MIT OpenCourseWare
http://ocw.mit.edu

5.111 Principles of Chemical Science

Fall 2008

For information about citing these materials or our Terms of Use, visit: $\underline{h t t p: / / o c w . m i t . e d u / t e r m s . ~}$

5.111 Lecture Summary \#21

Acid-Base Equilibrium Read Chapter 10
Topics: Classification of Acid-Bases, Autoionization of Water, pH Function, Strength of Acids and Bases, Equilibrium Involving Weak Acids.

Classification of Acids and Bases

1. Arrhenius - a narrow definition of acids and bases

An acid is a substance that when dissolved in water increases the concentration of hydrogen ions. A base is a substance that increases the hydroxide concentration.

2. Brønsted-Lowry - a broader definition

A Brønsted-Lowry acid - a substance that can donate a hydrogen ion
A Brønsted-Lowry base - a substance that can accept a hydrogen ion

Example 1
$\underset{\text { Acid1 }}{\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})} \underset{\text { Base2 }}{\mathrm{H}_{2} \mathrm{O}(\mathrm{l})} \rightleftharpoons \underset{\text { Acid2 }}{\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})}+\underset{\text { Base1 }}{\mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})}$
(note: hydronium ion $\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})$ is used instead of $\mathrm{H}^{+}(\mathrm{aq})$ to represent the true nature of hydrogen ions in water)

Acid-bases occur as conjugate acid-base pairs. $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COO}$ are a pair. $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{H}_{3} \mathrm{O}^{+}$are a pair. The conjugate base of an acid is the base that is formed when the acid has donated a hydrogen ion. The conjugate acid of a base is the acid that forms when base accepts a hydrogen ion.

Example 2 Which are Brønsted-Lowry acids and which are Brønsted-Lowry bases?
$\mathrm{HCO}_{3}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{CO}_{3}^{-2}(\mathrm{aq})$
$\mathrm{HCO}_{3}{ }^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
amphoteric - molecules that can function either as acids or bases depending on the reaction conditions.
3. Lewis Acid and Base - more general definition - applies to reactions that don't involve a hydrogen ion

Lewis base - species that donates lone-pair electrons
Lewis acid - species that accepts such electrons
Example 1

Ammonia is the Lewis base. It donates lone-pair electrons to BF_{3}, the Lewis acid and the electron acceptor.

Autoionization of Water

$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$ or $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
acid base acid base

How much $\mathrm{H}_{2} \mathrm{O}$ is in a glass of water?

$$
\begin{aligned}
\Delta \mathrm{G}^{\circ} & =\Delta \mathrm{G}_{\mathrm{f}}^{\circ}\left(\mathrm{H}_{3} \mathrm{O}^{+}, \mathrm{aq}\right)+\Delta \mathrm{G}_{\mathrm{f}}^{\circ}\left(\mathrm{OH}^{-}, \mathrm{aq}\right)-2 \Delta \mathrm{G}_{\mathrm{f}}^{\circ}\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{l}\right) \\
& =(-237.13)+(-157.24)-2 \times(-237.13) \mathrm{kJ} / \mathrm{mol} \\
& =+79.89 \mathrm{~kJ} / \mathrm{mol} \\
\ln \mathrm{~K} & =-\Delta \mathrm{G}^{\circ} / \mathrm{RT}=\frac{-\left(7.989 \times 10^{4} \mathrm{~J} / \mathrm{mol}\right)}{(8.3145 \mathrm{~J} / \mathrm{Kmol})(298.0 \mathrm{~K})}=-32.24
\end{aligned}
$$

$\mathrm{K}=1.0 \times 10^{-14}$ at 298 K

This very small value indicates that only a small proportion of water molecules are ionized. Concentration of ions due to autoionization of water is very low, about 1 molecule in 200 million.

$$
\mathrm{K}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right] \quad \text { This } \mathrm{K} \text { is called } \mathrm{K}_{\mathrm{w}} .
$$

Because K_{w} is an equilibrium constant, the product of $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]$is always 1.0×10^{-14} at 298 K .
Note: Because the concentration of the solvent, $\mathrm{H}_{2} \mathrm{O}$, does not change significantly in a dilute solution, it does not enter the equilibrium expression. The solvent, water, is very nearly pure, and pure liquids and pure solids are not included in equilibrium expressions.

pH Function

$\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$

pOH Function

$\mathrm{pOH}=-\log \left[\mathrm{OH}^{-}\right]$
$\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]$
$\log \mathrm{K}_{\mathrm{w}}=\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]+\log \left[\mathrm{OH}^{-}\right]$
$-\log \mathrm{K}_{\mathrm{w}}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]-\log \left[\mathrm{OH}^{-}\right]$
$\mathrm{pK}_{\mathrm{w}}=\mathrm{pH}+\mathrm{pOH}=14.00$ at $25^{\circ} \mathrm{C}$

Strength of Acids and Bases

pH of pure water $\mathrm{pH}=-\log \left(1.0 \times 10^{-7}\right)=7.00$
pH of an acid solution is
pH of an base solution is
EPA defines waste as "corrosive" if the pH is lower than 3.0 or higher than 12.5 .

1. Acid in water

$$
\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{CH}_{3} \mathrm{CO}_{2}^{-}(\mathrm{aq})
$$

Acid ionization constant $\mathrm{K}_{\mathrm{a}}=\underline{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{CO}_{2}{ }^{-}\right]}$
$\left[\mathrm{CH}_{3} \mathrm{COOH}\right]$
K_{a} equals 1.76×10^{-5} at $25^{\circ} \mathrm{C}$. Small value tells us that only a small proportion of $\mathrm{CH}_{3} \mathrm{COOH}$ molecules donate their proton when dissolved in water (weak acid).
$\mathrm{HA}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq})$
ACID (HA) IN WATER
$\mathrm{BH}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{B}(\mathrm{aq})$
ACID (BH^{+}) IN WATER

A strong acid has a $K_{a}>1$ which means that the acid ionizes almost completely.
A weak acid has a $\mathrm{K}_{\mathrm{a}}<1$. The reaction with water does not produce many ionized species before equilibrium is reached.
$\mathrm{pK}_{\mathrm{a}}=-\log \mathrm{K}_{\mathrm{a}}$
The lower the value of K_{a}, the higher the value of pK_{a}. The higher the pK_{a}, the weaker the acid.

2. Base in water

$\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
Base ionization constant $\mathrm{K}_{\mathrm{b}}=\underline{\left[\mathrm{NH}_{4}^{+}\right]\left[\mathrm{OH}^{-}\right]}$
$\left[\mathrm{NH}_{3}\right]$
K_{b} is 1.8×10^{-5} at $25^{\circ} \mathrm{C}$. This small value tells us that only a small amount of NH_{3} ionizes to $\mathrm{NH}_{4}{ }^{+}$ and OH^{-}in solution. A strong base reacts essentially completely to give $\mathrm{OH}^{-}(\mathrm{aq})$ when put in water. NH_{3} is not a strong base. It is a moderately weak base.
$\mathrm{B}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{BH}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
$\mathrm{A}^{-}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{HA}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
$\mathrm{pK}_{\mathrm{b}}=-\log \mathrm{K}_{\mathrm{b}}$
larger K_{b}, stronger base
larger pK_{b}, weaker base

3. Conjugate acids and bases

The stronger the acid, the weaker its conjugate base.
The stronger the base, the weaker its conjugate acid.
Consider conjugate acid-base pair NH_{3} and $\mathrm{NH}_{4}{ }^{+}$:
$\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
$\mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{NH}_{3}(\mathrm{aq})$
Multiply K's together and get:
$\mathrm{K}_{\mathrm{a}} \times \mathrm{K}_{\mathrm{b}}=\frac{\left[\mathrm{NH}_{3}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{NH}_{4}^{+}\right]} \quad \mathrm{X} \quad \frac{\left[\mathrm{NH}_{4}{ }^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NH}_{3}\right]}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]$
$\mathrm{K}_{\mathrm{a}} \times \mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{w}}$
$\log \mathrm{K}_{\mathrm{a}}+\log \mathrm{K}_{\mathrm{b}}=\log \mathrm{K}_{\mathrm{w}}$ or $\mathrm{pK}_{\mathrm{a}}+\mathrm{pK}_{\mathrm{b}}=\mathrm{pK}_{\mathrm{w}}=14.00$
Strong acid HA (aq) $+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq})$
Strong base $\mathrm{B}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{BH}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$

4. Relative strengths of acids

Is HNO_{3} or NH_{4}^{+}a stronger acid? Will the reaction lie far to the right or left?
$\mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{NH}_{3}(\mathrm{aq}) \rightleftharpoons \mathrm{NO}_{3}^{-}(\mathrm{aq})+\mathrm{NH}_{4}^{+}(\mathrm{aq})$

$$
\mathrm{K}=\frac{\left[\mathrm{NO}_{3}^{-}\right]\left[\mathrm{NH}_{4}^{+}\right]}{\left[\mathrm{HNO}_{3}\right]\left[\mathrm{NH}_{3}\right]}
$$

consider each acid separately:

1. $\mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{NO}_{3}^{-}(\mathrm{aq})$

$$
\mathrm{K}_{\mathrm{a}}\left(\mathrm{HNO}_{3}\right)=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{NO}_{3}^{-}\right]}{\left[\mathrm{HNO}_{3}\right]}=20
$$

2. $\mathrm{NH}_{4}^{+}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{NH}_{3}(\mathrm{aq})$

$$
\mathrm{K}_{\mathrm{a}}\left(\mathrm{NH}_{4}^{+}\right)=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{NH}_{3}\right]}{\left[\mathrm{NH}_{4}^{+}\right]}=5.6 \times 10^{-10}
$$

Subtract equation 2 from 1 and divide the corresponding equilibrium constants.

$$
\mathrm{K}=\frac{\mathrm{K}_{\mathrm{a}}\left(\mathrm{HNO}_{3}\right)}{\mathrm{K}_{\mathrm{a}}\left(\mathrm{NH}_{4}^{+}\right)}=\frac{\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{NO}_{3}^{-}\right]}{\left[\mathrm{HNO}_{3}\right]}}{\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{NH}_{3}\right]}{\left[\mathrm{NH}_{4}{ }^{+}\right]}}=\frac{\left[\mathrm{NO}_{3}^{-}\right]\left[\mathrm{NH}_{4}^{+}\right]}{\left[\mathrm{HNO}_{3}\right]\left[\mathrm{NH}_{3}\right]}=\frac{20 .}{5.6 \times 10^{-10}}=3.6 \times 10^{10}
$$

Reaction lies far to the \qquad . HNO_{3} is a \qquad than NH_{4}^{+}.

Types of acid-base problems

1. weak acid in water
2. weak base in water \leftrightarrows salt in water
3. strong acid in water
4. strong base in water
5. buffer

Equilibrium involving weak acids
Example: Vitamin C (ascorbic acid, $\mathrm{HC}_{6} \mathrm{H}_{7} \mathrm{O}_{6}$) has a K_{a} of 8.0×10^{-5}. Calculate the pH of a solution made by dissolving 500 mg in $100 . \mathrm{mL}$ of water.
$0.500 \mathrm{~g} \mathrm{x} 1 \mathrm{~mol} / 176.126 \mathrm{~g}=2.84 \times 10^{-3} \mathrm{~mol}$
$2.84 \times 10^{-3} \mathrm{~mol} / 0.100 \mathrm{~L}=0.0284 \mathrm{M}$
$\mathrm{HC}_{6} \mathrm{H}_{7} \mathrm{O}_{6}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{6}^{-}(\mathrm{aq})$
initial molarity
change in molarity
equilibrium molarity

$\mathrm{HC}_{6} \mathrm{H}_{7} \mathrm{O}_{6}$	$\mathrm{H}_{3} \mathrm{O}^{+}$	$\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{6}{ }^{-}$
0.0284	0	0
-x	+x	+x
$0.0284-\mathrm{x}$	+x	+x

$$
\mathrm{K}_{\mathrm{a}}=8.0 \times 10^{-5}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{O}_{6}^{-}\right]}{\left[\mathrm{HC}_{6} \mathrm{H}_{7} \mathrm{O}_{6}\right]}=\frac{\mathrm{x}^{2}}{0.0284-\mathrm{x}}
$$

If $\mathrm{x} \ll 0.0284$, then $(0.0284-\mathrm{x}) \sim=0.0284$.

$$
\mathrm{K}_{\mathrm{a}}=8.0 \times 10^{-5}=\frac{\mathrm{x}^{2}}{0.0284}
$$

$x=0.00151$ (really 2 sf, but carry extra)

Check assumption. Is $0.0284-0.00151 \sim=0.0284$?
You can use assumption if x is less than 5% of the value in question.
Here $(0.00151 / 0.0284) \times 100 \%=5.3 \%$ (more than 5%), so must use the quadratic equation.
Using quadratic eq, $\mathrm{x}=0.00147$ (really 2 sf)
$\mathrm{pH}=-\log \left[1.47 \times 10^{-3}\right]=2.83$

