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Recommendation Problem
i1 i2 i3 i4 i5 i6 i7 i8 i9 i10

u1 1 1 4 4 5 3 2

u2 2 1 5 4 4 3 1

u3 1 1 5 4 4 2 3

u4 2 2 2 1 3 3 5

u5 2 1 3 5 5

u6 1 2 3 4 5 2 3 3

u7 5 5 3 3 2 1

u8 5 5 3 3 2 1 1

u9 1 2 5 4 4 2

u10 1 1 5 5 3 5 3 2 3

u11 2 2 3 3 5 5

u12 2 2 2 1 3 3 5

u13 4 3 3 1 1

u14 5 4 5 3 3 3 3 1 1

u15 5 3 3 3 1 1

Items

U
se
rs

Rating Matrix

The Recommendation Protocol:

• RSs provide users with a list of products that will 
meet their interests

• As the volume of the catalog increases, 
Collaborative Filtering is becoming the most 
effective approach

• Users’ unobserved preferences are estimated by 
considering only past preference observations

• The recommendation list can be built by drawing 
upon the (predicted) highly-ranked items
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Evaluating Recommendations 
• Predictive accuracy: minimize statistical error metrics between 

observed and predicted preferences, such as the Root Mean 
Squared Error (RMSE)

• This approach adopts a missing value prediction perspective

• Recommendation Accuracy: measure the accuracy (Precision & 
Recall) of the recommendation list

• Focusing on the recommendation list, we can measure the quality 
of recommendations as users perceive them

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10
u1 1 ? 1 4 4 ? 5 ? 3 2

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10
u1 1 2 1 4 4 4 5 3 3 2
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Precision and Recall of the 
Recommendation List

• Let Lu denote the recommendation list provided to the user 
(u) during a generic session

• Let Tu denote the test-set entries for the user (u)

Relevant items
(rating higher than the avg)

Unrelevant items

• N is the size of the recommendation list
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Evaluating User Satisfaction

• We assume that a recommendation meets user satisfaction if 
he/she can find in the recommendation list at least an item 
which meets his/her interests

• Following the methodology proposed by Cremonesi at Al.
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Prediction vs Recommendation Accuracy

• The recommendation problem has been traditionally interpreted 
as a missing value prediction problem (matrix completion)

• Standard approach: minimize statistical error metrics (MSE, 
RMSE)

• The common belief is that small improvements in 
prediction accuracy would reflect an increase of the 
accuracy of the recommendation lists

• However, recent works have shown that there is no monotonic 
relation between error metrics and accuracy metrics:

lower RMSE does not imply higher recommendation 
accuracy
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Performance of Recommender Algorithms 
on Top-N Recommendation Tasks

[Cremonesi et Al. 2010]

Pure SVD

Top Pop

Item Avg

SVD++

• Pure-SVD, despite its  poor performance in prediction accuracy, 
consistently outperforms the best latent factor models, such as SVD++

• Test on Movielens1M 
data (1.4% of training 
data as test set)
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Probabilistic Approaches to 
Recommendation: Advantages

• In this work we aim at evaluating the performance in terms of 
recommendation accuracy achieved by state-of-art probabilistic models

• Main Advantages:

• Representation via graphical model

• They do not focus on a particular error metric: parameters are determined by 
maximizing the likelihood of the data (which is a more general approach)

• They model a distribution over rating values which can be used to determine the 
confidence of the model in predicting each preference value

• Possibility to plug prior knowledge into the generative process

• No regularization terms to avoid overfitting

• They provide an unified framework for combining collaborative and content features
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Probabilistic Approaches to 
Recommendation

• Each triple ⟨u, i, r⟩ is considered as the output of a random 
observation drawn for the joint distribution of the random variables 
U, I and R

• Two main modeling perspectives:

• Forced Prediction: focus on the estimate of P(r|u, i)

• Free Prediction: the item selection process is included in the 
model, which is typically based on the estimate of P (r, i|u)

• We are interested in predicting both the item selection and the 
preference of the user for each selected item

• If we assume that the selection is independent from the rating,  
P(r, i|u) can be factorized as P(r|i, u)P(i|u)
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Probabilistic Modeling of Preference 
Data: An Overview

• Latent factors modeling: the state of the hidden variable 
associated to each preference observation ⟨u,i⟩ models the 
underlying reason why u has chosen/rated i
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Exploiting Probabilities for Item Ranking

• The underlying probabilistic framework provides high 
flexibility in the choice of the item ranking function

• Predicted Preference

• Item Selection

• Item Selection and Relevance
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Experimental Evaluation

• We study the effects of the ranking function on the accuracy of the 
recommendation list, by employing a  MonteCarlo 5-folds validation 
on Movielens1M data

• We consider Top-Pop and Item-Avg algorithms as baseline, and Pure-
SVD as a main competitor

• The following results are obtained by varying the length of the 
recommendation list in the range [1,20] and the dimension of the 
random candidate list is fixed to 1000
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Predicted Preference
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Predicted Preference: Discussion

• Prediction rating flats on the average rating, which causes errors on 
the extremes

• One and five stars are more interesting from a recommendation 
perspective
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Item Selection and Relevance
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Conclusion
• Probabilistic models, equipped with the proper ranking function, exhibit 

competitive advantages over state-of-the-art RS in terms of recommendation 
accuracy

• Whereas the predicted preference item ranking provides poor accuracy 
results, strategies based on item selection guarantee significant improvements

• Item selection component plays the most important role in recommendation 
ranking. Better results can be achieved by considering also a rating prediction 
component
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Thanks!!

Question?

For further discussion
nicolabarbieri1@gmail.com
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