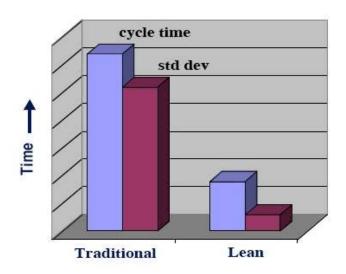
MIT OpenCourseWare http://ocw.mit.edu

16.660 / 16.853 / ESD.62J Introduction to Lean Six Sigma Methods January (IAP) 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Variability Simulation

Learning Objectives


At the end of this module, you will be able to:

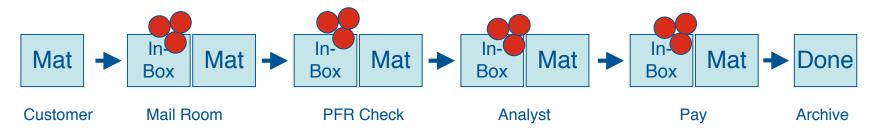
 Discuss the impact that variability has on process performance

The Curse of Variation

- Variation impacts
 - Cycle time (previous module)
 - Design for Manufacturing (Quality Module)
 - Process capability (Quality Module)
- Reducing process variation is a key step in implementing lean practices
- Reducing variation is the heart of Six Sigma (Quality module)

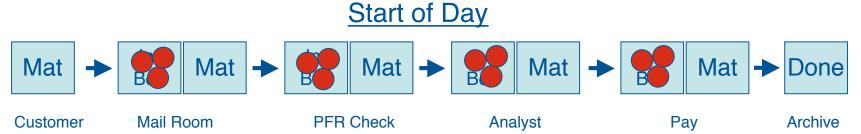
Pre and post lean engineering drawing release data for major aircraft program

Courtesy of Lockheed Martin. Used with permission. Source: "Lean PD Efforts for F-22", LAI Product Development Winter Workshop, January 27, 2000.

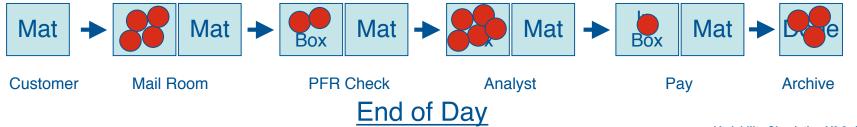

Learning About Variation

- In this module, we will gain understanding about impact of variation through two simulations
 - Dice game will give experiential encounter
 - Computer simulation will rapidly show impact of process changes
- We'll discover a useful relationship between WIP, cycle time and takt time
- The quality module will introduce tools for variation and its impact on process capability

Dice Game Setup

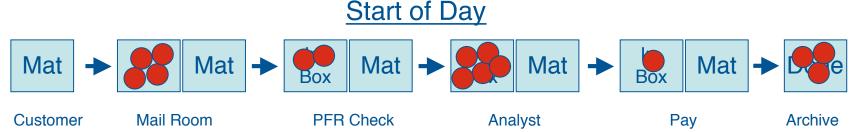

- 5-step system
- One die and record sheet (from packet) at each station
- 3 chips per in-box

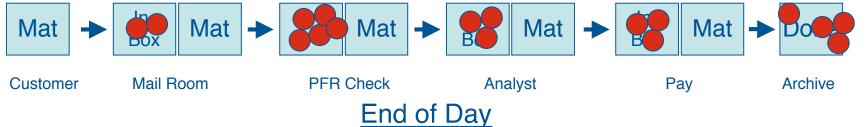
- System processes chips (each time period, move a quantity of chips from one person to the next)
- Roll of dice determines how many chips are moved
- CANT PASS MORE CHIPS THAN YOU HAVE IN YOUR "IN" BIN AT THE <u>BEGINNING</u> OF THE ROUND
- Let's work through a couple cycles



Example - Day1

Customer rolls a '3', passes <u>3</u> chips to Mail Room Mail Room rolls a '2', passes <u>2</u> chips to PFR Check PFR Check rolls a '5', passes <u>3</u> chips to Analyst Analyst rolls a '1', passes <u>1</u> chip to Pay Pay rolls a '6', passes <u>3</u> chips to the Archive


- All these actions happen simultaneously
- Don't wait for other players to pass chips before you pick up yours


Variability Simulation V6.2- Slide 6 © 2008 Massachusetts Institute of Technology

Example - Day2

- Customer rolls a '2', passes <u>2</u> chips to Mail Room Mail Room rolls a '5', passes <u>4</u> chips to PFR Check PFR Check rolls a '1', passes <u>1</u> chips to Analyst Analyst rolls a '3', passes <u>3</u> chip to Pay Pay rolls a '4', passes <u>1</u> chips to the Archive
- All these actions happen simultaneously
- Don't wait for other players to pass chips before you pick up yours

Variability Simulation V6.2- Slide 7 © 2008 Massachusetts Institute of Technology

- Each round, record jobs you did and Work In Progress (WIP) level on your sheet
- From our example, Analyst on Day 1 had 3 WIP, completed 1, and ended up with 5
- On Day 2, Analyst completed 3 and ended up with WIP of 3

	Ĩ	
	la ha	
DAY	Jobs Completed	WIP
	Completed	
	4	3 5
1	I	5
2	3	3
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
A Total Jobs Completed		
B Jobs per day =A /20		
C Utilization =B/3.5		
D Ending WIP		
E Estimate flow time =D/B		

Customer Worksheet

- Customer records new jobs
- Get Jobs Completed from Archive-Done
- Record total WIP by adding up all WIP or using mathematical shortcut below
 - Shortcut Total WIP (new) = Total WIP (previous) + New Jobs - Jobs Complete

_			
DAY	New Jobs Put Into the Process	Jobs Completed (by Pay)	<u>Total</u> WIP
			12
1	3	3	12
2	2	1	13
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
A Total s	A1	A2	A3
-	B Jobs per day =A2 /20		
C Utilization =	C Utilization =B/3.5		
-	D Average WIP=A3/20		
E Average flo	E Average flow time =D/B		

What Should happen?

- Consider 20 time periods, or "days"
- Each day, 3.5 chips are processed on average (the average of 1, 2, 3, 4, 5, 6)
- Intuitively, what should be the average throughput? Over 10 days? Over 20?
- What is the ideal flow (elapsed) time?

Let's find out what really happens...

Ready, Set, Play!

Variability Simulation V6.2- Slide 11 © 2008 Massachusetts Institute of Technology

Accounting

- After 20 days, each person should add the appropriate columns to carry out the calculations at the bottom of their tally sheet
- The customer does slightly more complex calculations (use calculator if needed)

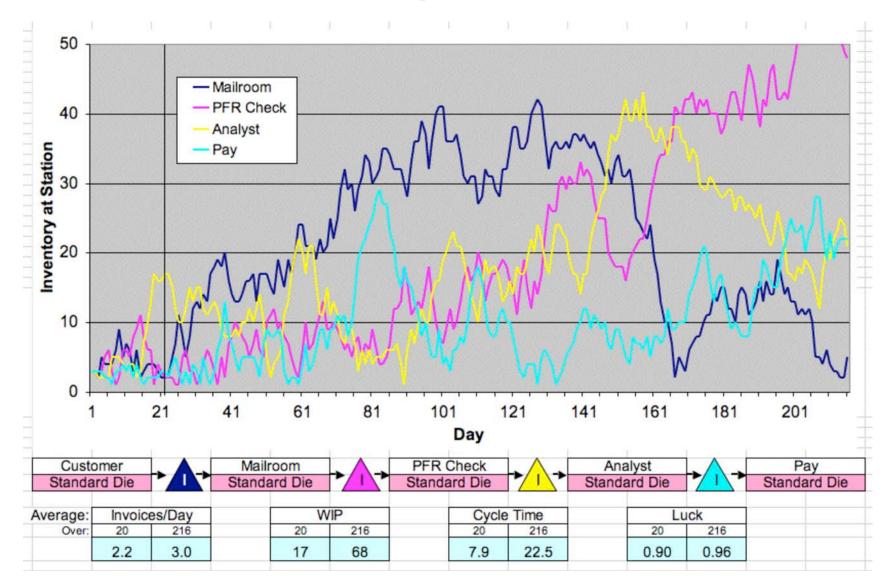
Let's tabulate some results

Questions

Why are fewer jobs processed than expected? Why is flow time longer?

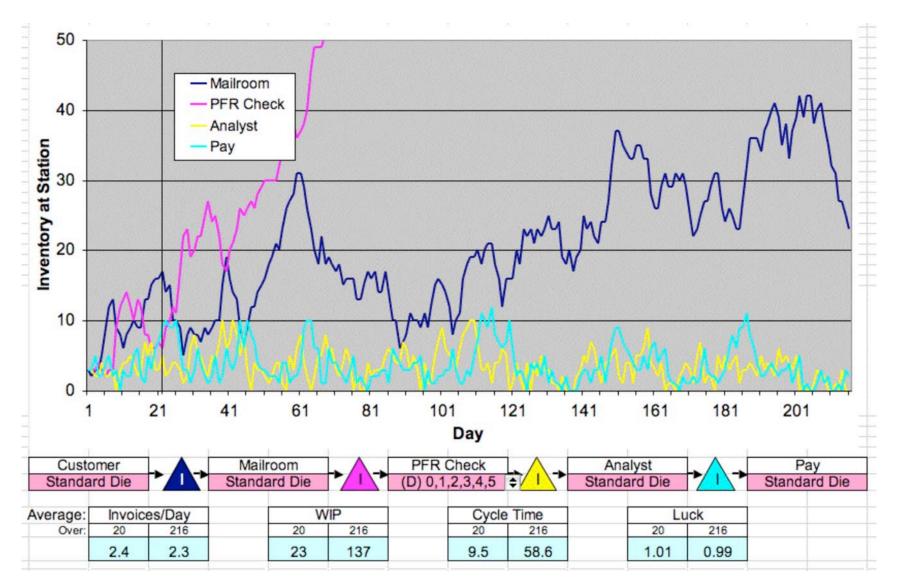
How might the performance of this system be improved?

Variability Simulation V6.2- Slide 13 © 2008 Massachusetts Institute of Technology

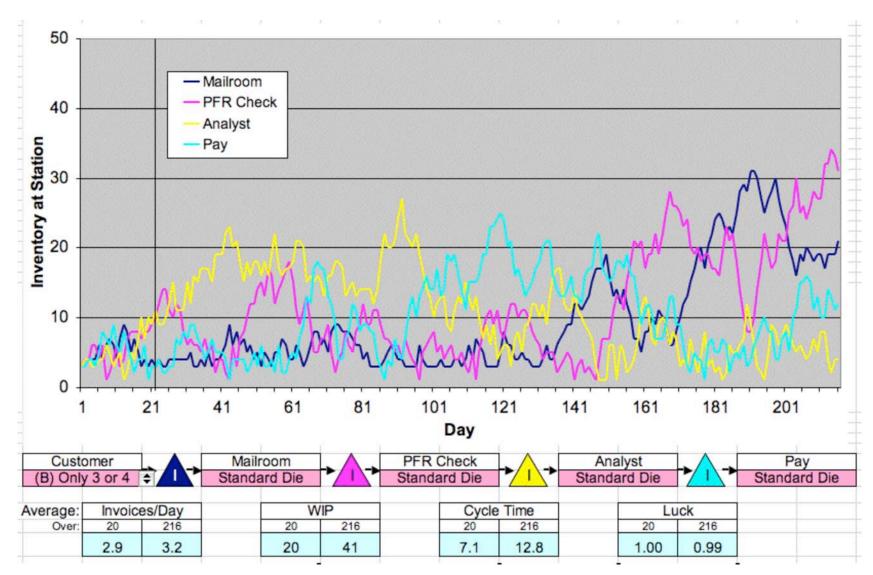


Computer Simulation

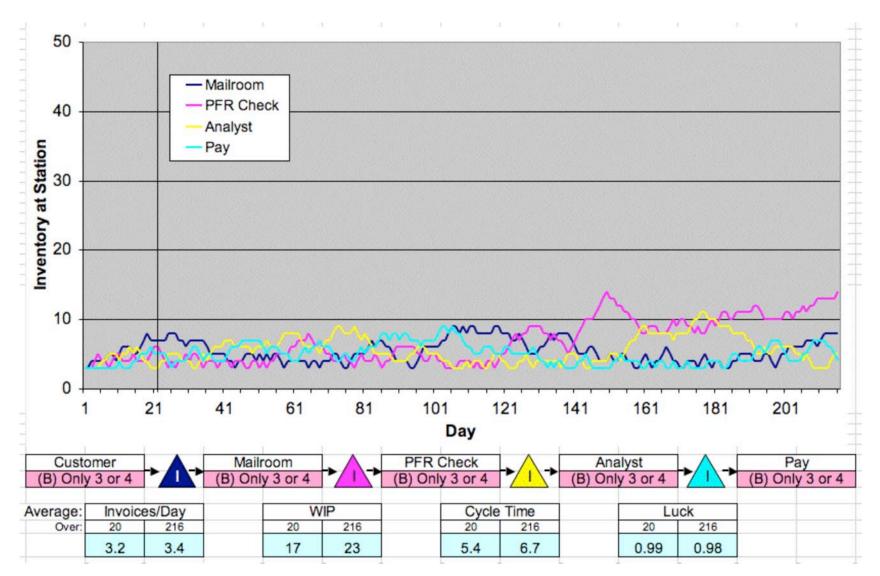
- We can more rapidly gather experimental data with a computer simulation of the dice game
- We can easily change customer input (invoice arrival) and process step variation to see the impact.
- Look at the impact of input and process variability on cycle time after 20 and 216 days
- For each simulation, write down the following data
 - Invoices/day, WIP, Cycle time
 - Then multiply (Invoices/day) x (Cycle time)



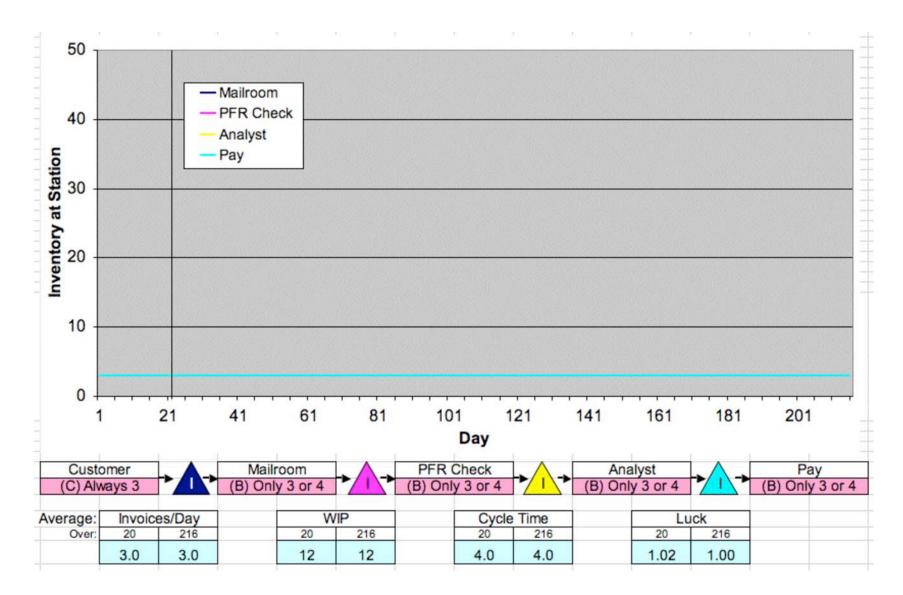
Spreadsheet Simulation



Bottleneck



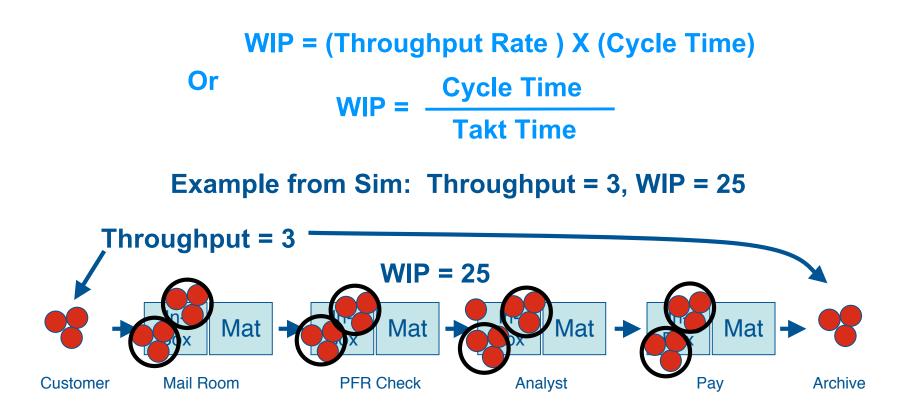
Reduced Input Variation (3 or 4)



Reduced Total Variation

Constant Demand, Low Variation

Little's Law


WIP = (Throughput Rate) X (Cycle Time) Or WIP = $\frac{Cycle Time}{Takt Time}$

Data from 5 computer simulations

1	2	3	
Invoices/	WIP	Cycle	1 x 3
day		Time	
3.2	48	15	48.0
2.5	99	38.9	97.3
3.2	49	15.5	49.6
3.4	24	6.9	23.5
3	12	4	12.0

Little's Law

Takes about 8 cycles to work through the system

Using Little's Law: Cycle Time = WIP / (Throughput Rate) = 8.3

Simulation: Summary

- Simulated the system to examine behavior over a longer time period, more replications
- We made several improvements that demonstrate the power of a lean philosophy:
 - Reduced INPUT variability
 - Reduced PROCESS variability
 - Less variability and some "excess" capacity allowed response to customer need - Pull
 - Eliminating variability allowed straight-through flow to customer demand - Perfection

Take Aways

- Lean thinking and tools apply to office processes
- A structured process analysis can lead to identifying many opportunities for improvement
- Changing the theoretical process is not the only change required for successfully transforming an organization (management practices and structure determine behavior!)
- Variability reduces expected process performance

Acknowledgements

- Ken Gilbert University of Tennessee at Knoxville
- Sharon Johnson Worcester Polytechnic Institute
- Hugh McManus LAI/Metis Design
- Earll Murman MIT
- Sue Siferd Arizona State University
- Alexis Stanke MIT
- Annalisa Weigel MIT