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MLL Task and its Challenges 
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Related works 

 Conventional approaches focus on exploiting the 
label correlations to improve the accuracy. 

 individual multi-label learner 

a group of single-label learners 
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Motivation 

 Conventional approaches focus on building one 
individual multi-label learner.  

 However, the generalization ability may be weak.  

 Ensemble learning can improve the generalization 
ability of a learning system and reduce the 
overfitting risk. 
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Multi-Label Ensemble Learning 

 The generalization error of an ensemble  

generalization error of the base learners 

diversity among the base learners. 

 Aim of multi-label ensemble learning 

   
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Challenges in Multi-Label Ensemble 
  

Accuracy evaluation 
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ML-HSIC Measure 

 The accuracy of a learner h can be considered as 
the similarity of the true label set (TL) and the 
predicted label set (PL). 

 The similarity can be evaluated with the 
dependence between them. 

 Based on Hilbert-Schmidt Independence Criterion 
(HSIC), the accuracy of a learner h is: 

 

                                             indicator function 

      kernel on TL                            kernel on PL  

RBF kernel is used in P and Q 
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ML-NCL Measure 

 In multi-label learning, the output are a set of 
labels, instead of a single label. 

 Inspired by Negative Correlation Learning (NCL), 
ML-NCL is proposed to evaluate the negative 
correlation of each base learner's error with the 
error for the rest of ensemble. 
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Multi-objective Optimization (1) 

 EnML simultaneously optimizes two objectives: 

            Max {ML-HSIC, ML-NCL} 

 Convert it into a single objective optimization by 
weight sum method 

 suffers from the weights setting 

 Evolutionary Multi-objective Optimization (EMO) 
can balance the trade-off 

Solutions converge to optimal front and maintain 
diversity 

Generate promising solutions in each generation 
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Multi-objective Optimization (2) 

 Multi-objective Optimization 
Mechanism 

non-dominated-sort: sorts 
solutions according to their raw 
fitness (i.e. ML-HSIC and ML-
NCL) 

Density-assignment: estimate 
the density of solutions 

 Select-population: selects top solutions 
 

• For    :non-dominated rank         density estimation 
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Multi-objective Optimization (3) 

 Multi-label base learner: modified RBF 

 Genetic representation: sequence of prototypes 

 Initialization: a set of random RBF learners 

 Generate-offspring: do crossover and mutation 
operation based on the roulette wheel selection. 
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EnML  

 

majority voting 

EMO framework 
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Experiment Setup (1) 

 Data Collections: 

 Yeast in biology, predict the gene functional classes. 

 Image, automatic image annotation for scene images. 

 Five datasets are from Yahoo, predict topic categories of 
documents. 

 Evaluation Metrics: 

 hamming loss          

 ranking loss 

 one-error                  

 coverage 

 average precision 
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Experiment Setup (2) 

 Compared Methods 

EnML: our approach, optimizes ML-HSIC and ML-NCL. 

                  : only optimizes ML-HSIC. 

                  : only optimizes ML-NCL. 

ML-RBF: the base learner in EnML. 

ECC: an ensemble method for multi-label learning 
based on the bagging of classifier chains. 

RAKEL: an ensemble method based on random forest. 
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Experiment Results 

 Two examples 
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Parameter Experiments (1) 

 Change population size and running generation. 
Observe objective values, running time and weights. 

 The different trend indicates that objectives have the 
intrinsic conflict, which helps to find a good trade-off. 
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Parameter Experiments (2) 

 The regularization term in modified RBF helps to 
control the model complexity. 

 The running time of EnML increases linearly with 
the population size N and running generation G. 
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Conclusion 

 We first study the multi-label ensemble learning 
problem, which aims at building a set of accurate 
and diverse multi-label base learners. 

 We propose a solution EnML, which optimizes 
two novel measures with evolutionary multi-
objective optimization. 

 Experiments show that EnML can effectively 
boost the predictive performance for multi-label 
classification. 
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Thanks  

Questions? 


