

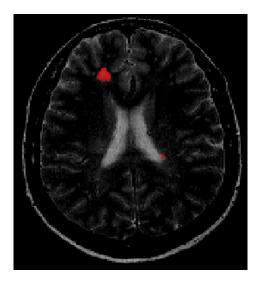
Generalized Agreement Statistics over Fixed Set of Experts

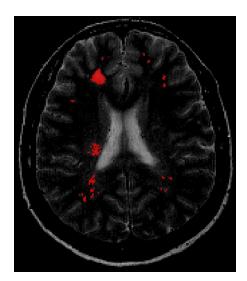
Mohak Shah

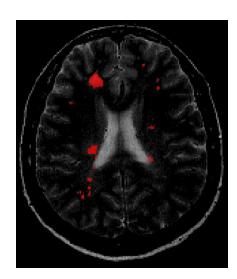
Accenture Technology Labs

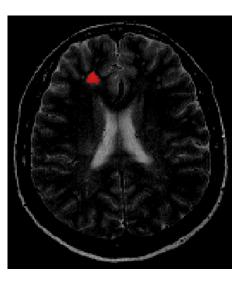
European Conference on Machine Learning Sep 07, 2011

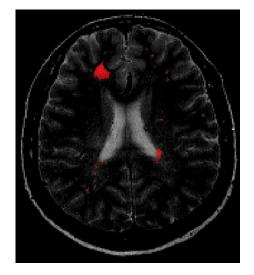
Background and Settings


- Each instance in the data labeled by a fixed group of Raters
 - Expert Annotators, Opinion/Rating generators,...
- Multiple Classes (Nominal Scale)
- No ground truth labels


Many such scenarios




- Multiple experts' labels on multi-category examples
 - e.g., Human Intelligence Tasks (HITs)
- Medical Image Segmentation
 - e.g., Segmentation of lesion/tumor tissues from brain MRIs
- Applying ensemble methods for various tasks
 - e.g., multi-sensor radar systems for threat detection


An Example

Another Example

5 Raters suggesting positions on stocks in portfolio

Inst #	Rater 1	Rater 2 Rater 3		Rater 4	Rater 5
1	Buy	Sell	Buy	Sell	Hold
2	Buy	Metaphysical/ Epistemological	Sell	Sell	Sell
3	Buy	Buy	Buy	Buy	Buy
4	Sell	Buy	Sell	Buy	Sell
5	Hold	Hold	Buy	Hold	Sell
6	Metaphysical/ Epistemological	Metaphysical/ Epistemological	Metaphysical/ Epistemological	Sell	Sell
7	Sell	Hold	Hold	Sell	Sell

An example

Inst #	Rater 1	Rater 2	Rater 3	Rater 4	Rater 5
1	1	2	1	2	3
2	1	4	2	2	2
3	1	1	1	1	1
4	2	1	2	1	2
5	3	3	1	3	2
6	4	4	4	2	2
7	2	3	3	2	2

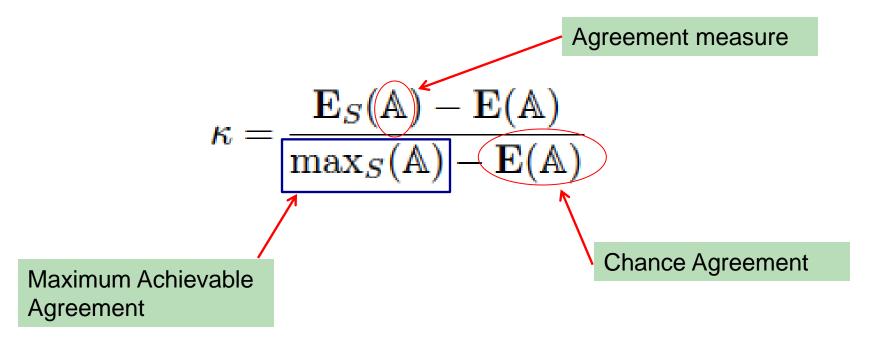
Two Problems

Inst #	Rater 1	Rater 2	Rater 3	Rater 4	Rater 5
1	1	2	1	2	3
2	1	4	2	2	2
3	1	1	1	1	1
4	2	1	2	1	2
5	3	3	1	3	2
6	4	4	4	2	2
7	2	3	3	2	2

Inter-expert agreement: Overall Agreement of the group

Two Problems

		Rater 5	Rater 4	Rater 3	Rater 2	Rater 1	Inst #
		3	2	1	2	1	1
		2	2	2	4	1	2
Inter-expert agreement:		1	1	1	1	1	3
Overall Agreement		2	1	2	1	2	4
of the group		2	3	1	3	3	5
		2	2	4	4	4	6
		2	2	3	3	2	7
	Classifier	2 Rater 5	2 Rater 4	3 Rater 3	3 Rater 2	2 Rater 1	7 Inst #
	Classifier						
		Rater 5	Rater 4	Rater 3	Rater 2	Rater 1	Inst #
Classifier Agreemer	1	Rater 5 3	Rater 4	Rater 3 1	Rater 2 2	Rater 1 1	Inst # 1
Classifier Agreemer Against the group	1 4	Rater 5 3 2	Rater 4 2 2	Rater 3 1 2	Rater 2 2 4	Rater 1 1 1	Inst # 1 2
	1 4 1	Rater 5 3 2 1	Rater 4 2 2 1	Rater 3 1 2 1	Rater 2 2 4 1	Rater 1 1 1 1	Inst # 1 2 3
	1 4 1 2	Rater 5 3 2 1 2	Rater 4 2 2 1 1	Rater 3 1 2 1 2 2 1 2	Rater 2 2 4 1 1	Rater 1 1 1 2	Inst # 1 2 3 4



General Agreement Statistic

$$\kappa = \frac{\mathbf{E}_S(\mathbb{A}) - \mathbf{E}(\mathbb{A})}{\max_S(\mathbb{A}) - \mathbf{E}(\mathbb{A})}$$

General Agreement Statistic

Examples: Cohen's kappa, Fleiss Kappa, Scott's pi, ICC...

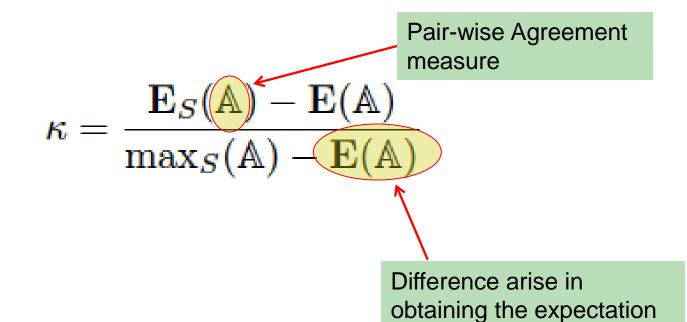
Modus operandi

- Define an agreement measure
- Derive expression for its expected value
- Define maximum achievable agreement
- Live happily ever after

Except...

this is easier said than done Model assumptions play a big role

Problem


 To obtain general agreement measures over a fixed set of raters applicable in multi-class multi-rater case, accounting for coincidental concordances

Traditional approaches

- Typically applicable for 2-rater binary classification case (E.g., Cohen's kappa)
- Generalizations assume a variable group and use marginalization argument (e.g, Fleiss kappa (Fleiss, 1971) statistic implemented in WEKA)
- **Claim:** Marginalization argument is unsuitable for the fixed experts' group case

Back to the agreement statistic

Traditional Approaches: Inter-expert Agreement

The Marginalization Argument:

Consider a simple 2 rater 2 class case

Inst #	Rater 1	Rater 2
1	1	1
2	1	2
3	1	1
4	2	1
5	2	2
6	1	2
7	2	2

Agreement: 4/7 Probability of chance agreement over label 1:

> $Pr(Label=1| Random rater)^2$ = 7/14 * 7/14 = 0.25

Agreement = $\frac{4/7 - 0.5}{1 - 0.5} = 0.143$

Traditional Approaches: Inter-expert Agreement

The Marginalization Argument: **Consider another scenario**

Inst #	Rater 1	Rater 2
1	1	2
2	1	2
3	1	2
4	1	2
5	2	1
6	2	1
7	2	1

Observed Agreement: 0

Probability of chance agreement over label-1:

 $Pr(Label=1| Random rater)^2$ = 7/14 * 7/14 = 0.25

Agreement =
$$\frac{0 - 0.5}{1 - 0.5}$$
 = -1

Traditional Approaches: Inter-expert Agreement

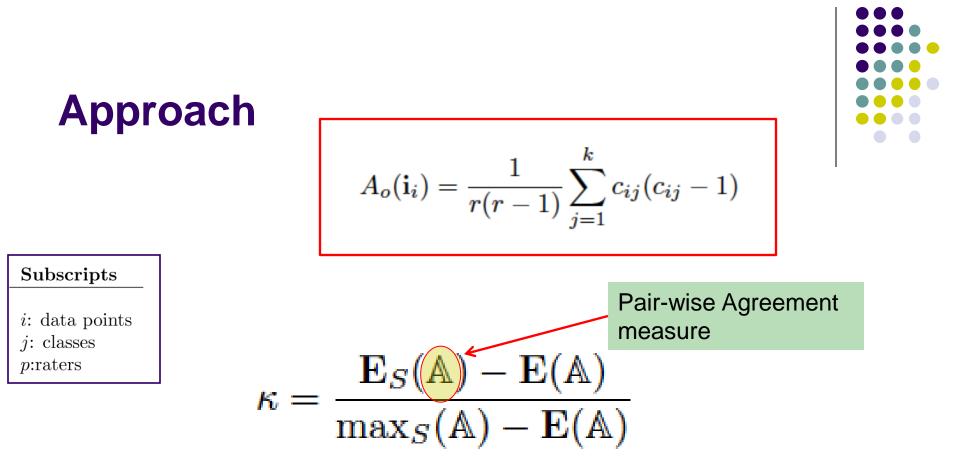
The Marginalization Argument: But this holds even when there is no evidence of a chance agreement

Observed Agreement: 0

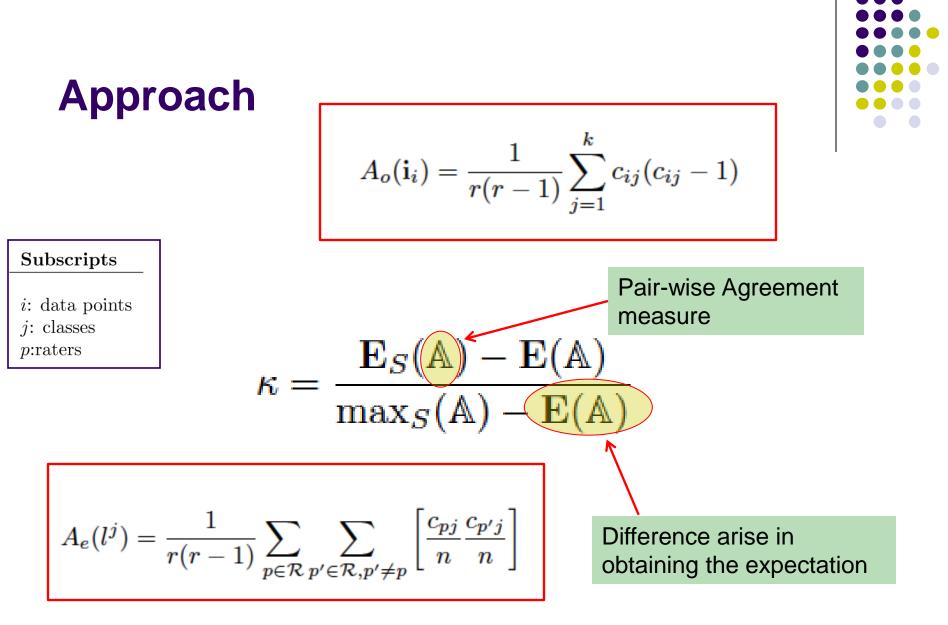
Inst #	Rater 1	Rater 2
1	1	2
2	1	2
3	1	2
4	1	2
5	1	2
6	1	2
7	1	2

Probability of chance agreement over label-1:

 $Pr(Label=1| Random rater)^2$ = 7/14 * 7/14 = 0.25

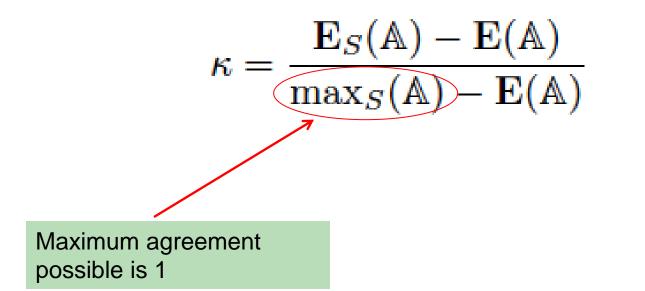

Agreement =
$$\frac{0 - 0.5}{1 - 0.5}$$
 = -1

Not applicable in fixed rater scenario


- Marginalization ignores rater correlation
- Ignores rater asymmetry
- Results in loose chance agreement estimates by optimistic estimation
- Hence, overly conservative agreement estimate

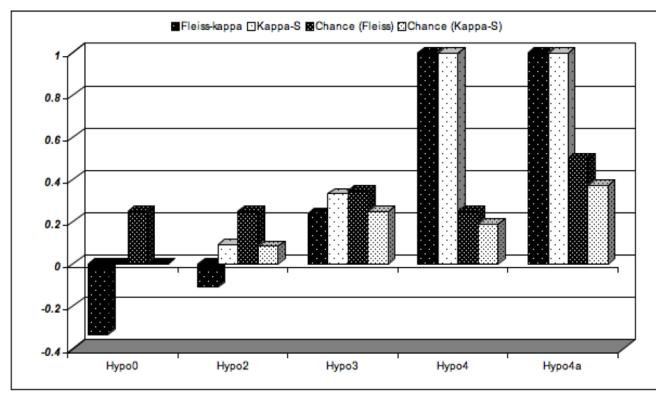
I: Inter-rater agreement over fixed set of raters

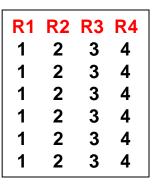
$$\kappa = \frac{\mathbf{E}_S(\mathbb{A}) - \mathbf{E}(\mathbb{A})}{\max_S(\mathbb{A}) - \mathbf{E}(\mathbb{A})}$$


c_{ij} : No. of raters assigning point *i* to class *j*

 c_{ij} : No. of raters assigning point *i* to class *j* c_{pj} : No. of **data points** that rater *p* assigns to class *j*

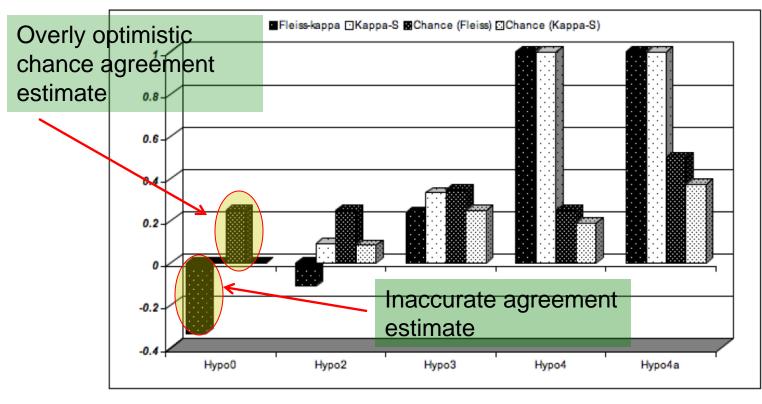
Approach


Inter-rater Agreement: Fixed rater scenario

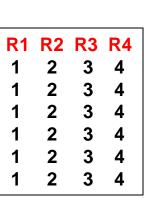

• Inter-rater agreement is:

$$\kappa_{S} = \frac{\sum_{i=1}^{n} \sum_{j=1}^{k} c_{ij} \cdot (c_{ij} - 1) - \frac{1}{n} \sum_{j=1}^{k} \sum_{p \in \mathcal{R}} \sum_{p' \in \mathcal{R}, p' \neq p} [c_{pj} c_{p'j}]}{nr(r-1) \left[1 - \frac{1}{n^2 r(r-1)} \sum_{j=1}^{k} \sum_{p \in \mathcal{R}} \sum_{p' \in \mathcal{R}, p' \neq p} [c_{pj} c_{p'j}] \right]}$$

Simulations on synthetic data

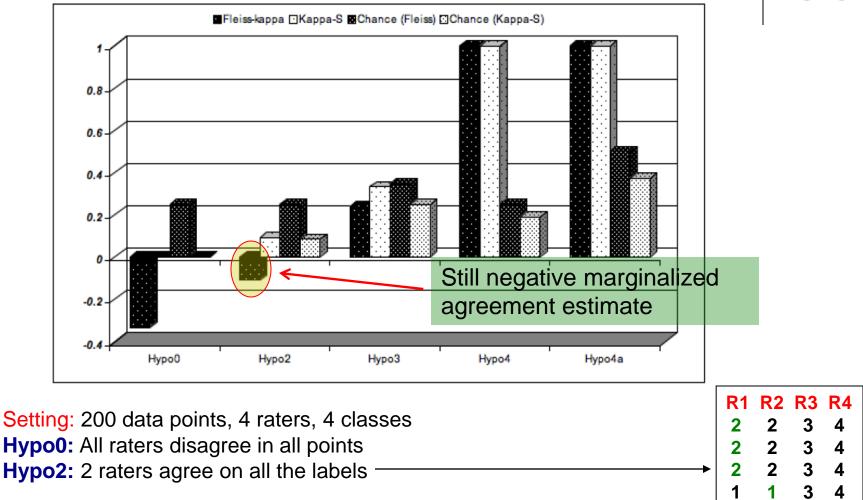


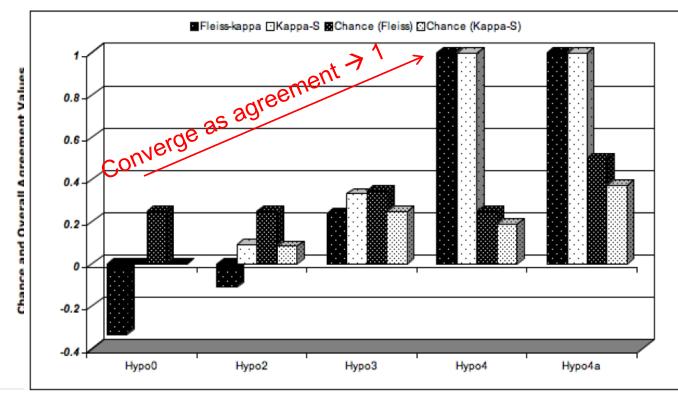
Setting: 200 data points, 4 raters, 4 classes Hypo0: All raters disagree on all points —



Simulations on synthetic data

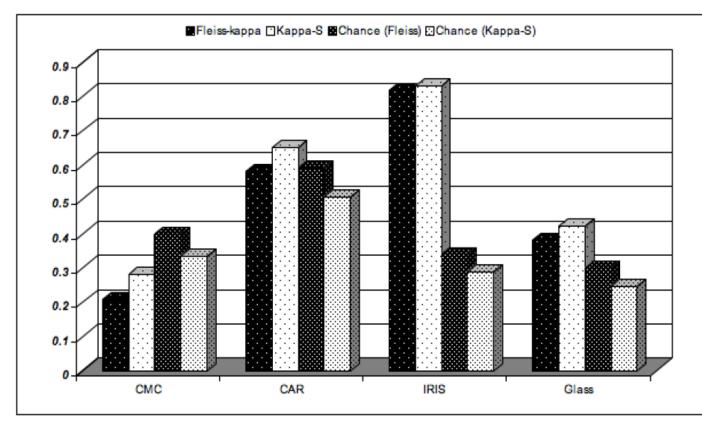
Setting: 200 data points, 4 raters, 4 classes Hypo0: All raters disagree on all points —





Δ

Simulations on synthetic data


Simulations on synthetic data

Setting: 200 data points, 4 raters, 4 classes Hypo0: All raters disagree in all points Hypo2: 2 raters agree on all the labels Hypo 3: 3 raters agree Hypo4: All raters agree (50 points in each class) Hypo4a: All raters agree (100 points each in 2 classes)

Simulations on UCI data

Setting: 7 raters (6 classifiers + 1 true label), multiple classes

Both measures converges near unity but differs substantially on low or moderate agreement values

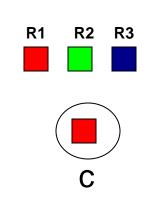
Inter-rater Agreement Conclusions: An upper bound on the variability

Theorem 1. Let κ_F and κ_S denote, respectively, the agreement statistics of Fleiss (1971) and that proposed in Equation 5 computed on a population (dataset) with large sample-size n where each of the sample has been assigned one of k labels by a fixed group of r experts. If $\sigma^2(\kappa)$ denotes the variance of κ then we have that:

$$\sigma^2(\kappa_S) \le \sigma^2(\kappa_F)$$

with equality satisfied when the experts emulate the pool.

II. Agreement of a classifier against a group: Two Traditional Approaches



- Extension of marginalization argument
 - Recently appeared in Statistics literature: Vanbelle and Albert, (*stat. ner.* 2009)
- Consensus Based (more traditional)
 - Almost universally used in the machine learning/data mining community
 - E.g., medical image segmentation, tissue classification, recommendation systems, expert modeling scenarios (e.g. market analyst combination)

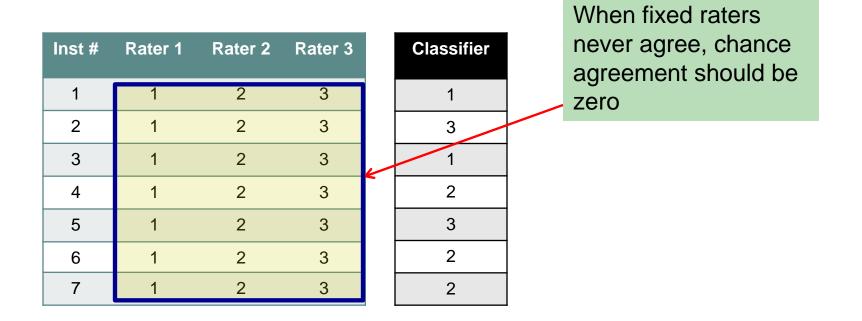
Marginalization Approach and Issues in Fixed experts setting

- Observed agreement: Proportion of raters with which the classifier agrees
 - Ignores qualitative agreement, may even ignore group dynamics

Inst #	Rater 1	Rater 2	Rater 3	Classifier
1	1	2	3	1
2	1	2	3	3
3	1	2	3	1
4	1	2	3	2
5	1	2	3	3
6	1	2	3	2
7	1	2	3	2

Marginalization Approach and Issues in Fixed experts setting

- Observed agreement: Proportion of raters with which the classifier agrees
 - Ignores qualitative agreement, may even ignore group dynamics


Inst #	Rater 1	Rater 2	Rater 3	Classifier	assignment gives same observed
1	1	2	3		agreement
2	1	2	3	3	
3	1	2	3	1	
4	1	2	3	2 🖌	
5	1	2	3	3	
6	1	2	3	2	
7	1	2	3	2	

Any random label

Marginalization Approach and Issues in Fixed experts setting

- Chance Agreement: Extend the marginalized argument
 - Not informative when the raters are fixed, ignores raterspecific correlations

Consensus Approach and Issues

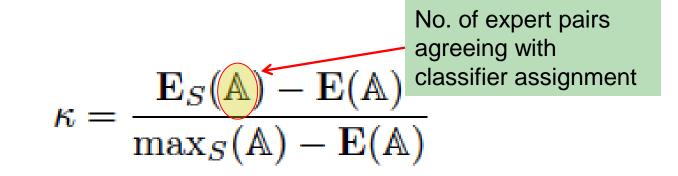
• Approach:

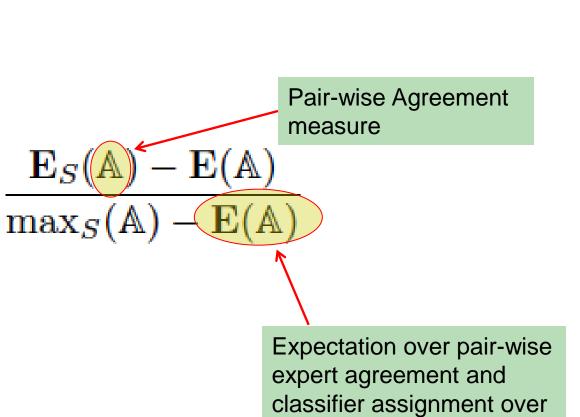
- Obtain a deterministic label for each instance if at least k >= r/2 raters agree
- Treat this label set as ground truth and use dice coefficient against classifier labels

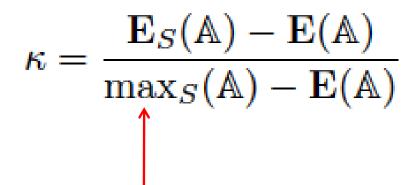
• Issues:

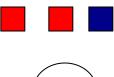
- Threshold sensitive
- Establishing threshold can be non-trivial
- Tie breaking not clear
- Treats estimates as deterministic
- Ignores minority raters as well as rater correlation

Consensus approach fails in assessing classifier performance


- Dice in addition to consensus
 - No chance correction
 - Ignores agreement with minority raters
 - Dependent on consensus (and not raters' estimates)
 - Applies to two class scenario
 - Can be less sensitive, potentially even misleading, to important label changes


$$\kappa = \frac{\mathbf{E}_S(\mathbb{A}) - \mathbf{E}(\mathbb{A})}{\max_S(\mathbb{A}) - \mathbf{E}(\mathbb{A})}$$

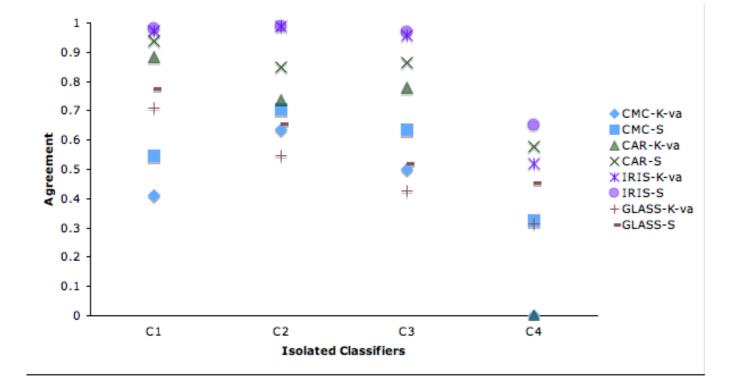




 $\kappa =$

all classes

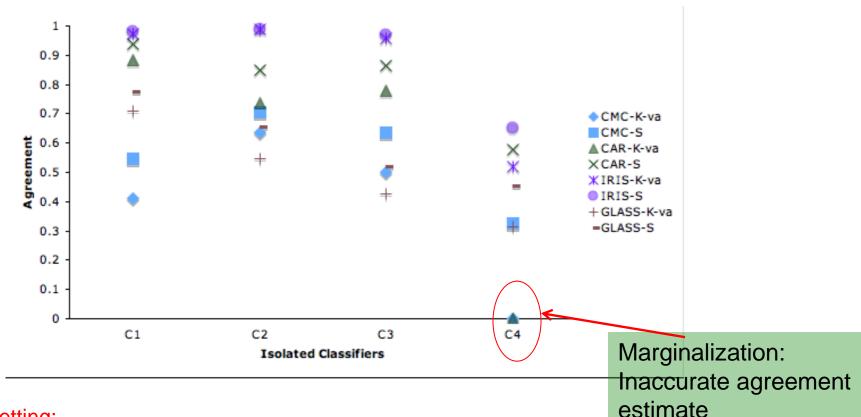
Not necessarily 1, but upper bounded by the number of expert pairs agreeing


Agreement against Fixed Experts' group: The \mathcal{S} measure

$$S = \frac{\frac{1}{n} \sum_{i=1}^{n} \left[\sum_{j=1}^{k} \mathfrak{r}_{ij} A_o(\mathbf{i}_i, l^j) \right] - \sum_{j=1}^{k} \mathfrak{r}_j \cdot A_e(l^j)}{\frac{1}{n} \sum_{i=1}^{n} \max_j A_o(\mathbf{i}_i, l^j) - \sum_{j=1}^{k} \mathfrak{r}_j \cdot A_e(l^j)}$$

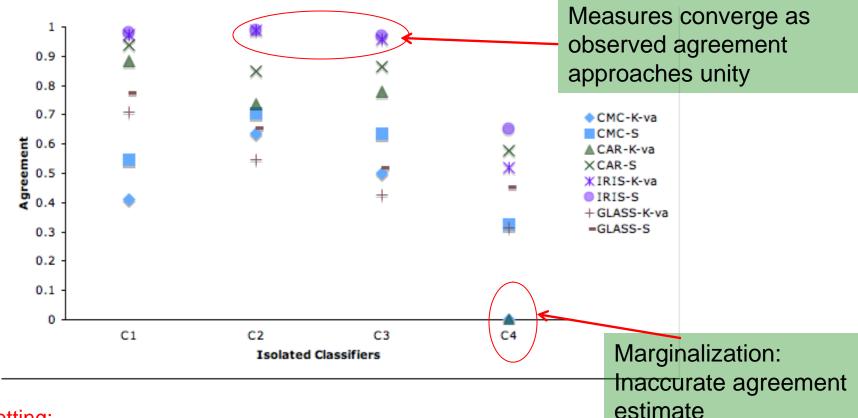
• **t** denotes an output of learning algorithm such that

 $\mathbf{r}_{ij} = 1$ if the classifier assigns label j to instance i $\mathbf{r}_{ij} = 0$ otherwise


Agreement against silver standard: Illustration on UCI data

Setting: Expert labels: True labels + 2 classifiers with highest 10-fold cv accuracy

Agreement against silver standard: Illustration on UCI data



Setting:

Expert labels: True labels + 2 classifiers with highest 10-fold cv accuracy

Note C4 over CAR and CMC (K-va=0)

Agreement against silver standard: Illustration on UCI data

Setting:

Expert labels: True labels + 2 classifiers with highest 10-fold cv accuracy

```
Note C4 over CAR and CMC (K-va=0)
```

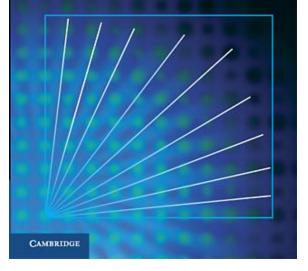
Measures converge close to unity

Conclusion

- We show that the marginalization argument is unsuitable when the experts' group is fixed
- We propose generalized metrics that
 - Apply to multi-class multi-rater scenario
 - Sensitive to changing rater agreement
 - Provide more meaningful estimates
- Variance behavior can be analytically established unlike dice/consensus
- Statistical hypothesis tests can be obtained

Importance of time travel

If you'd like to discuss details or know of more results and issues, please come to my poster **yesterday!**


Thank You

Now Available:

Evaluating Learning Algorithms A Classification Perspective

Nathalie Japkowicz • Mohak Shah

