

QUERY REFORMULATION

USING

ANCHOR TEXT

Van Dang and W. Bruce Croft

Query Reformulation

Related work

- Relevance feedback
 - Well-known, not in the scope of this paper
- Recent reformulation techniques rely on query logs
 - [Jones et al., 06], [Wang and Zhai, 08]
 - These techniques have proven effective for real web queries
 - Many of these queries are badly formulated ("cheap airfare")
 - What if queries are good? (e.g. "hunting deaths")
 - Can these techniques still make them better?

Do these methods work with good queries?

Related Work

- Recent reformulation techniques rely on query logs
 - [Jones, 06], [Wang and Zhai, 08]
- And so do many other tasks
 - Spelling correction: [Cucerzan et al., 04], [Ahmad et al., 05]
 - Stemming: [Peng et al., 07]
- Query logs might not be available to research community
 - Any alternatives?
- <anchor text, url> is just like <query, clicked doc>.

Can we use anchor text to simulate a query log?

Introduction

Do these methods work with good queries?

- Using TREC collections to evaluate the most recent log-based reformulation technique [Wang and Zhai, 08] on three tasks
 - Query Substitution
 - Query Expansion
 - Query Stemming

Can we use anchor text to simulate a query log?

Uses anchor text in place of a query log

The Anchor Log

 Extract <anchor, url> pairs from the Gov-2 collection to create the anchor log.

	MSN Log	Anchor Log
# Total Queries	14 million	526 million
# Unique Queries	6 million	20 million
Avg. Query Length	2.68	2.62

- The anchor log is very noisy
 - "click here", "print version", ... don't represent the linked page

Query Substitution

- A context of a word is the unigram preceding it
- Context distribution

$$P(c_i \mid w) = \frac{count_w(c_i)}{\sum_{c_j \in C(w)} count_w(c_j)}$$

The translation model

$$t(s \mid w) = \frac{e^{-D(P(.|w)||P(.|s))}}{Z}$$

The substitution model

 \square Q= q_1 , ... q_{i-2} , q_{i-1} , q_i , q_{i+1} , q_{i+2} , ... q_{i+2} and idate = q_1

The probability that the term c_i appears in w's context

The KL divergence between the context distributions of **w** and **s**

> How fit the new term is to the context of the current query

$$P(w_i \to s) = t(s \mid w_i) \times P(q_{i-2}q_{i-1} - q_{i+1}q_{i+2} \mid s)$$

Substitution: An example

Query Expansion and Stemming

- Query Expansion is exactly the same as substitution
 - We add the new term and keep the original term substitution: "cheap airfare" → "cheap flight"
 - expansion: "cheap airfare" → "cheap airfare flight"
- Stemming
 - New terms are restricted to Porter-stemmed root terms "drive direction" → "drive driving direction"

Experimental Setup

- Evaluation
 - Conducted on three TREC collections:
- Robust-04 (news) UT10G (web)
- ☐ Gov-2 (web)

Collection	# Documents	# Queries
Robust-04	0.5 M	250
WT10G	1.5 M	100
Gov-2	25 M	150

Title queries vs. Description queries

Evaluation of Reformulated Query

Original Queries	MSN-Log Substitution	MSN-Log Substitution Anchor-Log Substitution		
Query 1	Substitution 1 Substitution 2	Substitution 1 Substitution 2		
	Substitution m	Substitution m		
•••	•••	•••		
Query n	Substitution 1 Substitution 2 Substitution m	Substitution 1 Substitution 2 Substitution m		
P@5	P@5	P@5		

Substitution vs. Expansion (Title Q.)

"Chance" vs. "Risk"

- Substitution works for web queries [Wang and Zhai, 08]
 - Does not work here
 - Expansion is much better
 - Why?
- Both Substitution and Expansion
 - Introduce a new term to the query
 - "chance": it brings more relevant documents
 - "risk": it brings more non-relevant documents

"Chance" vs. "Risk"

Results

Among 99 queries that were reformulated

	# Queries P@5 change	
Substitution helps	34	+110.94%
Expansion helps	32	+88.72%
Substitution hurts	32	-55.29%
Expansion hurts	14	-53.85%

Expansion

Helps more than it hurts, thus better

Substitution

Helps substantially

Hurts drastically

Does NOT help in general

"Chance" vs. "Risk"

- Translation model does NOT provide « synonyms »
 - {women, men, children}
 - {diamond, gold, necklace, watches}
- It is undesirable to
 - □ "diamond smuggling" → "watches smuggling"
- TREC queries have good quality
 - Complete substitution is too risky

Substitution vs. Expansion (Desc Q.)

Expansion

Helps even more

Helps

The Anchor log is comparable to the MSN Log

Substitution good for Long Query?

- \square Substitute w for s = drop w + add s
 - Q_{ora}: original query
 - Q_{drop}: drop the target word
 - Q_{add}: add the substitution candidate

			Q_{org}	Q_{drop}	Q_{add}
	Ö,	WT10G	0.3291	0.2734	0.3468
Log	ort	Robust04	0.4786	0.4009	0.4937
	Shor	Gov-2	0.5632	0.4529	0.5515
MSN	Q.	WT10G	0.3158	0.3074	0.3768
\geq	ong	Robust04	0.4764	0.5138	0.5976
	Т	Gov-2	0.5238	0.5578	0.6612

Dropping hurts

Dropping helps [Kumaran et al., 09]

Similar improvement

It is the dropping that helps

Stemming

□ We compare using P@10 queries

☐ Unstemmed ☐ Krovetz ☐ Log-based (MSN vs. Anchor Log)

The Anchor log is comparable to the MSN Log

Conclusions

- □ Anchor text gives comparable performance to MSN log on
 - Substitution
 - Expansion
 - Stemming
- Expansion is more reliable than substitution
- Substitution helps with long (desc) queries
 - It is the dropping that helps
- Log-based stemming is promising