MIT OpenCourseWare http://ocw.mit.edu

5.111 Principles of Chemical Science Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

5.111 Lecture Summary #14

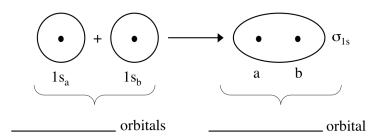
Readings for today: Section 3.8 (3.9 in 3^{rd} ed) – The Limitations of Lewis's Theory, Section 3.9 (3.10 in 3^{rd} ed) – Molecular Orbitals, Section 3.10 (3.11 in 3^{rd} ed) – The Electron Configuration of Diatomic Molecules, Section 3.11 (3.12 in 3^{rd} ed) – Bonding in Heteronuclear Diatomic Molecules.

Read for Lecture #15: Sections 3.4, 3.5, 3.6 and 3.7 (Sections 3.4, 3.5, 3.6, 3.7, and 3.8 in 3^{rd} *ed*) – Valence Bond Theory.

Topics: Molecular orbital theory

- I. Bonding and antibonding orbitals
- II. Homonuclear diatomic molecules
 - **A.** Molecules with MO's originating from s orbitals
 - **B.** Molecules with MO's originating from s and p orbitals
- III. Heteronuclear diatomic molecules

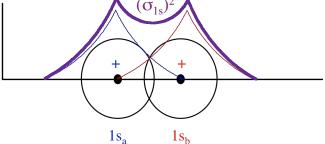
MOLECULAR ORBITAL (MO) THEORY


In MO theory, valence electrons are ______ over the entire molecule, not confined to individual atoms or bonds, as in Lewis and valence-bond models.

I. BONDING AND ANTIBONDING ORBITALS

Molecular orbitals (______) of diatomic molecules arise from adding together (superimposing) atomic orbitals:

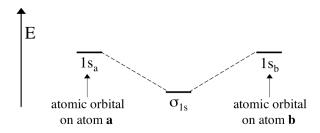
linear combination of atomic orbitals (LCAO) to create a molecular orbital.


Bonding orbitals

 σ : designates a molecular orbital that is cylindrically symmetric about the bond axis (with no nodal plane along the bond axis).

_____ + ____ = ___ = bonding MO P

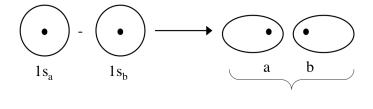
 σ_{1s} is a wavefunction.

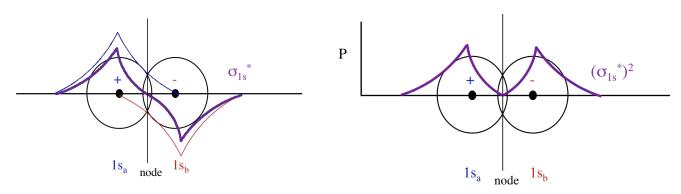

As with atomic wavefunctions, the physically significant quantity for molecular wavefunctions is probability density (P).

$$P \propto (\underline{\hspace{1cm}})^2 = (\underline{\hspace{1cm}} + \underline{\hspace{1cm}})^2 = (1s_a)^2 + (1s_b)^2 + \underline{\hspace{1cm}} 2(1s_a)(1s_b)$$
interference term

The cross-term represents ______ interference between the two wavefunctions.

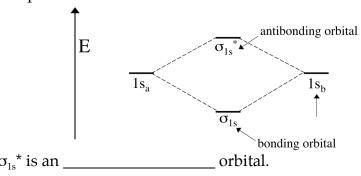
The result is a _____ orbital: higher probability density between the nuclei.


Energy of interaction for bonding orbitals. The energy _____ compared to the atomic orbitals!


Molecule is more stable than the individual atoms.

Antibonding orbitals

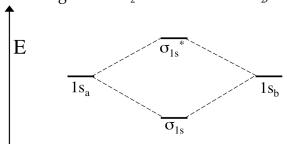
But since electrons are waves, they can also destructively interfere.


_____ - ___ = ___ = antibonding molecular orbital.

Probability density, $P \propto (\underline{\hspace{1cm}})^2 = (\underline{\hspace{1cm}})^2 = (1s_a)^2 + (1s_b)^2 - 2(1s_a)(1s_b)$ interference term

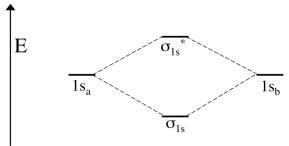
The cross-term represents _____ interference between the two wavefunctions. The result is lower probability density between the nuclei, an **antibonding** orbital.

Energy of interaction for antibonding orbitals. The energy _____ compared to the atomic orbitals!



- Less electron density accumulates between nuclei, exposing nuclei to greater repulsions.
- Creates an effect exactly opposite to a bond. Antibonding is ____ nonbonding.
- An antibonding orbital is raised in energy by approximately the same amount that the bonding orbital is lowered in energy.

II. HOMONUCLEAR DIATOMIC MOLECULES


A. Molecules with MO's originating from s orbitals

MO diagram of H_2 : In the case of H_2 , both electrons are in the σ_{1s} orbital.

Electron configuration of H₂:

MO diagram of He₂:

Electron configuration of He₂:

Because 2 e's went into a bonding orbital and 2 e's went into an antibonding orbital, no net gain or lowering in energy.

MO theory predicts He₂ _____ exist because no net gain in E.

BOND ORDER = $\frac{1}{2}$ (# of bonding electrons - # of antibonding electrons)

He₂: $(\sigma_{1s})^2(\sigma_{1s}^*)^2$

bond order = bond

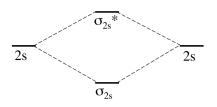
 H_2 : $(\sigma_{1s})^2$

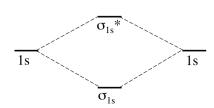
bond order = _____ bond

Reality: He₂ does exist. 'Discovered' in 1993. Weakest chemical bond known.

 $\Delta E_d = 0.01 \text{ kJ/mol for He}_2$ $\Delta E_d = 432 \text{ kJ/mol for H}_2$

The MO's formed by LCAO for 2s orbitals are analogous to those formed by 1s.


Li₂


Electron configuration: $(\sigma_{1s})^2(\sigma_{1s}^*)^2(\sigma_{2s})^2$

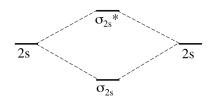
Bond order: $\frac{1}{2}$ () =

 $\Delta E_{\text{d}} = \underline{\hspace{1cm}} kJ/mol$

Î

Note: Bond order can be calculated by considering all electrons or only valence electrons.

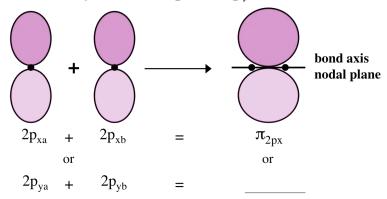
 Be_2

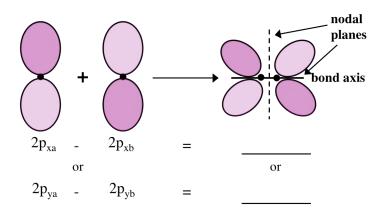

e configuration: $(\sigma_{1s})^2(\sigma_{1s}^*)^2(\sigma_{2s})^2(\sigma_{2s}^*)^2$

Bond order (counting all electrons): $\frac{1}{2}$ () =

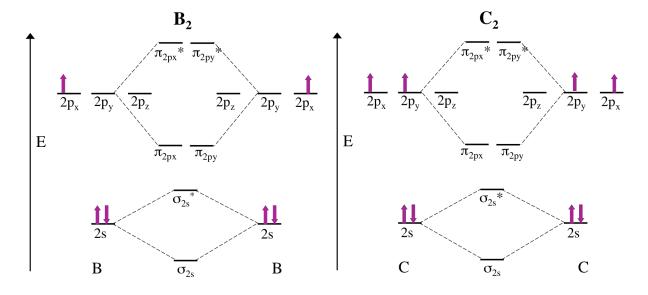
Bond order (counting only valence ēs): ½ () =

 $\Delta E_d = \underline{\hspace{1cm}} kJ/mol - very weak$


E


B. Molecules with MO's originating from s and p orbitals

Bonding MO's formed by LCAO of 2p_x and 2p_y

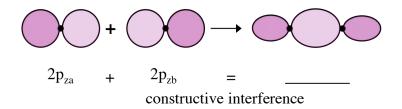


 π -orbital: Molecular wave function (molecular orbital) with a nodal plane through the _____ axis.

Antibonding MO's formed by LCAO of $2p_x$ and $2p_y$

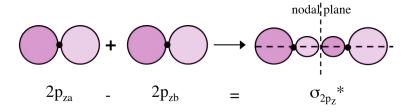
 π^* -orbitals result from the destructive interference of 2 p_x or p_y orbitals.

valence electron configuration:

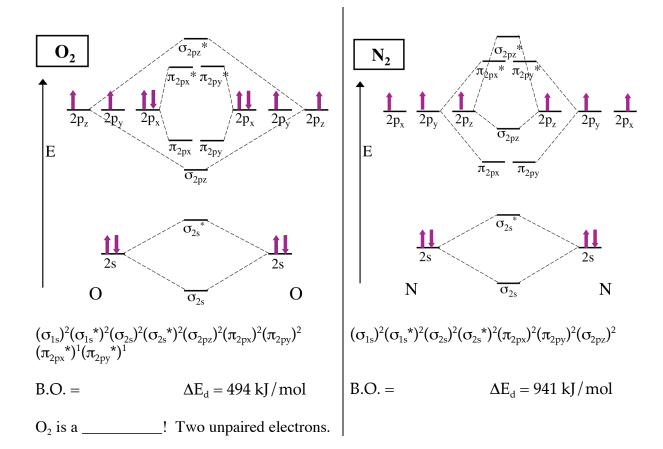

valence electron configuration:

Bond order = $\frac{1}{2}$ (4 - 2) = _____

Bond order = $\frac{1}{2}$ (6 - 2) = _____


$$\Delta E_d = 599 \text{ kJ/mol for } C_2 \text{ where B.O.} = 2$$
 vs.
$$\Delta E_d = 289 \text{ kJ/mol for } B_2 \text{ where B.O.} = 1$$

Bonding MO's formed by LCAO of $2p_z$



 $\sigma\!\!:\,MO$ with no nodal plane along the bond axis.

Antibonding MO's formed by LCAO of 2p,

destructive interference

Note: The relative energies of the σ_{2pz} orbital compared to the π_{2p} orbitals depends on the Z value of the atoms. If Z is = or > 8, the σ_{2pz} orbital is lower in energy.