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Supervised learning

@ Training data = n input-output pairs :
Z1 = (X17 Y'I)a"'aZn = (Xl’h Yn)

@ A new input X comes.
@ Goal: predict the corresponding output Y.

@ Probabilistic assumption (batch setting):

Z=X,Y).2Z,....Z, iid.

from some unknown distribution P
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Measuring the quality of prediction

@ /(y,y’) = loss incurred for predicting y’ while the true
output is y
@ Typical losses are:
e the least square loss: £(y,y') = (y — y')?

e the classification loss for discrete outputs: ¢(y, y’) = 1,4y
@ Prediction function: f: X — Y
@ Risk:  R(f) =E/L[Y,f(X)]
e Empirical risk:  r(f) =137 ¢[Y;, f(X))]
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Kullback-Leibler (KL) divergence

. Ep(df) |Og(£(f)) if pLm
Klp.m) = { 400 otherwise

Q If p < 7, then we have K(p, ) = Ex(anx (2(f)) with
X : u— ulog(u) + 1 — u convex and nonnegative

Q K(p,7)>0
e K(p,Tl'):O<:>p:7T

© If Fis finite and = is the uniform distribution on F, let
H(p) = — > ter p(f) log p(f), then

K(p,m) = log(|F|) — H(p) < log|F|.
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Legendre transform of the KL divergence

Let h: F — R s.t. Ege" < +00. Define

eh(h)

Wh(df) = Eﬂ(df/)eh(f/) :

w(df)
Q@ K(p,mh) = K(p, ) — Eyaryh(f) + 10g E (o) "
Q sup, {E,anh(f) — K(p,m)} = log E(qre""

@ argmax, {E,anh(f) — K(p,m)} = 7n

©Q )\ — K(mxn, ) is nondecreasing on [0, +oc).
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McAllester’s pioneering work

PAC-Bayesian analysis

@ PAC-Bayesian approach: for any distribution p on F,

E(ar A(f) < B(p),

where the bound B(p) relies on the use at some point of

sup {Ep(df)d(’q(f)? f(f)) - K(pv ﬂ)} = |Og IE"7r(df)ed(R(f)J(f))
P

@ Traditional SLT: for any f € F, R(f) < B(f)

@ Dissimilarity between the approaches because of the KL
term

@ Uses a (prior) distribution to evaluate the complexity of the
posterior distribution

@ The bound holds for any prior and posterior
— different from the usual Bayesian approach
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McAllester’s pioneering work

McAllester’s bound (1998,1999)

We assume 0 < /(y,y’) < 1forany y,y'.

For any distribution = on F, with probability at least 1 — ¢, for
any distribution p on F

K(p. ) + log(4ne1)
2n —1

B (aryR(F) — Epanyr(f)] < \/

Equivalently (measurability problems set aside), for any
data-dependent (posterior) distribution p, with probability at
least 1 — ¢,

K(p,w) + log(4ne1
[Eaan A1) = Epanr(F)] <\/ ) bottn )
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McAllester’s pioneering work

Seeger’s proof (slightly revisited)

The PAC lemma

Let V be a real-valued random variable s.t. EeY < 1, then with
probability at least 1 — ¢, we have

V <log(e ).

@ McAllester’'s bound:
V =sup, {(zn — ) [Epon R() = Epan ()] — K(p, ™) — |og(4n)} <log(e™ ).
@ First step: Jensen’s ineq. + Legendre transform of KL

V< sup {@n = DB [R() — r(N? = K(p, )~ log(4n) |

= —10g(4n) + 10g E. (g5, 6@~ IR =r(F
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McAllester’s pioneering work
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Seeger’s proof (second step)

EeV < LEEW €@ DIAD-r(0F

df)(1 +E{92” N[R(f)— 1})

4
+oo
df)<1 +/0
+
(df) 1+/0
+oo
df)(1 + A
—+oo
df)<1 +2/0
4n—1

4n—

P(en=DIR(N-r(f P _ 1 t)dt>

) > 'Ozgi(f_*:))do

2”|02gnt+11) dt) Hoeffding

(t+1) 2n1dt>
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McAllester’s pioneering work

Minimizing McAllester’s bound and Gibbs estimator

Let B(p) = )+ \/ (p. ;rll7091(4ne .
McAIIester’s bound implies: for any distribution p

Eoar R(f) < B(p).

Theorem

There exists A € [\, \g] s.t. B(7_5,) = min, B(p) with
Ay = \/4(2n—1)log(4ne—T) and Ap = 2)\; + 4(2n —1).
Besides, we have

- \/4(2n — D)[K(r_;,, ) + log(4ne~1)]

9 Aearg:gm{_log[[g (df)e A()+4( S 1)+|Og(4ne 1)}
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Seeger’s PAC Bayesian bound
Seeger’s bound for classification (2002)
slightly revisited

K(pllq) = K(Be(p), Be(q)) = plog (&) + (1 - p)log ({=F)

With probability at least 1 — ¢, for any distribution p on F,
K(p, ) +log(2v/ne ")

K (E p(ary F(H)[Epan R(f)) < -
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Seeger’s PAC Bayesian bound

This time, it suffices to prove
V = sup, { nK(E,an (NI [E o A() ~ K(p, ™) — log(2v/m) } < log(e ™).

We have
Ee” < Ee*Pr {PEstan K 11A() ~K(pom)—log(2v/m) }
1
_ 27W]EEW((#)enK(f(f))\\H(f))
1 n Kk k n—k n—k
— 27\/5]]371.((1{) kZ:O]P(nr(f) - k)(nR(f)) (n[1 - R(f)]>
1 "\ (n\ (kK n—Kk\n—k
- 2—ﬁlE,r(df) kz:;) (k) (ﬁ) (T)
<1

)

where the last inequality is obtained from computations using
Stirling’s approximation.
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Seeger’s PAC Bayesian bound

McAllester's bound vs Seeger’s bound

The three aggregation problems
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T e—1
© [EyanR(F) — Eyanr(f)] < /Klemgloatinet) )

T o1
® K(E,an(F)IEanR(f)) < < K, )+Iog(2ﬁ ) @
@ (2) = (1) up to constant since from Pinsker’s inequality:

|Epar) R(f) = Epanr(f) \/K p(an(NI[Epan R(f)).

@ (2) > (1) when E 4 r(f) is close to 0 since (2) implies

|Ep(df)R(f) pr(df)r(f” < \/ZE nr(f)[1 ; panr(HIK N %

with
K = K(p,7) + log(2v/ne~ ).
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Catoni’s old PAC Bayesian bound

Catoni’s old bound for classification (2002)

o Letw(t) ==t — 1.

For A > 0, with proba. at least 1 — ¢, for any distribution p on F,

]Ep(df)r(f) K(p,ﬂ')—l—log(e_1)

E,nR(f) < 1_ %\U(%) A1 — %W(%)]

Since typical values of X are in [C+/n; Cn], we roughly have

A K(p, ) + log(e™
Ey(any R(1) £ Enan (1) + 5-Epan () + (p ))\ g(e™")

K(p, ) + log(e~1
Ep(df)r(f)+\/2Ep(df)r(f) v )n o)

choice of A
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Audibert’'s PAC Bayesian bound

Audibert’s bound (2004)

o Letw(t) = &1t = 1.

For A > 0, with proba. at least 1 — ¢, for any distribution p on F,

A A
E g A(f) < Eyaryr(f) + nw(n)]Ep(df)varZe( Y, (X))

The three aggregation problems
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 Klom) +logle™)
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Zhang’s PAC Bayesian bound

Zhang’s bound (2005)

For A > 0, with proba. at least 1 — ¢, for any distribution p on F,

K(p, m) +log(e")
y :

—*Ep(df) |Og Eze—%Z(Y,f(X)) < Ep(df)r(f) +

Since we have
—1t log Eze~Y-(0) — R(f) — éVarzf( Y, (X)) + O(2),
we have

A
Lh.s. ~ Ep(df)R(f) — EEP(df)Varzé( Y, f(X))
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Zhang’s PAC Bayesian bound

Catoni’s bound (2007)

@ Instead of using

x A A2
—2eY ) < _2 w2
log Ee < —ZR(f+ nzw(n)/?(f),
use
logEe~ »(Y-{X)= log (1 — R(f)(1 — e 7))
= =20, (A(1)
with

@a(p) = —a~'log[1 — (1 — & %)p] = p— 2p(1 — p) + O()

= tighter constants and variance appearing implicitly
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Zhang’s PAC Bayesian bound

Comparison of the bounds in classification

@ Zhang, A., Catoni (2007):

B A1) S (1) 28,0 (AU — A()) KL 00

@ Catoni (2002):

Ep(an R(f) < Epanr(f) + \/ 2E,gr) R(f) KlemHoale])
@ Seeger:

2E ,ary R(F)[1 — E, an R(F)IK n 2K

n 3n

E o R(f) < Epanr(f) + \/

with K = K(p, 7) +log(2v/ne~ ). Besides, we have
E o R(H[1 — EyanR(H] > Eyan R(H[1 — R(F)]

= similar PAC-Bayes bounds



Context The different PAC-Bayes bounds The three aggregation problems
0000 0000000000000 @00000000000000

Least square regression setting

® R(9) =E[Y — g(X)].
@ Bounded noise setting: Y e [—1,1]

® g1,...,94: X—>y,W|th Hg1”0077||gdH00 S 1
Ius € argmin  R(g),
ge{g1,--,9d}
gc € argmin R(g),
QE{Z;L1 9jgj;91 20:-~~:‘9d20’2f:1 9]21}
g € argmin R(9).

96{27:1 9,-gj;91 €R,...,04€R}
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Optimal rates of aggregation

There exist gus, 9c and 9. such that

A N . (logd
ER(gus) — R(gms) < Cmin <%7 1> ;

ER(éc) - R(g6) < Cmin (\/W‘;’ 1) ,

ER(@L) - Algl) < Cmin (£,1).

where g, requires the knowledge of the input distribution.
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Optimal rates of aggregation (Tsybakov, 2003)

@o>0

@ P, =setof proba. on X x R such that Y = g(X) + &, with
19llec < 1,and & ~ N(0,02)

@ For appropriate choices of g4, ..., 9q4:

inf sup {ER(J) — R(gps)} = Cmin (Iogd’ ) :
g PeP, n

inf sup {ER(9)—R(g¢)} > Cmin <\/W,i,1) :

9 PeP,

inf sup {ER(g) — R(g{)} = Cmin <d, 1> :
9 PeP, n
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Model selection type aggregation

Unusual properties

Ius € argmin  R(g)
9€{g1,--.94}
@ To be “optimal”, we need to choose g outside the model G.

@ Up to recently, the only known optimal algorithm is the
progressive mixture rule

@ The proof is neither based on bounds on the supremum of
empirical processes nor on the PAC-Bayesian analysis
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Model selection type aggregation

Progressive mixture rule (Catoni, 1999; Yang, 2000)

@ 7 uniform distribution on the finite set {g1, ..., 94}
e A>0

Yi(g) = Sh_1[Yk — 9(Xk)]?: cumulative loss on the first i
data points

@ The progressive mixture rule: gem = 77 1o Egur sy, 05
i.e.,

gem(x

1 Z Z/ 19/ (x)e ()

T n+i ,e” AXi(g))
@ Theoretical guarantee:

8logd

ER(9pm) — R(gns) < e
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Model selection type aggregation

Progressive indirect mixture rules (A., 2009)

e \>0
@ Foranyie {0,...,n}, let h; be a prediction function s.t.

VX, Y [Y—ﬁ/(X)]zg—%IogEgNW_mi e A -a0F (q)

Progressive indirect mixture rule: gy = 5 S°7 ¢ hi.

i =Egur 5, 9 satisfies (1) for A < 1/8.

>

°
°
@ h; exists even for A = 1/2, and then

2log d

ER(QUZ) - R(QMS) < ﬁ
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Model selection type aggregation

Excess risk deviations abnormally high

® ER(9:) — Rlgus) = O(5) 7> R(@) — Rlgus) = O(7) w-h.p.
@ g=1and g = —1
@ For any A > 0 and any training set size n large enough,

there exist e > 0 and a distribution generating the data for
which with probability larger than ¢, we have

R(6) — Algins) > o/ 22
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Model selection type aggregation

Getting round the previous limitation (A., 2007)

® r(g) = 5 X741 — g(X)PP.

@ Ocrv € argmin  r(9).
9€{91,-9q}

® [g.g1={ag+(1-a)g :ac[01]}.
@ The empirical star estimator is

ge argmin r(9).

9€[germ;91]U---U[GeRM,9d]

@ Theoretical guarantee: with probability at least 1 — ¢,

A(8) ~ Algias) < 22009I70).

See also Lecué and Mendelson (2009)
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Convex aggregation in high dimension
Different approaches
gc € argmin R(9)

9E{X 01 0,1:61>0,....05>0.7, 6,=1}

vn< d< e’

@ Apply the previous progressive mixture rule on an
appropriate grid (Tsybakov, 2003)

@ Use the exponentiated gradient algorithm (Kivinen and
Warmuth, 1997; Cesa-Bianchi, 1999)

@ Use a stochastic version of the mirror descent algorithm
(Juditsky, Nazin, Tsybakov, Vayatis, 2005)

Results in expectation, based on a sequential procedure
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Convex aggregation in high dimension

A PAC-Bayesian approach (A., 2004)

E[Y —Egpg(X)]? = E(g g)mpeoELY — g (XNY — g"(X)]

@ Apply the PAC-Bayesian analysis for distributions on the
product space {g1,...,9d} X {G1,---,9a}
@ PAC-Bayes bound: with probability at least 1 — ¢,

R(Eq-;9) — R(gg) < min {(1+A>[r(Eg~,sg)—r(gé>}

 \€[0,Cq]
(5, 7) +log(2log(2n)e ") }

2 & 1K
+— > Varg.;g(X) + Cor-

i=1

A
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Convex aggregation in high dimension

The minimizer of the PAC-Bayes bound

@ 7 = uniform distribution on {g1,...,94}

@ ¢ = distribution minimizing the upper bound

® gc = Egnp9-

@ Theoretical guarantee: with probability at least 1 — ¢,

2n)e1)

A(Eg-e0) ~ Algg) < Oy 20100

~1
N CIog(dlogn(2n)e )

EVar g g(X)

)

@ Excess risk at most of order w

@ If pg is a Dirac, excess risk at most of order w
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Linear aggregation

g € argmin R(g).
QG{Z/L 0;9;;01€R,....,04€R}

@ Linear aggregation = linear least squares regression
@ Assume that we know that g € G, where G is L, bounded

@ There is no simple d/n bound which does not require
strong assumptions if we care about logarithmic factors

dlog(2 4 n/d) + log(e~")
- :

(Birgé and Massart, 1998)

R(Jerm) — R(g") < C
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A PAC-Bayesian approach with Gaussian prior (A. and
Catoni, 2009)

@ 7 uniform distribution on G
@ For an appropriate A > 0, with probability at least 1 — e,

d +log(2¢)

R(Eg~r_,9) - R(g") < C P

)

@ Shrinking effect of w_,, when compared to ggrm.
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High-dimensional input and sparsity

n<d<e’
. % _ . . logd
@ predicting as gg = achievable : /==
- . ; . d
@ predicting as g;" = not achievable : 3

g e argmin R(9).
ge{> L, 0;9ji01€R,...04€R, T, 19,205}

@ g* achievable by Lasso (L regularization) under strong
assumptions on the correlations of g¢(X), ..., ga(X)
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High-dimensional input and sparsity

A model selection approach

e L= {Z1,...,Z,,/2}, and Lo = {Zn/2+1’“_7zn}

@ Forany / C {1,...,d} of size s, let g be the Gibbs
estimator for linear aggregation of (gj);c/ trained on L1

@ Let g be the empirical star estimator trained on £, and
associated with the (%) functions g

slog(d/s) + log(2¢~1)

R(@) - R(g)=C -
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