5.111 Lecture Summary #15

Readings for today: Sections 3.4, 3.5, 3.6 and 3.7 (Sections 3.4, 3.5, 3.6, 3.7, and 3.8 in *3rd ed*) – Valence Bond Theory.

Read for Lecture #16: Sections 6.13, 6.15, 6.16, 6.17, 6.18, and 6.20 (Sections 6.14, 6.16, 6.17, 6.18, 6.19, and 6.21 in 3rd ed) – The Enthalpy of Chemical Change.

Assignment: Problem set #5 (due Friday, October 17th at noon)

Topics: Valence bond theory and hybridization I. Sigma and pi bonds II. Hybridization of atomic orbitals A. sp³ hybridization B. sp² hybridization C. sp hybridization

VALENCE BOND THEORY AND HYBRIDIZATION

In **valence bond theory**, bonds result from the pairing of unpaired electrons in atomic orbitals.

I. SIGMA AND PI BONDS

σ (sigma) bond: cylindrically symmetric with _____ nodal plane across the bond axis.

 π (pi) bond: a bond with e⁻ density in two lobes, one on each side of the bond axis.

A pi bond has a ______ nodal plane along the bond axis.

We can describe multiple bonds according to valence-bond theory.

- single bond: _____
- double bond: one σ-bond plus one _____
- triple bond: one σ -bond plus _____ π -bonds

Applying simple VB theory results in the following prediction for methane bonding:

According to this model, the C is bonded to only two H-atoms with an H-C-H bond of ______°. This is NOT what is observed for methane!

II. HYBRIDIZATION OF ATOMIC ORBITALS

A. sp³ hybridization

A carbon atom has four unpaired electrons available for bonding once a 2s-electron is

The sp³ hybrid orbitals are equivalent and degenerate. They differ only in their ______ in space.

In carbon, each sp³ orbital contains a single electron, allowing four bonds. $\begin{array}{c} \mathbf{s}\mathbf{p}^{3} \\ \mathbf{C} \\ \mathbf{H} \end{array} \qquad \begin{array}{c} \mathbf{\hat{f}} \\ \mathbf{\hat$

! Each bond is labeled based on the bond type ____(C____, H____) (σ or π) and atomic orbital composition.

What provides the energy for the initial electron promotion?

Consider ethane, C_2H_6 .

Nitrogen: Electron promotion ______ occur with nitrogen because promotion would not increase the number of unpaired electrons available for bonding.

N-atom geometry: _____

2sp³ 1s

 σ bond

Oxygen: Electron promotion does not occur.

B. sp² hybridization

sp² hybrid orbitals form from the combination of one s-orbital and two p-orbitals.

3 hybrid orbitals 1 p-orbital **Boron:** Boron has 3 unpaired electrons available for bonding once a 2s-electron is promoted to an empty 2-p orbital.

The s-orbital and two of the p-orbitals hybridize to form ______ sp² orbitals.

The three sp²-orbitals lie in a ______ to minimize electron repulsion.

Carbon: Carbon can also form sp² hybrid orbitals.

V

looking down the x-axis

π(_____, ____

looking down the y-axis $\sigma($ ______)

)

In addition to the C-C double bond, there are four C-H bonds: $\sigma($ _____, ____)

In reality, the 6 pi-electrons are ______ over all six carbon atoms in the benzene molecule. Each C-C bond is a _____ bond.

C. sp hybridization

sp hybrid orbitals form from the combination of one s-orbital and 1 p-orbital.

