MIT OpenCourseWare <a href="http://ocw.mit.edu">http://ocw.mit.edu</a>

# 5.111 Principles of Chemical Science Fall 2008

For information about citing these materials or our Terms of Use, visit: <a href="http://ocw.mit.edu/terms">http://ocw.mit.edu/terms</a>.

## 5.111 Lecture Summary #21

## Acid-Base Equilibrium Read Chapter 10

Topics: Classification of Acid-Bases, Autoionization of Water, pH Function, Strength of Acids and Bases, Equilibrium Involving Weak Acids.

### Classification of Acids and Bases

## 1. Arrhenius - a narrow definition of acids and bases

An **acid** is a substance that when dissolved in water increases the concentration of hydrogen ions. A **base** is a substance that increases the hydroxide concentration.

## 2. Brønsted-Lowry - a broader definition

A Brønsted-Lowry **acid** - a substance that can donate a hydrogen ion A Brønsted-Lowry **base** - a substance that can accept a hydrogen ion

Example 1
$$CH_3COOH (aq) + H_2O (1) \implies H_3O^+ (aq) + CH_3COO^- (aq)$$

$$Acid1 \qquad Base2 \qquad Acid2 \qquad Base1$$

(note: hydronium ion  $H_3O^+$  (aq) is used instead of  $H^+$  (aq) to represent the true nature of hydrogen ions in water)

Acid-bases occur as **conjugate acid-base pairs**.  $CH_3COOH$  and  $CH_3COO^-$  are a pair.  $H_2O$  and  $H_3O^+$  are a pair. The conjugate base of an acid is the base that is formed when the acid has donated a hydrogen ion. The conjugate acid of a base is the acid that forms when base accepts a hydrogen ion.

Example 2 Which are Brønsted-Lowry acids and which are Brønsted-Lowry bases?

$$HCO_3^-(aq) + H_2O(1) \implies H_3O^+(aq) + CO_3^{-2}(aq)$$

$$HCO_3^{-}(aq) + H_2O(1) \implies H_2CO_3(aq) + OH^{-}(aq)$$

**amphoteric** - molecules that can function either as acids or bases depending on the reaction conditions.

## 3. Lewis Acid and Base - more general definition - applies to reactions that don't involve a hydrogen ion

Lewis **base** - species that donates lone-pair electrons Lewis **acid** - species that accepts such electrons

## Example 1



Ammonia is the Lewis base. It donates lone-pair electrons to BF<sub>3</sub>, the Lewis acid and the electron acceptor.

## **Autoionization of Water**

$$H_2O(l) + H_2O(l) \implies H_3O^+(aq) + OH^-(aq)$$
 or  $2H_2O(l) \implies H_3O^+(aq) + OH^-(aq)$  acid base

How much H<sub>2</sub>O is in a glass of water?

$$\begin{split} \Delta G^{\circ} &= \Delta G_{\rm f}^{\,\circ}(H_3 O^+, aq) + \Delta G_{\rm f}^{\,\circ} \,\,(OH^-, aq) - 2\Delta G_{\rm f}^{\,\circ} \,\,(H_2 O, l) \\ &= (-237.13) + (-157.24) - 2 \,\,x \,\,(-237.13) \,\,kJ/mol \\ &= +79.89 \,\,kJ/mol \end{split}$$

$$\ln K = -\Delta G^{\circ}/RT = \frac{-(7.989 \times 10^{4} \text{ J/mol})}{(8.3145 \text{ J/Kmol})(298.0 \text{ K})} = -32.24$$

$$K = 1.0 \times 10^{-14} \text{ at } 298 \text{ K}$$

This very small value indicates that only a small proportion of water molecules are ionized. Concentration of ions due to autoionization of water is very low, about 1 molecule in 200 million.

$$K = [H_3O^+][OH^-]$$
 This K is called  $K_w$ .

Because  $K_{\rm w}$  is an equilibrium constant, the product of  $[H_3O^+][OH^-]$  is always 1.0 x  $10^{-14}$  at 298 K.

Note: Because the concentration of the solvent, H<sub>2</sub>O, does not change significantly in a dilute solution, it does not enter the equilibrium expression. The solvent, water, is very nearly pure, and pure liquids and pure solids are not included in equilibrium expressions.

## pH Function

$$pH = -log [H_3O^+]$$

## pOH Function

$$pOH = -log [OH^{-}]$$

$$K_w = [H_3O^+][OH^-]$$
  
 $log K_w = log [H_3O^+] + log [OH^-]$   
 $-log K_w = -log [H_3O^+] - log [OH^-]$   
 $p K_w = pH + pOH = 14.00 \text{ at } 25^{\circ}C$ 

## Strength of Acids and Bases

pH of pure water pH = 
$$-\log (1.0 \times 10^{-7}) = 7.00$$
  
pH of an acid solution is  
pH of an base solution is

EPA defines waste as "corrosive" if the pH is lower than 3.0 or higher than 12.5.

## 1. Acid in water

CH<sub>3</sub>COOH (aq) + H<sub>2</sub>O (l) 
$$\Longrightarrow$$
 H<sub>3</sub>O<sup>+</sup>(aq) + CH<sub>3</sub>CO<sub>2</sub><sup>-</sup> (aq)
  
Acid ionization constant K<sub>a</sub> =  $[H_3O^+][CH_3CO_2^-]$ 
 $[CH_3COOH]$ 

 $K_a$  equals 1.76 x  $10^{-5}$  at 25°C. Small value tells us that only a small proportion of  $CH_3COOH$  molecules donate their proton when dissolved in water (weak acid).

$$HA (aq) + H_2O (l) \implies H_3O^+(aq) + A^-(aq)$$
 ACID (HA) IN WATER   
  $BH^+(aq) + H_2O (l) \implies H_3O^+(aq) + B (aq)$  ACID (BH+) IN WATER

A strong acid has a  $K_a > 1$  which means that the acid ionizes almost completely.

A weak acid has a  $K_a$  <1. The reaction with water does not produce many ionized species before equilibrium is reached.

$$pK_a = -log K_a$$

The lower the value of  $K_a$ , the higher the value of  $pK_a$ . The higher the  $pK_a$ , the weaker the acid.

#### 2. Base in water

$$NH_3 (aq) + H_2O (1) \implies NH_4^+ (aq) + OH^- (aq)$$

Base ionization constant 
$$K_b = \frac{[NH_4^+][OH^-]}{[NH_3]}$$

 $K_b$  is 1.8 x  $10^{-5}$  at  $25^{\circ}$ C. This small value tells us that only a small amount of  $NH_3$  ionizes to  $NH_4^+$  and  $OH^-$  in solution. A strong base reacts essentially completely to give  $OH^-$  (aq) when put in water.  $NH_3$  is not a strong base. It is a moderately weak base.

$$B (aq) + H_2O (l) \Longrightarrow BH^+ (aq) + OH^- (aq)$$
  
 $A^- (aq) + H_2O (l) \Longrightarrow HA (aq) + OH^- (aq)$ 

BASE (B) IN WATER BASE (A<sup>-</sup>) IN WATER

$$pK_b = -log K_b$$

larger K<sub>b</sub>, stronger base

larger pK<sub>b</sub>, weaker base

## 3. Conjugate acids and bases

The stronger the acid, the weaker its conjugate base. The stronger the base, the weaker its conjugate acid.

Consider conjugate acid-base pair NH<sub>3</sub> and NH<sub>4</sub><sup>+</sup>:

$$NH_3 (aq) + H_2O (1) \implies NH_4^+ (aq) + OH^- (aq)$$

$$NH_4^+$$
 (aq) +  $H_2O$  (l)  $\rightleftharpoons$   $H_3O^+$  (aq) +  $NH_3$  (aq) Multiply K's together and get:

$$K_a \times K_b = \frac{[NH_3][H_3O^+]}{[NH_4^+]} \times \frac{[NH_4^+][OH^-]}{[NH_3]} = [H_3O^+][OH^-]$$

$$K_a \times K_b = K_w$$

$$\log K_a + \log K_b = \log K_w$$
 or  $pK_a + pK_b = pK_w = 14.00$ 

Strong acid HA (aq) + 
$$H_2O(1)$$
  $\longrightarrow$   $H_3O^+(aq) + A^-(aq)$ 

Strong base B (aq) + 
$$H_2O$$
 (l) \_\_\_\_\_ BH<sup>+</sup> (aq) +  $OH$ <sup>-</sup> (aq)

## 4. Relative strengths of acids

Is HNO<sub>3</sub> or NH<sub>4</sub><sup>+</sup> a stronger acid? Will the reaction lie far to the right or left?

$$HNO_3 (aq) + NH_3 (aq) \implies NO_3^- (aq) + NH_4^+ (aq)$$

$$K = \frac{[NO_3][NH_4]}{[HNO_3][NH_3]}$$

consider each acid separately:

1. 
$$HNO_3(aq) + H_2O(1) - H_3O^+(aq) + NO_3^-(aq)$$

$$K_a (HNO_3) = \frac{[H_3O^+][NO_3^-]}{[HNO_3]} = 20.$$

2. 
$$NH_4^+(aq) + H_2O(1) \implies H_3O^+(aq) + NH_3(aq)$$

$$K_a (NH_4^+) = \frac{[H_3O^+][NH_3]}{[NH_4^+]} = 5.6 \times 10^{-10}$$

Subtract equation 2 from 1 and divide the corresponding equilibrium constants.

$$K = \frac{K_a (HNO_3)}{K_a (NH_4^+)} = \frac{\frac{[H_3O^+][NO_3^-]}{[HNO_3]}}{\frac{[H_3O^+][NH_3]}{[NH_4^+]}} = \frac{\frac{[NO_3^-][NH_4^+]}{[HNO_3][NH_3]}}{\frac{[H_3O^+][NH_3]}{[NH_4^+]}} = \frac{20.}{5.6 \text{ x}} \frac{20.}{10^{-10}} = 3.6 \text{ x} \cdot 10^{10}$$

Reaction lies far to the \_\_\_\_\_\_.  $HNO_3$  is a \_\_\_\_\_\_ than  $NH_4^+$ .

## Types of acid-base problems

- 1. weak acid in water
- 2. weak base in water salt in water
- 3. strong acid in water
- 4. strong base in water
- 5. buffer

## Equilibrium involving weak acids

Example: Vitamin C (ascorbic acid,  $HC_6H_7O_6$ ) has a  $K_a$  of 8.0 x  $10^{-5}$ . Calculate the pH of a solution made by dissolving 500. mg in 100. mL of water.

$$0.500 \text{ g x } 1 \text{ mol}/176.126 \text{ g} = 2.84 \text{ x } 10^{-3} \text{ mol}$$
  
 $2.84 \text{ x } 10^{-3} \text{ mol}/0.100 \text{ L} = 0.0284 \text{ M}$ 

$$HC_6H_7O_6(aq) + H_2O(l) \implies H_3O^+(aq) + C_6H_7O_6^-(aq)$$

initial molarity change in molarity equilibrium molarity

$$K_a = 8.0 \times 10^{-5} = \frac{[H_3O^+][C_6H_7O_6^-]}{[HC_6H_7O_6]} = \frac{x^2}{0.0284-x}$$

If x << 0.0284, then  $(0.0284-x) \sim= 0.0284$ .

$$K_a = 8.0 \times 10^{-5} = \frac{x^2}{0.0284}$$

x = 0.00151 (really 2 sf, but carry extra)

Check assumption. Is  $0.0284 - 0.00151 \sim 0.0284$ ?

You can use assumption if x is less than 5% of the value in question.

Here  $(0.00151/0.0284) \times 100\% = 5.3\%$  (more than 5%), so must use the quadratic equation.

Using quadratic eq, x = 0.00147 (really 2 sf)

$$pH = -log [1.47 \times 10^{-3}] = 2.83$$