breaks our previous vital assumption on the
eligibility trace that we store all previous samples.
Realize that the eligibility trace is now an eligibility function in Hk given
by

et :=
t�

i=t0

βik((si, ai), ·) (8)

Where β is a second set of dual variables.
Now we can also perform the projectron method on the eligibility trace.

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 12 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

Dealing With the Eligibility Trace

This now, however, breaks our previous vital assumption on the
eligibility trace that we store all previous samples.
Realize that the eligibility trace is now an eligibility function in Hk given
by

et :=
t�

i=t0

βik((si, ai), ·) (8)

Where β is a second set of dual variables.
Now we can also perform the projectron method on the eligibility trace.

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 12 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

Dealing With the Eligibility Trace

This now, however, breaks our previous vital assumption on the
eligibility trace that we store all previous samples.
Realize that the eligibility trace is now an eligibility function in Hk given
by

et :=
t�

i=t0

βik((si, ai), ·) (8)

Where β is a second set of dual variables.

Now we can also perform the projectron method on the eligibility trace.

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 12 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

Dealing With the Eligibility Trace

This now, however, breaks our previous vital assumption on the
eligibility trace that we store all previous samples.
Realize that the eligibility trace is now an eligibility function in Hk given
by

et :=
t�

i=t0

βik((si, ai), ·) (8)

Where β is a second set of dual variables.
Now we can also perform the projectron method on the eligibility trace.

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 12 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

Dealing With the Eligibility Trace

Our new update equations are given by

α�i = (1− ηξ)αi − ηerr(st, at, Rt)γλβi, for i = 1, . . . , |S| (9)

and

β�i = γλβi + di, for i = 1, ..., |S|. (10)

If δt < � where δ is the norm of the difference between the temporal
hypothesis and its projection.
Moreover di’s are the parameters of the projection and |S| is the support
set of stored basis functions.

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 13 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

Dealing With the Eligibility Trace

Our new update equations are given by

α�i = (1− ηξ)αi − ηerr(st, at, Rt)γλβi, for i = 1, . . . , |S| (9)

and

β�i = γλβi + di, for i = 1, ..., |S|. (10)

If δt < � where δ is the norm of the difference between the temporal
hypothesis and its projection.
Moreover di’s are the parameters of the projection and |S| is the support
set of stored basis functions.

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 13 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

Dealing With the Eligibility Trace

Our new update equations are given by

α�i = (1− ηξ)αi − ηerr(st, at, Rt)γλβi, for i = 1, . . . , |S| (9)

and

β�i = γλβi + di, for i = 1, ..., |S|. (10)

If δt < � where δ is the norm of the difference between the temporal
hypothesis and its projection.
Moreover di’s are the parameters of the projection and |S| is the support
set of stored basis functions.

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 13 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

Projectron RKHS-SARSA(λ) Updates

If δt > � we use the old updates for α

α�i = (1− ηξ)αi i = 1, . . . , t0 − 1 (11)
α�i = (1− ηξ)αi − ηterr(st, at, Rt)(γλ)βi, i = t0, . . . , |S| (12)

α�|S|+1 = ηterr(st, at, Rt). (13)

and simply update β through β�i = γλβi for i = 1, . . . , |S| and β|S|+1 = 1

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 14 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

Projectron RKHS-SARSA(λ) Updates

If δt > � we use the old updates for α

α�i = (1− ηξ)αi i = 1, . . . , t0 − 1 (11)
α�i = (1− ηξ)αi − ηterr(st, at, Rt)(γλ)βi, i = t0, . . . , |S| (12)

α�|S|+1 = ηterr(st, at, Rt). (13)

and simply update β through β�i = γλβi for i = 1, . . . , |S| and β|S|+1 = 1

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 14 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

Mountain Car

20 40 60 80 100 120 140 160 180

50

100

150

200

250

300

350

Episode

A
v
e
r
a
g
e

E
p
is

o
d
e

L
e
n
g
t
h

Memory Efficient RKHS-SARSA (λ)

SARSA (λ) with tile coding

SARSA (λ) with RBF coding

Figure: Moving average time per episode with window 10 evaluated for various
algorithms at the end of each episode on mountain car.

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 16 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

Mountain Car

0 10 20 30 40

100

150

200

250

300

350

Episode

M
ov

in
g

A
ve

ra
ge

T
im

e
P

er
E

pi
so

de

λ = 0
λ = 0.25
λ = 0.5
λ = 0.6

Figure: Moving average time per episode with window 10 evaluated for our
algorithm with various values of λ on the mountain car problem 2.

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 17 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

Cart Pole

10 20 30 40 50 60 70 80 90 100

200

400

600

800

1000

Episode

A
v
e
r
a
g
e

E
p
is

o
d
e

L
e
n
g
t
h

Memory efficient RKHS-SARSA(λ)

RKHS-SARSA (λ) 100000 samples

RKHS-SARSA (λ) 20000 samples

SARSA (λ) with RBF coding

SARSA (λ) with tile coding

(a)

Figure: Moving average time per episode with window 10 evaluated for various
algorithms at the end of each episode on the cart pole problem.

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 18 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

Cart Pole

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

Episode

M
ov

in
g

A
ve

ra
ge

T
im

e
P

er
E

pi
so

de

λ = 0
λ = 0.25
λ = 0.5
λ = 0.75

Figure: Moving average time per episode with window 10 evaluated for our
algorithm with various values of λ on the cart pole problem.

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 19 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

Memory Efficiency

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

2000

4000

6000

8000

10000

Time

N
um

be
r

O
f

Sa
m

pl
es

St
or

ed

Cart Pole
Mountain Car
Black Hole
y=x

Figure: Number of samples stored by the memory efficient version of our algorithm
on each problem.

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 22 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

Algorithm In Summary

Novel easy to implement algorithm with nice update equations

Nice way to constrain memory growth
First online kernel TD algorithm to incorporate eligibility traces.

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 23 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

Algorithm In Summary

Novel easy to implement algorithm with nice update equations
Nice way to constrain memory growth

First online kernel TD algorithm to incorporate eligibility traces.

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 23 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

Algorithm In Summary

Novel easy to implement algorithm with nice update equations
Nice way to constrain memory growth
First online kernel TD algorithm to incorporate eligibility traces.

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 23 / 24

Introduction RKHS-SARSA(λ) Controlling The Memory! Results Conclusion Questions

Questions

QUESTIONS???

SARSA (λ) In RKHS Matthew W. Robards, Peter Sunehag, Scott Sanner ANU - NICTA 24 / 24

	Introduction
	Motivation
	Kernel Reinforcement Learning
	Markov Decision Processes
	SARSA()

	RKHS-SARSA()
	Controlling The Memory!
	Controlling the Memory
	Dealing With the Eligibility Trace
	Updates

	Results
	Setup
	Mountain Car
	Cart Pole
	Black Hole
	Memory Requirements

	Conclusion
	Questions

