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Supervised learning

Training data = n input-output pairs :

Z1 = (X1,Y1), . . . ,Zn = (Xn,Yn)

A new input X comes.
Goal: predict the corresponding output Y .

Probabilistic assumption (batch setting):

Z = (X ,Y ),Z1, . . . ,Zn i.i.d.

from some unknown distribution P



Context The different PAC-Bayes bounds The three aggregation problems

Measuring the quality of prediction

`(y , y ′) = loss incurred for predicting y ′ while the true
output is y
Typical losses are:

the least square loss: `(y , y ′) = (y − y ′)2

the classification loss for discrete outputs: `(y , y ′) = 1y 6=y ′

Prediction function: f : X → Y
Risk: R(f ) = E `[Y , f (X )]

Empirical risk: r(f ) = 1
n
∑n

i=1 `[Yi , f (Xi)]
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Kullback-Leibler (KL) divergence

K (ρ, π) =

{
Eρ(df ) log( ρπ (f )) if ρ� π

+∞ otherwise

1 If ρ� π, then we have K (ρ, π) = Eπ(df )χ
(
ρ
π (f )

)
with

χ : u 7→ u log(u) + 1− u convex and nonnegative

2 K (ρ, π) ≥ 0

3 K (ρ, π) = 0⇔ ρ = π

4 If F is finite and π is the uniform distribution on F , let
H(ρ) = −

∑
f∈F ρ(f ) log ρ(f ), then

K (ρ, π) = log(|F|)− H(ρ) ≤ log |F|.
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Legendre transform of the KL divergence

Let h : F → R s.t. Eπ(df )eh(f ) < +∞. Define

πh(df ) =
eh(f )

Eπ(df ′)eh(f ′) · π(df )

1 K (ρ, πh) = K (ρ, π)− Eρ(df )h(f ) + log Eπ(df )eh(f )

2 supρ
{
Eρ(df )h(f )− K (ρ, π)

}
= log Eπ(df )eh(f )

3 argmaxρ
{
Eρ(df )h(f )− K (ρ, π)

}
= πh

4 λ 7→ K (πλh, π) is nondecreasing on [0,+∞).
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McAllester’s pioneering work

PAC-Bayesian analysis

PAC-Bayesian approach: for any distribution ρ on F ,

Eρ(df )R(f ) ≤ B(ρ),

where the bound B(ρ) relies on the use at some point of

sup
ρ

{
Eρ(df )d

(
R(f ), r(f )

)
− K (ρ, π)

}
= log Eπ(df )ed(R(f ),r(f ))

Traditional SLT: for any f ∈ F , R(f ) ≤ B̃(f )

Dissimilarity between the approaches because of the KL
term
Uses a (prior) distribution to evaluate the complexity of the
posterior distribution
The bound holds for any prior and posterior
−→ different from the usual Bayesian approach
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McAllester’s pioneering work

McAllester’s bound (1998,1999)

We assume 0 ≤ `(y , y ′) ≤ 1 for any y , y ′.

For any distribution π on F , with probability at least 1− ε, for
any distribution ρ on F

∣∣Eρ(df )R(f )− Eρ(df )r(f )
∣∣ ≤

√
K (ρ, π) + log(4nε−1)

2n − 1

Equivalently (measurability problems set aside), for any
data-dependent (posterior) distribution ρ̂, with probability at
least 1− ε,

∣∣Eρ̂(df )R(f )− Eρ̂(df )r(f )
∣∣ ≤

√
K (ρ̂, π) + log(4nε−1)

2n − 1
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McAllester’s pioneering work

Seeger’s proof (slightly revisited)

The PAC lemma

Let V be a real-valued random variable s.t. EeV ≤ 1, then with
probability at least 1− ε, we have

V ≤ log(ε−1).

McAllester’s bound:
V = supρ

{
(2n − 1)

[
Eρ(df )R(f )− Eρ(df )r(f )

]2 − K (ρ, π)− log(4n)
}
≤ log(ε−1).

First step: Jensen’s ineq. + Legendre transform of KL

V ≤ sup
ρ

{
(2n − 1)Eρ(df )[R(f )− r(f )]2 − K (ρ, π)− log(4n)

}
= − log(4n) + log Eπ(df )e(2n−1)[R(f )−r(f )]2
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McAllester’s pioneering work

Seeger’s proof (second step)

EeV ≤ 1
4n

EEπ(df )e(2n−1)[R(f )−r(f )]2

=
1

4n
Eπ(df )

(
1 + E

{
e(2n−1)[R(f )−r(f )]2 − 1

})
=

1
4n

Eπ(df )

(
1 +

∫ +∞

0
P(e(2n−1)[R(f )−r(f )]2 − 1 > t)dt

)
=

1
4n

Eπ(df )

(
1 +

∫ +∞

0
P
(
|R(f )− r(f )| >

√
log(t + 1)

2n − 1

)
dt

)

≤ 1
4n

Eπ(df )

(
1 +

∫ +∞

0
2e−2n log(t+1)

2n−1 dt
)

Hoeffding

=
1

4n
Eπ(df )

(
1 + 2

∫ +∞

0
(t + 1)−

2n
2n−1 dt

)
=

4n − 1
4n

≤ 1
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McAllester’s pioneering work

Minimizing McAllester’s bound and Gibbs estimator

Let B(ρ) = Eρ(df )r(f ) +
√

K (ρ,π)+log(4nε−1)
2n−1 .

McAllester’s bound implies: for any distribution ρ

Eρ(df )R(f ) ≤ B(ρ).

Theorem

There exists λ̂ ∈ [λ1, λ2] s.t. B(π−λ̂r ) = minρ B(ρ) with
λ1 =

√
4(2n − 1) log(4nε−1) and λ2 = 2λ1 + 4(2n − 1).

Besides, we have
1 λ̂ =

√
4(2n − 1)[K (π−λ̂r , π) + log(4nε−1)]

2 λ̂ ∈ argmin
λ>0

{
− 1

λ log Eπ(df )e−λr(f ) + λ
4(2n−1) + log(4nε−1)

λ

}
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Seeger’s PAC Bayesian bound

Seeger’s bound for classification (2002)
slightly revisited

K (p||q) = K
(
Be(p),Be(q)

)
= p log

(p
q

)
+ (1− p) log

( (1−p
1−q

)
Theorem
With probability at least 1− ε, for any distribution ρ on F ,

K
(
Eρ(df )r(f )||Eρ(df )R(f )

)
≤ K (ρ, π) + log(2

√
nε−1)

n
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Seeger’s PAC Bayesian bound

This time, it suffices to prove
V = supρ

{
nK (Eρ(df )r(f ))||Eρ(df )R(f ))− K (ρ, π)− log(2

√
n)
}
≤ log(ε−1).

We have

EeV ≤ Eesupρ

{
nEρ(df )K (r(f )||R(f ))−K (ρ,π)−log(2

√
n)
}

=
1

2
√

n
EEπ(df )enK (r(f ))||R(f ))

=
1

2
√

n
Eπ(df )

n∑
k=0

P(nr(f ) = k)
( k

nR(f )

)k( n − k
n[1− R(f )]

)n−k

=
1

2
√

n
Eπ(df )

n∑
k=0

(
n
k

)(k
n

)k(n − k
n

)n−k

≤ 1,

where the last inequality is obtained from computations using
Stirling’s approximation.
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Seeger’s PAC Bayesian bound

McAllester’s bound vs Seeger’s bound

∣∣Eρ(df )R(f )− Eρ(df )r(f )
∣∣ ≤√K (ρ,π)+log(4nε−1)

2n−1 (1)

K
(
Eρ(df )r(f )||Eρ(df )R(f )

)
≤ K (ρ,π)+log(2

√
nε−1)

n (2)
(2)⇒ (1) up to constant since from Pinsker’s inequality:∣∣Eρ(df )R(f )− Eρ(df )r(f )

∣∣ ≤√K
(
Eρ(df )r(f )||Eρ(df )R(f )

)
.

(2)� (1) when Eρ(df )r(f ) is close to 0 since (2) implies

∣∣Eρ(df )R(f )− Eρ(df )r(f )
∣∣ ≤√2Eρ(df )r(f )[1− Eρ(df )r(f )]K

n
+

4K
3n

with
K = K (ρ, π) + log(2

√
nε−1).
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Catoni’s old PAC Bayesian bound

Catoni’s old bound for classification (2002)

Let Ψ(t) = et−1−t
t2 −→

t→0
1
2 .

Theorem
For λ > 0, with proba. at least 1− ε, for any distribution ρ on F ,

Eρ(df )R(f ) ≤
Eρ(df )r(f )

1− λ
n Ψ(λn )

+
K (ρ, π) + log(ε−1)

λ[1− λ
n Ψ(λn )]

Since typical values of λ are in [C
√

n; Cn], we roughly have

Eρ(df )R(f ) / Eρ(df )r(f ) +
λ

2n
Eρ(df )r(f ) +

K (ρ, π) + log(ε−1)

λ

≈
choice of λ

Eρ(df )r(f ) +

√
2Eρ(df )r(f )

K (ρ, π) + log(ε−1)

n
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Audibert’s PAC Bayesian bound

Audibert’s bound (2004)

Let Ψ(t) = et−1−t
t2 −→

t→0
1
2 .

Theorem
For λ > 0, with proba. at least 1− ε, for any distribution ρ on F ,

Eρ(df )R(f ) ≤ Eρ(df )r(f ) +
λ

n
Ψ

(
λ

n

)
Eρ(df )Var Z `(Y , f (X ))

+
K (ρ, π) + log(ε−1)

λ
.
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Zhang’s PAC Bayesian bound

Zhang’s bound (2005)

Theorem
For λ > 0, with proba. at least 1− ε, for any distribution ρ on F ,

−n
λ

Eρ(df ) log EZ e−
λ
n `(Y ,f (X)) ≤ Eρ(df )r(f ) +

K (ρ, π) + log(ε−1)

λ
.

Since we have

−1
t

log EZ e−t`(Y ,f (X)) = R(f )− t
2

Var Z `(Y , f (X )) + O(t2),

we have

l.h.s. ≈ Eρ(df )R(f )− λ

2n
Eρ(df )Var Z `(Y , f (X ))
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Zhang’s PAC Bayesian bound

Catoni’s bound (2007)

Instead of using

log Ee−
λ
n `(Y ,f (X)) ≤ −λ

n
R(f ) +

λ2

n2 Ψ
(λ

n

)
R(f ),

use

log Ee−
λ
n `(Y ,f (X))= log

(
1− R(f )(1− e−

λ
n )
)

= −λ
n

Φ λ
n

(
R(f )

)
.

with

Φa(p) = −a−1 log[1− (1− e−a)p] = p − a
2

p(1− p) + O(a2)

⇒ tighter constants and variance appearing implicitly
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Zhang’s PAC Bayesian bound

Comparison of the bounds in classification

Zhang, A., Catoni (2007):

Eρ(df )R(f ) / Eρ(df )r(f )+

√
2Eρ(df )

(
R(f )[1− R(f )]

)K (ρ, π) + log(ε−1)

n

Catoni (2002):

Eρ(df )R(f ) / Eρ(df )r(f ) +
√

2Eρ(df )R(f )K (ρ,π)+log(ε−1)
n

Seeger:

Eρ(df )R(f ) ≤ Eρ(df )r(f ) +

√
2Eρ(df )R(f )[1− Eρ(df )R(f )]K

n
+

2K
3n

with K = K (ρ, π) + log(2
√

nε−1). Besides, we have

Eρ(df )R(f )[1− Eρ(df )R(f )] ≥ Eρ(df )R(f )[1− R(f )]

⇒ similar PAC-Bayes bounds
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Least square regression setting

R(g) = E[Y − g(X )]2.
Bounded noise setting: Y ∈ [−1,1]

g1, . . . ,gd : X → Y, with ‖g1‖∞, . . . , ‖gd‖∞ ≤ 1

g∗MS ∈ argmin
g∈{g1,...,gd}

R(g),

g∗C ∈ argmin
g∈{

∑d
j=1 θj gj ;θ1≥0,...,θd≥0,

∑d
j=1 θj =1}

R(g),

g∗L ∈ argmin
g∈{

∑d
j=1 θj gj ;θ1∈R,...,θd∈R}

R(g).
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Optimal rates of aggregation

There exist ĝMS, ĝC and ĝL such that

ER(ĝMS)− R(g∗MS) ≤ C min
(

log d
n

,1
)
,

ER(ĝC)− R(g∗C) ≤ C min

√ log(1 + d/
√

n)

n
,
d
n
,1

 ,

ER(ĝL)− R(g∗L) ≤ C min
(

d
n
,1
)
,

where ĝL requires the knowledge of the input distribution.
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Optimal rates of aggregation (Tsybakov, 2003)

σ > 0
Pσ = set of proba. on X × R such that Y = g(X ) + ξ, with
‖g‖∞ ≤ 1, and ξ ∼ N (0, σ2)

For appropriate choices of g1, . . . ,gd :

inf
ĝ

sup
P∈Pσ

{
ER(ĝ)− R(g∗MS)

}
≥ C min

(
log d

n
,1
)
,

inf
ĝ

sup
P∈Pσ

{
ER(ĝ)−R(g∗C)

}
≥ C min

√ log(1 + d/
√

n)

n
,
d
n
,1

 ,

inf
ĝ

sup
P∈Pσ

{
ER(ĝ)− R(g∗L)

}
≥ C min

(
d
n
,1
)
.
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Model selection type aggregation

Unusual properties

g∗MS ∈ argmin
g∈{g1,...,gd}

R(g)

To be “optimal”, we need to choose ĝ outside the model G.
Up to recently, the only known optimal algorithm is the
progressive mixture rule
The proof is neither based on bounds on the supremum of
empirical processes nor on the PAC-Bayesian analysis
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Model selection type aggregation

Progressive mixture rule (Catoni, 1999; Yang, 2000)

π uniform distribution on the finite set {g1, . . . ,gd}
λ > 0
Σi(g) =

∑i
k=1[Yk − g(Xk )]2: cumulative loss on the first i

data points
The progressive mixture rule: ĝPM = 1

n+1
∑n

i=0 Eg∼π−λΣi
g,

i.e.,

ĝPM(x) =
1

n + 1

n∑
i=0

∑d
j=1 gj(x)e−λΣi (gj )∑d

j=1 e−λΣi (gj )
.

Theoretical guarantee:

ER(ĝPM)− R(g∗MS) ≤ 8 log d
n + 1
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Model selection type aggregation

Progressive indirect mixture rules (A., 2009)

λ > 0
For any i ∈ {0, . . . ,n}, let ĥi be a prediction function s.t.

∀X ,Y [Y−ĥi(X )]2 ≤ −1
λ

log Eg∼π−λΣi
e−λ[Y−g(X)]2 (1)

Progressive indirect mixture rule: ĝλ = 1
n+1

∑n
i=0 ĥi .

ĥi = Eg∼π−λΣi
g satisfies (1) for λ ≤ 1/8.

ĥi exists even for λ = 1/2, and then

ER(ĝ1/2)− R(g∗MS) ≤ 2 log d
n + 1
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Model selection type aggregation

Excess risk deviations abnormally high

ER(ĝλ)−R(g∗MS) = O
(1

n

); R(ĝ)−R(g∗MS) = O
(1

n

)
w.h.p.

g1 = 1 and g2 = −1
For any λ > 0 and any training set size n large enough,
there exist ε > 0 and a distribution generating the data for
which with probability larger than ε, we have

R(ĝλ)− R(g∗MS) ≥ c

√
log(eε−1)

n
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Model selection type aggregation

Getting round the previous limitation (A., 2007)

r(g) = 1
n
∑n

i=1[Yi − g(Xi)]2.

ĝERM ∈ argmin
g∈{g1,...,gd}

r(g).

[g,g′] =
{
αg + (1− α)g′ : α ∈ [0,1]

}
.

The empirical star estimator is

ĝ ∈ argmin
g∈[ĝERM,g1]∪···∪[ĝERM,gd ]

r(g).

Theoretical guarantee: with probability at least 1− ε,

R(ĝ)− R(g∗MS) ≤ 600 log(dε−1)

n
.

See also Lecué and Mendelson (2009)
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Convex aggregation in high dimension

Different approaches

g∗C ∈ argmin
g∈{

∑d
j=1 θj gj ;θ1≥0,...,θd≥0,

∑d
j=1 θj =1}

R(g)

√
n� d � en

Apply the previous progressive mixture rule on an
appropriate grid (Tsybakov, 2003)
Use the exponentiated gradient algorithm (Kivinen and
Warmuth, 1997; Cesa-Bianchi, 1999)
Use a stochastic version of the mirror descent algorithm
(Juditsky, Nazin, Tsybakov, Vayatis, 2005)

Results in expectation, based on a sequential procedure
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Convex aggregation in high dimension

A PAC-Bayesian approach (A., 2004)

E[Y − Eg∼ρg(X )]2 = E(g′,g′′)∼ρ⊗ρE[Y − g′(X )][Y − g′′(X )]

Apply the PAC-Bayesian analysis for distributions on the
product space {g1, . . . ,gd} × {g1, . . . ,gd}
PAC-Bayes bound: with probability at least 1− ε,

R(Eg∼ρ̂g)− R(g∗C) ≤ min
λ∈[0,C1]

{
(1 + λ)

[
r(Eg∼ρ̂g)− r(g∗C)

]
+

2λ
n

n∑
i=1

Var g∼ρ̂g(Xi) + C2
1
n

K (ρ̂, π) + log(2 log(2n)ε−1)

λ

}
.
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Convex aggregation in high dimension

The minimizer of the PAC-Bayes bound

π = uniform distribution on {g1, . . . ,gd}
ρ̂C = distribution minimizing the upper bound
g∗C = Eg∼ρ∗Cg.
Theoretical guarantee: with probability at least 1− ε,

R(Eg∼ρ̂Cg)− R(g∗C) ≤ C

√
log(d log(2n)ε−1)

n
EVar g∼ρ∗Cg(X )

+ C
log(d log(2n)ε−1)

n
,

Excess risk at most of order
√

log(d log(2n))
n

If ρ∗C is a Dirac, excess risk at most of order log(d log(2n))
n
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Linear aggregation

g∗L ∈ argmin
g∈{

∑d
j=1 θj gj ;θ1∈R,...,θd∈R}

R(g).

Linear aggregation = linear least squares regression
Assume that we know that g∗L ∈ G, where G is L∞ bounded
There is no simple d/n bound which does not require
strong assumptions if we care about logarithmic factors

R(ĝERM)− R(g∗) ≤ C
d log(2 + n/d) + log(ε−1)

n
.

(Birgé and Massart, 1998)
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Linear aggregation

A PAC-Bayesian approach with Gaussian prior (A. and
Catoni, 2009)

π uniform distribution on G
For an appropriate λ > 0, with probability at least 1− ε,

R(Eg∼π−λr g)− R(g∗) ≤ C
d + log(2ε−1)

n
,

Shrinking effect of π−λr when compared to ĝERM.
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High-dimensional input and sparsity

n� d � en

predicting as g∗C = achievable :
√

log d
n

predicting as g∗L = not achievable : d
n

g∗ ∈ argmin
g∈{

∑d
j=1 θj gj ;θ1∈R,...,θd∈R,

∑d
j=1 1θj 6=0≤s}

R(g).

g∗ achievable by Lasso (L1 regularization) under strong
assumptions on the correlations of g1(X ), . . . ,gd (X )
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High-dimensional input and sparsity

A model selection approach

L1 = {Z1, . . . ,Zn/2}, and L2 = {Zn/2+1, . . . ,Zn}
For any I ⊂ {1, . . . ,d} of size s, let ĝI be the Gibbs
estimator for linear aggregation of (gj)j∈I trained on L1

Let ĝ be the empirical star estimator trained on L2 and
associated with the

(d
s

)
functions ĝI

R(ĝ)− R(g∗) ≤ C
s log(d/s) + log(2ε−1)

n
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