MIT OpenCourseWare <u>http://ocw.mit.edu</u>

5.111 Principles of Chemical Science Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

5.111 Lecture Summary #8

Readings for today: Section 1.12 (1.11 in 3rd ed) – Orbital Energies (of many-electron atoms), Section 1.13 (1.12 in 3rd ed) – The Building-Up Principle.

Read for Lecture #9: Section 1.14 (1.13 in 3rd ed) – Electronic Structure and the Periodic Table, Section 1.15, 1.16, 1.17, 1.18, and 1.20 (1.14, 1.15, 1.16, 1.17, and 1.19 in 3rd ed) - The Periodicity of Atomic Properties.

Assignment: Problem set #3 (due Session #10).

Topics:	Multi-electron atoms
-	I. Wavefunctions for multi-electron atoms
	II. Binding energies
	III. Electron configurations (Aufbau principle)

I. WAVEFUNCTIONS FOR MULTIELECTRON ATOMS

(Describing atoms with Z=2 or higher)

The Schrödinger equation correctly describes the electronic structure for all atoms, not just 1-e⁻ atoms.

Hydrogen:	$\hat{H}\Psi(r\theta\phi) = E\Psi(r\theta\phi)$
Helium (2 e ⁻ s):	$\hat{H}\Psi(r_1\theta_1\phi_1r_2\theta_2\phi_2) = E\Psi(r_1\theta_1\phi_1r_2\theta_2\phi_2)$
Lithium (3 e ⁻ s):	$\hat{H}\Psi(r_1\theta_1\phi_1r_2\theta_2\phi_2r_3\theta_3\phi_3) = E\Psi(r_1\theta_1\phi_1r_2\theta_2\phi_2r_3\theta_3\phi_3)$

The equations becomes much more complicated. Approximations are needed!

Hartree orbitals: Assume we can write a multi-electron Ψ as the product of 1-electron Ψ s:

Helium: $\Psi(\mathbf{r}_1\theta_1\phi_1\mathbf{r}_2\theta_2\phi_2) = \Psi(\mathbf{r}_1\theta_1\phi_1) \cdot \Psi(\mathbf{r}_2\theta_2\phi_2)$ $\Psi \text{ for } \underline{\qquad} \cdot \Psi \text{ for } \underline{\qquad} \Psi \text{ for$

Electron configuration is the shorthand notation for electron wavefunctions.

 $\begin{array}{lll} H & 1s^1 \\ He & 1s^2 \\ Li & 1s^2 2s^1 \\ \end{array}$ Be

В

HOW DO THE MULTI-ELECTRON WAVEFUNCTIONS COMPARE TO THE H-ATOM WAVEFUNCTIONS?

Let's consider Ar as an example: 1s²2s²2p⁶3s²3p⁶

Similarities to H atom wavefunctions:

- Each orbital obtained is **similar in shape** to the corresponding H 1-e⁻ orbital.
- The **nodal structure is the same** (nodes occur at values of r, θ and Φ which give Ψ and $\Psi^2 = 0$).

Differences to H atom wavefunctions:

• Each multi-electron orbital is ______ than the corresponding hydrogen atom orbital.

Why? Stronger pull from the nucleus with higher Z (Z=18 for Ar , Z=1 for H).

• In multi-electron atoms, orbital energy depends on both the shell (n) and the subshell (*l*).

II. BINDING ENERGIES FOR MULTI-ELECTRON ATOMS

All orbitals in a multi-electron atom are lower in energy (______) than the corresponding energy in a hydrogen atom.

One-electron atom
 Multi-electron atom

$$E_4$$
 $4s$
 $4p_x$
 $4p_y$
 $4d_{xy}$
 $4d_{yz}$
 $4d_{xy}$
 $4d_{x2}$
 $4f^{14}$
 E_{4p}
 $4p_x$
 $4p_z$
 $4p_y$
 $4p_y$
 $4p_y$
 $4p_y$
 $4p_y$
 $4p_y$
 E_{4p}
 $4p_x$
 $4p_z$
 $4p_y$
 <

The lower energy results in multi-electron atoms results from a higher Z--- a stronger pull from the nucleus.

The principal quantum number, n, is no longer the sole determining factor for the orbital energies of multi-electron atoms. **Energy now depends on n and** _____.

$$E_n = -IE_n = -\frac{Z^2 R_H}{n^2} \qquad E_{nl} = -IE_{nl} = -\frac{(Z_{eff}^{nl})^2 R_H}{n^2}$$
For ______-electron atoms For ______electron atoms

Where Z_{eff} is the effective charge experienced by the electron in the n,*l* state.

 Z_{eff} _____ the same as Z for the nucleus. Z_{eff} differs from Z because of _____.

Shielding and Z_{eff}

To illustrate the effect of shielding, consider the two extreme shielding situations possible for the He atom (Z = 2).

EXTREME CASE A: electron #1 is very far from nucleus; electron #2 close to nucleus

- Electron #2 cancels part of the charge experienced by electron #1.
- Electron #1 experiences a force on average of $Z_{eff} =$ _____, not $Z_{eff} =$ +2e.
- The energy of electron #1 is that of an electron in a H (1-electron) atom.

$$E_{e-\#1} = ____{e-\#1} = -\frac{(Z_{eff})^2 R_H}{n^2} = _____J$$

EXTREME CASE B: electron #1 close to nucleus; electron #2 very far from nucleus

He nucleus (charge =
$$+2e$$
)

- Electron #1 experiences a force on average of Z_{eff} = _____.
- The energy of electron #1 is that of an electron in a _____ (1-electron) ion.

$$E_{e-\#1} = -IE_{e-\#1} = -\frac{(Z_{eff})^2 R_H}{n^2} = ____J$$

Extreme case A: $Z_{eff} = 1$, $IE_{He} = 2.18 \times 10^{-18} J$ shieldingExtreme case B: $Z_{eff} = 2$, $IE_{He} = 8.72 \times 10^{-18} J$ shieldingExperimentally determined IE_{He}:Experimental IE_{He} = 3.94 \times 10^{-18} J

So the reality is somewhere between total shielding and no shielding.

We can calculate the Z_{eff} from the experimentally determined IE:

Note: Our calculated Z_{eff} is a reasonable value, since it falls between ____ (total shielding) and ____ (no shielding).

Why is E_{2s} < (more negative than) E_{2p} and E_{3s} < E_{3p} < E_{3d}

For a given n state (shell), electrons in orbitals with lower values of l ______ closer to the nucleus (even though r_{mp} decreases with increasing l!).

This means (for the same n):

- p-electrons are less shielded than _____-electrons

Consider why the electron configuration for Li is $1s^2 2s^1$ and not $1s^2 2p^1$.

The s-orbital is less shielded. Averaging over the RPD yields ______<

Since $E_{nl} = - (Z_{eff})^2 R_H / n^2$, E_{2s} _____ E_{2p}

III. ELECTRON CONFIGURATIONS

Electron configuration describes the electronic structure of an atom by specifying which orbitals are occupied. This is very useful notation, since electron structure dictates the chemical properties and reactivity of a given atom.

How do we determine the electron configuration of an atom?

AUFBAU PRINCIPLE

Fill energy states (which depend on ____ and ___) one electron at a time, starting with the lowest energy state and following:

1)) The Pauli exclusion principle E_{2n}				
2)	Hund's rule: when electrons are added to states of the same E, a single electron enters each state before a second electron enters any state Spins remain F .		E _{3s}	$\frac{3p_x}{3s} = \frac{3p_z}{3s}$	3p _y
	$\underline{\qquad}$ prior to adding a second electron to any state.	-n <i>l</i>	E _{2p}	$2p_x$ $2p_z$	2p _y
	Let's try this for $O(Z = 8)$.		E _{2s}	28	
	Electron configuration:		E _{1s}	1.	
	(specifying m _l):			18	

*You need only provide m*₁*notation if specifically asked.*

Third Period: Na to Ar
Na =
$$1s^2 2s^2 2p^6 3s^1$$

electron
Na = $[Ne] 3s^1$
Ma = $[Ne] 3s^2$
Al = $[Ne] 3s^23p^6$
Fourth Period: K to Kr
K = $[Ar] 4s^1$
Ca = $[Ar] 4s^23d^1$
Ca = $[Ar] 4s^23d^1$
Ca = $[Ar] 4s^23d^2$
V = $[Ar] 4s^23d^3$
Cr = $[Ar] 4s^23d^5$
Fe = $[Ar] 4s^23d^6$
Co = $[Ar] 4s^23d^6$
Co = $[Ar] 4s^23d^6$
Cu = $[Ar] 4s^23d^8$
Cu = $[Ar] 4s^23d^{10}$ exception to Aufbau*
Zn = $[Ar] 4s^23d^{10}$
Ga = $[Ar] 4s^23d^{10}4p^1$
.
Kr = $[Ar] 4s^23d^{10}4p^6$

* Exceptions to the Aufbau principle: filled (____) and half-filled (____) d-orbitals have lower energy than simple theory predicts.

Core electrons: electrons in inner shells making up a noble gas configuration.

Valence electrons: electrons in the outer most shell. Valence electrons are the exciting ones- in general, only the valence electrons participate in chemical reactions.

Fifth Period: Rb to Xe. Mo and Ag are counterpart anomalies to Cr and Cu in 4th period. *Additional anomalies and other effects are difficult to predict.*

ELECTRON CONFIGURATIONS OF IONS - NOT THE SAME AS NEUTRALS!!! Once a d orbital is filled, the orbital energy drops to below the corresponding s orbital.

