MIT OpenCourseWare http://ocw.mit.edu

5.111 Principles of Chemical Science Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

5.111 Lecture Summary #18

Reading for today: Section 7.16 – Free-Energy Changes in Biological Systems.

Exam #2 coming up

Topics: Thermodynamics

- I. Free energy of formation
- II. Effect of temperature on spontaneity
- III. Thermodynamics in biological systems
 - **A.** ATP-coupled reactions
 - B. Hydrogen bonding

I. FREEE ENERGY OF FORMATION, ΔG_f (continued from Lecture #17)

 $\Delta G_{\rm f}^{\,\,\rm o}$ is a measure of a compound's stability relative to its elements.

If $\Delta G_f^{\circ} < 0$, a compound is thermodynamically ______ relative to its elements.

If $\Delta G_f^o > 0$, a compound is thermodynamically ______ relative to its elements.

$$6C(gr) + 3H_2(g) \rightarrow C_6H_6(I)$$
 $\Delta G_f^o = 124 \text{ kJ/mol}$

$$C_6H_6(1) \to 6C(gr) + 3H_2(g)$$
 $\Delta G^0 = -124 \text{ kJ/mol}$

The reverse reaction spontaneous, but very, very slow!

Free energy tells whether or not a reaction will happen spontaneously, but tells us _____ about the rate of the reaction (for rate information we need kinetics).

To calculate ΔG° for a reaction...

$$\Delta G_{\rm r}^{\,\circ} = \Sigma \Delta G_{\rm f}^{\,\circ}({\rm products}) - \Sigma \Delta G_{\rm f}^{\,\circ}({\rm reactants})$$

$$OR \qquad \Delta G_{r}^{\ \circ} = \Delta H_{r}^{\ \circ} - T \Delta S_{r}^{\ \circ}$$

II. EFFECT OF TEMPERATURE ON SPONTANEITY

Consider the decomposition of sodium bicarbonate at 298 versus 450. K.

$$2NaHCO_3(s) \rightarrow Na_2CO_3(s) + CO_2(g) + H_2O(g)$$

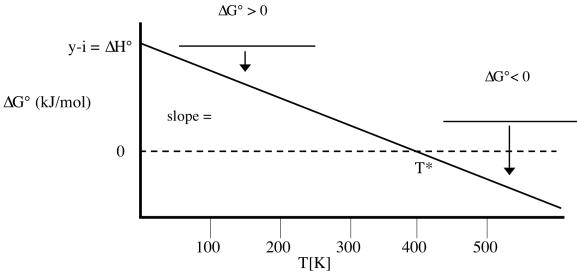
$$\Delta H^{o} = 135.6 \text{ kJ/mol}$$
 $\Delta S^{o} = \underline{\qquad} \text{kJ/(K•mol)}$

$$\Delta G_r^{\circ} = \Delta H_r^{\circ} - T(\Delta S_r^{\circ})$$

At
$$T = 298K$$

$$\Delta G^{o} =$$
_____kJ/mol

The reaction is ______ at room temperature.

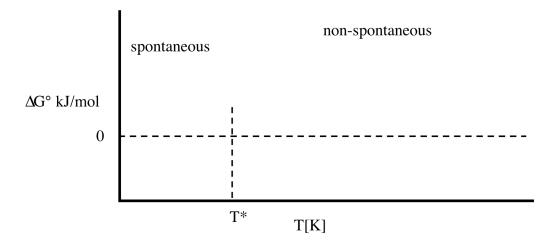

But at baking temperatures of 350°F or 450.K

$$\Delta G^{\circ} = 135.6 -$$
______ (0.334) = _____ kJ/mol

The reaction is ______ at baking temperature.

- When ΔH^o and ΔS^o have same sign, it is possible to control spontaneity with T.
- Assuming that ΔH° and ΔS° are independent of T, a reasonable first-order assumption, then ΔG° is a _____ function of T.

$$\Delta G^o = \Delta H^o - T \Delta S^o$$


Calculate T* (at which $\Delta G^{\circ} = \underline{\hspace{1cm}}$) for the decomposition of sodium bicarbonate.

$$\Delta G^{o} = \Delta H^{o} - T\Delta S^{o}$$

$$0 = \Delta H^{o} - T^{*}\Delta S^{o}$$

$$0 = \Delta H^{o} - T^{*}\Delta S^{o} \qquad T^{*} = \underline{\hspace{1cm}}$$

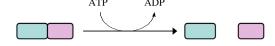
Consider the plot of temperature dependence when both ΔH° and ΔS° are negative,

$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$$

$$\Delta H^{\circ} < 0$$
 $\Delta S^{\circ} > 0$ ______ spontaneous $\Delta G^{\circ} < 0$ at _____

$$\Delta H^{\circ} > 0$$
 $\Delta S^{\circ} < 0$ ______ spontaneous $\Delta G^{\circ} > 0$ at _____

$$\Delta H^{\circ} > 0$$
 $\Delta S^{\circ} > 0$ ______ spontaneous $\Delta G^{\circ} < 0$ when T _____ T*


$$\Delta H^{\circ} < 0$$
 $\Delta S^{\circ} < 0$ _____ spontaneous $\Delta G^{\circ} < 0$ when T ____ T*

III. THERMODYNAMICS IN BIOLOGICAL SYSTEMS

A) ATP-COUPLED REACTIONS

Many biological reactions are non-spontaneous, meaning they require energy to proceed in the forward direction.

The hydrolysis of ATP (ATP \rightarrow ADP), a spontaneous process, can be _____ to a non-spontaneous reaction to drive the reaction forward.

The resulting ΔG° of the coupled reaction is the sum of the individual ΔG° values.

First, let's calculate the ΔG° for ATP hydrolysis at 310 K (body temperature).

$$\Delta H^{\circ} = -24 \text{ kJ/mol} \text{ (from Lecture #17)}$$

$$\Delta S^{\circ} = +22 \text{ J/K} \cdot \text{mol}$$

$$\Delta G^{\circ} =$$

Note: the calculated free energies are under standard conditions. This is an approximation since these molecules are NOT under standard conditions in cells.

Example of an ATP-coupled reaction: the **conversion of glucose to glucose-6-P.**

Adding a phosphate (P) group to glucose gives the glucose a negative charge, which prevents the glucose molecule from diffusing back out of the cell through the "greasy" cell membrane.

$$\Delta G^{\rm o} = +17 \text{ kJ/mol}$$
 for glucose to glucose-6-P

$$\Delta G^{\rm o} =$$
____kJ/mol for ATP hydrolysis

An enzyme **couples** the glucose-to-glucose-6-P reaction to ATP hydrolysis. The net change in free energy =

If ATP hydrolysis is spontaneous, why is it not occurring unregulated in the cell?

KINETICS! A reaction can be thermodynamically spontaneous, but kinetically very very slow.

B) HYDROGEN BONDING

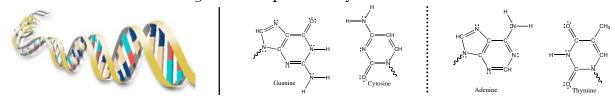
A **hydrogen bond** is an electrostatic interaction between a hydrogen atom in a polar bond (typically a H-F, H-O or H-N bond) and a "hydrogen-bond donor", a strongly electronegative atom.

$$X$$
—H-------:Y where $X = O$, N , F And Y is the hydrogen bond donor: _____, _____.

The H-bond donor (Y) atom must be small, highly electronegative atom with a _____ of electrons available for bonding.

For example, hydrogen bonds form between water molecules:

Mean bond enthalpies of hydrogen-bonds (H-bonds):


H-bonds are the strongest type of intermolecular interaction. However, H-bonds are weaker than covalent or ionic bonds.

		mean bond enthalpy (in kJ/mol)
OHO	H-bond	
H-O	covalent bond	463
OHN	H-bond	29
NHN	H-bond	14
H-N	covalent bond	

H-bonding can be *inter*molecular (as in the water molecules above) or *intra*molecular. Intramolecular H-bonds in proteins are required for a protein's 3-dimensional shape.

Hydrogen bonding in DNA

Hvdrogen bonding binds together complementary strands of DNA to form a double helix.

The lower bond enthalpies of hydrogen bonds compared to covalent bonds facilitate the separation of DNA strands during DNA replication.

5