◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

PAC-Bayesian bounds and aggregation

Jean-Yves Audibert^{1,2}

1. Imagine - Université Paris Est, 2. Willow - CNRS/ENS/INRIA

March 2010

Context

The three aggregation problems

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Outline

2 The different PAC-Bayes bounds

3 The three aggregation problems

- Model selection type aggregation
- Convex aggregation in high dimension
- Linear aggregation
- High-dimensional input and sparsity

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Supervised learning

• Training data = *n* input-output pairs :

$$Z_1 = (X_1, Y_1), \ldots, Z_n = (X_n, Y_n)$$

- A new input X comes.
- Goal: predict the corresponding output Y.
- Probabilistic assumption (batch setting):

$$Z = (X, Y), Z_1, ..., Z_n$$
 i.i.d.

from some unknown distribution P

(日) (日) (日) (日) (日) (日) (日)

Measuring the quality of prediction

- l(y, y') = loss incurred for predicting y' while the true output is y
- Typical losses are:
 - the least square loss: $\ell(y, y') = (y y')^2$
 - the classification loss for discrete outputs: ℓ(y, y') = 1_{y≠y'}
- Prediction function: $f: \mathcal{X} \to \mathcal{Y}$
- Risk: $R(f) = \mathbb{E} \ell[Y, f(X)]$
- Empirical risk: $r(f) = \frac{1}{n} \sum_{i=1}^{n} \ell[Y_i, f(X_i)]$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Kullback-Leibler (KL) divergence

$$K(\rho, \pi) = \begin{cases} \mathbb{E}_{\rho(df)} \log(\frac{\rho}{\pi}(f)) & \text{if } \rho \ll \pi \\ +\infty & \text{otherwise} \end{cases}$$

- If $\rho \ll \pi$, then we have $K(\rho, \pi) = \mathbb{E}_{\pi(df)}\chi(\frac{\rho}{\pi}(f))$ with $\chi: u \mapsto u \log(u) + 1 u$ convex and nonnegative
- 2 $K(\rho,\pi) \geq 0$
- If \mathcal{F} is finite and π is the uniform distribution on \mathcal{F} , let $H(\rho) = -\sum_{f \in \mathcal{F}} \rho(f) \log \rho(f)$, then

$$K(\rho,\pi) = \log(|\mathcal{F}|) - H(\rho) \le \log |\mathcal{F}|.$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Legendre transform of the KL divergence

Let
$$h : \mathcal{F} \to \mathbb{R}$$
 s.t. $\mathbb{E}_{\pi(df)} e^{h(f)} < +\infty$. Define

$$\pi_h(df) = rac{e^{h(f)}}{\mathbb{E}_{\pi(df')}e^{h(f')}} \cdot \pi(df)$$

$$K(\rho, \pi_h) = K(\rho, \pi) - \mathbb{E}_{\rho(df)}h(f) + \log \mathbb{E}_{\pi(df)}e^{h(f)}$$

$$sup_{\rho} \{\mathbb{E}_{\rho(df)}h(f) - K(\rho, \pi)\} = \log \mathbb{E}_{\pi(df)}e^{h(f)}$$

$$argmax_{\rho}\{\mathbb{E}_{\rho(df)}h(f) - K(\rho, \pi)\} = \pi_h$$

$$\lambda \mapsto K(\pi_{\lambda h}, \pi) \text{ is nondecreasing on } [0, +\infty).$$

McAllester's pioneering work

PAC-Bayesian analysis

• PAC-Bayesian approach: for any distribution ρ on \mathcal{F} ,

 $\mathbb{E}_{\rho(df)}R(f) \leq B(\rho),$

where the bound $B(\rho)$ relies on the use at some point of

 $\sup_{\rho} \left\{ \mathbb{E}_{\rho(df)} d(R(f), r(f)) - K(\rho, \pi) \right\} = \log \mathbb{E}_{\pi(df)} e^{d(R(f), r(f))}$

- Traditional SLT: for any $f \in \mathcal{F}$, $R(f) \leq \tilde{B}(f)$
- Dissimilarity between the approaches because of the KL term
- Uses a (prior) distribution to evaluate the complexity of the posterior distribution
- The bound holds for any prior and posterior
 - \rightarrow different from the usual Bayesian approach

The different PAC-Bayes bounds

The three aggregation problems

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

McAllester's pioneering work

McAllester's bound (1998,1999)

We assume $0 \le \ell(y, y') \le 1$ for any y, y'.

For any distribution π on \mathcal{F} , with probability at least $1 - \epsilon$, for any distribution ρ on \mathcal{F}

$$\left|\mathbb{E}_{
ho(df)}R(f)-\mathbb{E}_{
ho(df)}r(f)\right|\leq \sqrt{rac{K(
ho,\pi)+\log(4n\epsilon^{-1})}{2n-1}}$$

Equivalently (measurability problems set aside), for any data-dependent (posterior) distribution $\hat{\rho}$, with probability at least $1 - \epsilon$,

$$\left|\mathbb{E}_{\hat{
ho}(df)}R(f)-\mathbb{E}_{\hat{
ho}(df)}r(f)\right|\leq\sqrt{rac{K(\hat{
ho},\pi)+\log(4n\epsilon^{-1})}{2n-1}}$$

The different PAC-Bayes bounds

The three aggregation problems

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

McAllester's pioneering work

Seeger's proof (slightly revisited)

The PAC lemma

Let *V* be a real-valued random variable s.t. $\mathbb{E}e^{V} \leq 1$, then with probability at least $1 - \epsilon$, we have

$$V \le \log(\epsilon^{-1}).$$

McAllester's bound:

$$V = \sup_{\rho} \left\{ (2n-1) \big[\mathbb{E}_{\rho(df)} R(f) - \mathbb{E}_{\rho(df)} r(f) \big]^2 - K(\rho, \pi) - \log(4n) \right\} \leq \log(\epsilon^{-1}).$$

First step: Jensen's ineq. + Legendre transform of KL

$$V \le \sup_{\rho} \left\{ (2n-1)\mathbb{E}_{\rho(df)} [R(f) - r(f)]^2 - K(\rho, \pi) - \log(4n) \right\}$$

= $-\log(4n) + \log \mathbb{E}_{\pi(df)} e^{(2n-1)[R(f) - r(f)]^2}$

The different PAC-Bayes bounds

The three aggregation problems

McAllester's pioneering work

Seeger's proof (second step)

$$\begin{split} \mathbb{E}e^{V} &\leq \frac{1}{4n} \mathbb{E}\mathbb{E}_{\pi(df)} e^{(2n-1)[R(f)-r(f)]^{2}} \\ &= \frac{1}{4n} \mathbb{E}_{\pi(df)} \Big(1 + \mathbb{E} \Big\{ e^{(2n-1)[R(f)-r(f)]^{2}} - 1 \Big\} \Big) \\ &= \frac{1}{4n} \mathbb{E}_{\pi(df)} \Big(1 + \int_{0}^{+\infty} \mathbb{P} \Big(e^{(2n-1)[R(f)-r(f)]^{2}} - 1 > t \Big) dt \Big) \\ &= \frac{1}{4n} \mathbb{E}_{\pi(df)} \Big(1 + \int_{0}^{+\infty} \mathbb{P} \Big(|R(f) - r(f)| > \sqrt{\frac{\log(t+1)}{2n-1}} \Big) dt \Big) \\ &\leq \frac{1}{4n} \mathbb{E}_{\pi(df)} \Big(1 + \int_{0}^{+\infty} 2e^{-2n\frac{\log(t+1)}{2n-1}} dt \Big) \\ &= \frac{1}{4n} \mathbb{E}_{\pi(df)} \Big(1 + 2\int_{0}^{+\infty} (t+1)^{-\frac{2n}{2n-1}} dt \Big) \\ &= \frac{4n-1}{4n} \leq 1 \end{split}$$

The different PAC-Bayes bounds

The three aggregation problems

McAllester's pioneering work

Minimizing McAllester's bound and Gibbs estimator

Let $B(\rho) = \mathbb{E}_{\rho(df)} r(f) + \sqrt{\frac{K(\rho, \pi) + \log(4ne^{-1})}{2n-1}}$. McAllester's bound implies: for any distribution ρ

 $\mathbb{E}_{\rho(df)}R(f) \leq B(\rho).$

Theorem

There exists
$$\hat{\lambda} \in [\lambda_1, \lambda_2]$$
 s.t. $B(\pi_{-\hat{\lambda}r}) = \min_{\rho} B(\rho)$ with $\lambda_1 = \sqrt{4(2n-1)\log(4n\epsilon^{-1})}$ and $\lambda_2 = 2\lambda_1 + 4(2n-1)$. Besides, we have

$$\hat{\lambda} = \sqrt{4(2n-1)[K(\pi_{-\hat{\lambda}r},\pi) + \log(4n\epsilon^{-1})]}$$

$$\hat{\lambda} \in \operatorname*{argmin}_{\lambda>0} \left\{ -\frac{1}{\lambda} \log \mathbb{E}_{\pi(df)} e^{-\lambda r(f)} + \frac{\lambda}{4(2n-1)} + \frac{\log(4n\epsilon^{-1})}{\lambda} \right\}$$

The different PAC-Bayes bounds

The three aggregation problems

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Seeger's PAC Bayesian bound

Seeger's bound for classification (2002)

slightly revisited

•
$$\mathcal{K}(p||q) = \mathcal{K}(Be(p), Be(q)) = p \log\left(\frac{p}{q}\right) + (1-p) \log\left(\frac{(1-p)}{1-q}\right)$$

Theorem

With probability at least $1 - \epsilon$, for any distribution ρ on \mathcal{F} ,

$$K(\mathbb{E}_{\rho(df)}r(f)||\mathbb{E}_{\rho(df)}R(f)) \leq \frac{K(\rho,\pi) + \log(2\sqrt{n}\epsilon^{-1})}{n}$$

The different PAC-Bayes bounds

The three aggregation problems

Seeger's PAC Bayesian bound

This time, it suffices to prove

$$V = \sup_{\rho} \left\{ n \mathcal{K}(\mathbb{E}_{\rho(df)} r(f)) || \mathbb{E}_{\rho(df)} \mathcal{R}(f)) - \mathcal{K}(\rho, \pi) - \log(2\sqrt{n}) \right\} \leq \log(\epsilon^{-1}).$$

We have

$$\mathbb{E}\boldsymbol{e}^{V} \leq \mathbb{E}\boldsymbol{e}^{\sup_{\rho} \left\{ n\mathbb{E}_{\rho(df)}K(r(f)||R(f)) - K(\rho,\pi) - \log(2\sqrt{n}) \right\}}$$

$$= \frac{1}{2\sqrt{n}}\mathbb{E}\mathbb{E}_{\pi(df)}\boldsymbol{e}^{nK(r(f))||R(f))}$$

$$= \frac{1}{2\sqrt{n}}\mathbb{E}_{\pi(df)}\sum_{k=0}^{n}\mathbb{P}(nr(f) = k)\left(\frac{k}{nR(f)}\right)^{k}\left(\frac{n-k}{n[1-R(f)]}\right)^{n-k}$$

$$= \frac{1}{2\sqrt{n}}\mathbb{E}_{\pi(df)}\sum_{k=0}^{n}\binom{n}{k}\left(\frac{k}{n}\right)^{k}\left(\frac{n-k}{n}\right)^{n-k}$$

$$\leq 1,$$

where the last inequality is obtained from computations using Stirling's approximation.

The different PAC-Bayes bounds

The three aggregation problems

Seeger's PAC Bayesian bound

McAllester's bound vs Seeger's bound

•
$$\left|\mathbb{E}_{\rho(df)}R(f) - \mathbb{E}_{\rho(df)}r(f)\right| \leq \sqrt{\frac{K(\rho,\pi) + \log(4n\epsilon^{-1})}{2n-1}}$$
 (1)

- $K(\mathbb{E}_{\rho(df)}r(f)||\mathbb{E}_{\rho(df)}R(f)) \leq \frac{K(\rho,\pi) + \log(2\sqrt{n}e^{-1})}{n}$ (2)
- (2) \Rightarrow (1) up to constant since from Pinsker's inequality:

$$\left|\mathbb{E}_{
ho(df)}R(f)-\mathbb{E}_{
ho(df)}r(f)
ight|\leq \sqrt{\mathcal{K}ig(\mathbb{E}_{
ho(df)}r(f)||\mathbb{E}_{
ho(df)}R(f)ig)}.$$

• (2) \gg (1) when $\mathbb{E}_{\rho(df)}r(f)$ is close to 0 since (2) implies

$$\left|\mathbb{E}_{\rho(df)}R(f)-\mathbb{E}_{\rho(df)}r(f)\right| \leq \sqrt{\frac{2\mathbb{E}_{\rho(df)}r(f)[1-\mathbb{E}_{\rho(df)}r(f)]\mathcal{K}}{n}} + \frac{4\mathcal{K}}{3n}$$

with

$$\mathcal{K} = \mathcal{K}(\rho, \pi) + \log(2\sqrt{n}\epsilon^{-1}).$$

The different PAC-Bayes bounds

The three aggregation problems

Catoni's old PAC Bayesian bound

Catoni's old bound for classification (2002)

• Let
$$\Psi(t) = \frac{e^t - 1 - t}{t^2} \xrightarrow[t \to 0]{} \frac{1}{2}$$
.

Theorem

For $\lambda > 0$, with proba. at least $1 - \epsilon$, for any distribution ρ on \mathcal{F} ,

$$\mathbb{E}_{\rho(df)} R(f) \leq \frac{\mathbb{E}_{\rho(df)} r(f)}{1 - \frac{\lambda}{n} \Psi(\frac{\lambda}{n})} + \frac{K(\rho, \pi) + \log(\epsilon^{-1})}{\lambda [1 - \frac{\lambda}{n} \Psi(\frac{\lambda}{n})]}$$

Since typical values of λ are in $[C\sqrt{n}; Cn]$, we roughly have

$$\mathbb{E}_{\rho(df)} R(f) \lesssim \mathbb{E}_{\rho(df)} r(f) + \frac{\lambda}{2n} \mathbb{E}_{\rho(df)} r(f) + \frac{K(\rho, \pi) + \log(\epsilon^{-1})}{\lambda}$$

$$\approx \sum_{\text{choice of } \lambda} \mathbb{E}_{\rho(df)} r(f) + \sqrt{2\mathbb{E}_{\rho(df)} r(f) \frac{K(\rho, \pi) + \log(\epsilon^{-1})}{n}}$$

The different PAC-Bayes bounds

The three aggregation problems

Audibert's PAC Bayesian bound

Audibert's bound (2004)

• Let
$$\Psi(t) = \frac{e^t - 1 - t}{t^2} \xrightarrow[t \to 0]{} \frac{1}{2}$$
.

Theorem

For $\lambda > 0$, with proba. at least $1 - \epsilon$, for any distribution ρ on \mathcal{F} ,

$$\mathbb{E}_{
ho(df)} R(f) \leq \mathbb{E}_{
ho(df)} r(f) + rac{\lambda}{n} \Psi\left(rac{\lambda}{n}
ight) \mathbb{E}_{
ho(df)} \operatorname{Var}_{Z} \ell(Y, f(X)) + rac{K(
ho, \pi) + \log(\epsilon^{-1})}{\lambda}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The different PAC-Bayes bounds

The three aggregation problems

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Zhang's PAC Bayesian bound

Zhang's bound (2005)

Theorem

For $\lambda > 0$, with proba. at least $1 - \epsilon$, for any distribution ρ on \mathcal{F} ,

$$-\frac{n}{\lambda}\mathbb{E}_{\rho(df)}\log\mathbb{E}_{Z}\boldsymbol{e}^{-\frac{\lambda}{n}\ell(Y,f(X))}\leq\mathbb{E}_{\rho(df)}\boldsymbol{r}(f)+\frac{K(\rho,\pi)+\log(\epsilon^{-1})}{\lambda}.$$

Since we have

$$-\frac{1}{t}\log \mathbb{E}_{Z}e^{-t\ell(Y,f(X))} = R(f) - \frac{t}{2}\operatorname{Var}_{Z}\ell(Y,f(X)) + O(t^{2}),$$

we have

I.h.s.
$$\approx \mathbb{E}_{\rho(df)} R(f) - \frac{\lambda}{2n} \mathbb{E}_{\rho(df)} \operatorname{Var}_{Z} \ell(Y, f(X))$$

The different PAC-Bayes bounds

The three aggregation problems

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Zhang's PAC Bayesian bound

Catoni's bound (2007)

Instead of using

$$\log \mathbb{E} e^{-\frac{\lambda}{n}\ell(Y,f(X))} \leq -\frac{\lambda}{n}R(f) + \frac{\lambda^2}{n^2}\Psi\left(\frac{\lambda}{n}\right)R(f),$$

use

$$\log \mathbb{E} e^{-\frac{\lambda}{n}\ell(Y,f(X))} = \log \left(1 - R(f)(1 - e^{-\frac{\lambda}{n}})\right)$$
$$= -\frac{\lambda}{n} \Phi_{\frac{\lambda}{n}}(R(f)).$$

with

$$\Phi_a(p) = -a^{-1}\log[1 - (1 - e^{-a})p] = p - \frac{a}{2}p(1 - p) + O(a^2)$$

 \Rightarrow tighter constants and variance appearing implicitly

The different PAC-Bayes bounds

The three aggregation problems

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Zhang's PAC Bayesian bound

Comparison of the bounds in classification

• Zhang, A., Catoni (2007):

 $\mathbb{E}_{\rho(df)}R(f) \lessapprox \mathbb{E}_{\rho(df)}r(f) + \sqrt{2\mathbb{E}_{\rho(df)}(R(f)[1-R(f)])}\frac{K(\rho,\pi) + \log(\epsilon^{-1})}{n}$

• Catoni (2002):

$$\mathbb{E}_{
ho(df)}R(f) \lessapprox \mathbb{E}_{
ho(df)}r(f) + \sqrt{2\mathbb{E}_{
ho(df)}R(f)rac{K(
ho,\pi) + \log(\epsilon^{-1})}{n}}$$

• Seeger:

$$\mathbb{E}_{\rho(df)}R(f) \leq \mathbb{E}_{\rho(df)}r(f) + \sqrt{\frac{2\mathbb{E}_{\rho(df)}R(f)[1-\mathbb{E}_{\rho(df)}R(f)]\mathcal{K}}{n}} + \frac{2\mathcal{K}}{3n}$$

with $\mathcal{K} = \mathcal{K}(\rho, \pi) + \log(2\sqrt{n}\epsilon^{-1})$. Besides, we have $\mathbb{E}_{\rho(df)}\mathcal{R}(f)[1 - \mathbb{E}_{\rho(df)}\mathcal{R}(f)] \ge \mathbb{E}_{\rho(df)}\mathcal{R}(f)[1 - \mathcal{R}(f)]$

\Rightarrow similar PAC-Bayes bounds

Least square regression setting

•
$$R(g) = \mathbb{E}[Y - g(X)]^2$$
.

- Bounded noise setting: $Y \in [-1, 1]$
- $g_1, \ldots, g_d : \mathcal{X} \to \mathcal{Y}$, with $\|g_1\|_{\infty}, \ldots, \|g_d\|_{\infty} \leq 1$

$$g^*_{MS} \in \operatorname*{argmin}_{g \in \{g_1, ..., g_d\}} R(g),$$

$$egin{argmin} g^{*}_{\mathsf{C}} \in & rgmin & R(g), \ g \in \{\sum_{j=1}^{d} heta_{j} g_{j}; heta_{1} \geq 0, ..., heta_{d} \geq 0, \sum_{j=1}^{d} heta_{j} = 1\} \ g^{*}_{\mathsf{L}} \in & rgmin & R(g). \ g \in \{\sum_{j=1}^{d} heta_{j} g_{j}; heta_{1} \in \mathbb{R}, ..., heta_{d} \in \mathbb{R}\} \ \end{pmatrix}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ~豆 > ◆○ ◆

The three aggregation problems

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Optimal rates of aggregation

There exist \hat{g}_{MS} , \hat{g}_{C} and \hat{g}_{L} such that

$$\begin{split} \mathbb{E}R(\hat{g}_{\mathsf{MS}}) - R(g^*_{\mathsf{MS}}) &\leq C \min\left(\frac{\log d}{n}, 1\right), \\ \mathbb{E}R(\hat{g}_{\mathsf{C}}) - R(g^*_{\mathsf{C}}) &\leq C \min\left(\sqrt{\frac{\log(1 + d/\sqrt{n})}{n}}, \frac{d}{n}, 1\right), \\ \mathbb{E}R(\hat{g}_{\mathsf{L}}) - R(g^*_{\mathsf{L}}) &\leq C \min\left(\frac{d}{n}, 1\right), \end{split}$$

where \hat{g}_L requires the knowledge of the input distribution.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Optimal rates of aggregation (Tsybakov, 2003)

- σ > 0
- \mathcal{P}_{σ} = set of proba. on $\mathcal{X} \times \mathbb{R}$ such that $Y = g(X) + \xi$, with $\|g\|_{\infty} \leq 1$, and $\xi \sim \mathcal{N}(0, \sigma^2)$
- For appropriate choices of g_1, \ldots, g_d :

$$\inf_{\hat{g}} \sup_{P \in \mathcal{P}_{\sigma}} \left\{ \mathbb{E} R(\hat{g}) - R(g^*_{\mathsf{MS}}) \right\} \geq C \min\left(\frac{\log d}{n}, 1\right),$$

$$\inf_{\hat{g}} \sup_{P \in \mathcal{P}_{\sigma}} \left\{ \mathbb{E}R(\hat{g}) - R(g_{\mathsf{C}}^*) \right\} \ge C \min\left(\sqrt{\frac{\log(1 + d/\sqrt{n})}{n}}, \frac{d}{n}, 1\right),$$
$$\inf_{\hat{g}} \sup_{P \in \mathcal{P}_{\sigma}} \left\{ \mathbb{E}R(\hat{g}) - R(g_{\mathsf{L}}^*) \right\} \ge C \min\left(\frac{d}{n}, 1\right).$$

The different PAC-Bayes bounds

The three aggregation problems

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Model selection type aggregation

Unusual properties

$$g^*_{ extsf{MS}} \in rgmin_{g \in \{g_1, ..., g_d\}} R(g)$$

- To be "optimal", we need to choose \hat{g} outside the model \mathcal{G} .
- Up to recently, the only known optimal algorithm is the progressive mixture rule
- The proof is neither based on bounds on the supremum of empirical processes nor on the PAC-Bayesian analysis

A D F A 同 F A E F A E F A Q A

Model selection type aggregation

Progressive mixture rule (Catoni, 1999; Yang, 2000)

- π uniform distribution on the finite set $\{g_1, \ldots, g_d\}$
- Σ_i(g) = Σⁱ_{k=1}[Y_k − g(X_k)]²: cumulative loss on the first *i* data points
- The progressive mixture rule: $\hat{g}_{PM} = \frac{1}{n+1} \sum_{i=0}^{n} \mathbb{E}_{g \sim \pi_{-\lambda \Sigma_i}} g$, i.e.,

$$\hat{g}_{\mathsf{PM}}(x) = rac{1}{n+1} \sum_{i=0}^{n} rac{\sum_{j=1}^{d} g_j(x) e^{-\lambda \Sigma_i(g_j)}}{\sum_{j=1}^{d} e^{-\lambda \Sigma_i(g_j)}}.$$

• Theoretical guarantee:

$$\mathbb{E}R(\hat{g}_{\mathsf{PM}}) - R(g^*_{\mathsf{MS}}) \leq rac{8\log d}{n+1}$$

The three aggregation problems

(日) (日) (日) (日) (日) (日) (日)

Model selection type aggregation

Progressive indirect mixture rules (A., 2009)

- $\lambda > 0$
- For any $i \in \{0, ..., n\}$, let \hat{h}_i be a prediction function s.t.

$$\forall X, Y \qquad [Y - \hat{h}_i(X)]^2 \leq -\frac{1}{\lambda} \log \mathbb{E}_{g \sim \pi_{-\lambda \Sigma_i}} e^{-\lambda [Y - g(X)]^2} \qquad (1)$$

- Progressive indirect mixture rule: $\hat{g}_{\lambda} = \frac{1}{n+1} \sum_{i=0}^{n} \hat{h}_{i}$.
- $\hat{h}_i = \mathbb{E}_{g \sim \pi_{-\lambda \Sigma_i}} g$ satisfies (1) for $\lambda \leq 1/8$.
- \hat{h}_i exists even for $\lambda = 1/2$, and then

$$\mathbb{E}R(\hat{g}_{1/2}) - R(g^*_{\mathsf{MS}}) \leq \frac{2\log d}{n+1}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Model selection type aggregation

Excess risk deviations abnormally high

- $\mathbb{E}R(\hat{g}_{\lambda}) R(g_{\mathsf{MS}}^*) = \mathsf{O}(\frac{1}{n}) \not\Rightarrow R(\hat{g}) R(g_{\mathsf{MS}}^*) = \mathsf{O}(\frac{1}{n})$ w.h.p.
- *g*₁ = 1 and *g*₂ = −1
- For any λ > 0 and any training set size n large enough, there exist ε > 0 and a distribution generating the data for which with probability larger than ε, we have

$$R(\hat{g}_{\lambda}) - R(g^*_{ extsf{MS}}) \geq c \sqrt{rac{\log(e\epsilon^{-1})}{n}}$$

The different PAC-Bayes bounds

The three aggregation problems

(日) (日) (日) (日) (日) (日) (日)

Model selection type aggregation

Getting round the previous limitation (A., 2007)

•
$$r(g) = \frac{1}{n} \sum_{i=1}^{n} [Y_i - g(X_i)]^2$$
.

- $\hat{g}_{\mathsf{ERM}} \in \operatorname*{argmin}_{g \in \{g_1, \dots, g_d\}} r(g).$
- $[g,g'] = \{ \alpha g + (1-\alpha)g' : \alpha \in [0,1] \}.$
- The empirical star estimator is

 $\hat{g} \in rgmin_{g \in [\hat{g}_{\mathsf{ERM}}, g_1] \cup \cdots \cup [\hat{g}_{\mathsf{ERM}}, g_d]} r(g).$

• Theoretical guarantee: with probability at least $1 - \epsilon$,

$$R(\hat{g}) - R(g^*_{\mathsf{MS}}) \leq rac{600 \log(d\epsilon^{-1})}{n}.$$

See also Lecué and Mendelson (2009)

The different PAC-Bayes bounds

The three aggregation problems

(ロ) (同) (三) (三) (三) (○) (○)

Convex aggregation in high dimension

Different approaches

$g^*_{\mathbf{C}} \in lpha_{g \in \{\sum_{j=1}^d heta_j g_j; heta_1 \ge 0, \dots, heta_d \ge 0, \sum_{j=1}^d heta_j = 1\}} R(g)$ $\sqrt{n} \ll d \ll e^n$

- Apply the previous progressive mixture rule on an appropriate grid (Tsybakov, 2003)
- Use the exponentiated gradient algorithm (Kivinen and Warmuth, 1997; Cesa-Bianchi, 1999)
- Use a stochastic version of the mirror descent algorithm (Juditsky, Nazin, Tsybakov, Vayatis, 2005)

Results in expectation, based on a sequential procedure

Convex aggregation in high dimension

A PAC-Bayesian approach (A., 2004)

 $\mathbb{E}[Y - \mathbb{E}_{g \sim \rho} g(X)]^2 = \mathbb{E}_{(g',g'') \sim \rho \otimes \rho} \mathbb{E}[Y - g'(X)][Y - g''(X)]$

- Apply the PAC-Bayesian analysis for distributions on the product space {g₁,..., g_d} × {g₁,..., g_d}
- PAC-Bayes bound: with probability at least 1ϵ ,

$$\mathsf{R}(\mathbb{E}_{g\sim\hat{\rho}}g) - \mathsf{R}(g^*_{\mathsf{C}}) \leq \min_{\lambda\in[0,C_1]} \left\{ (1+\lambda) \left[r(\mathbb{E}_{g\sim\hat{\rho}}g) - r(g^*_{\mathsf{C}}) \right] + \frac{2\lambda}{n} \sum_{i=1}^n \mathsf{Var}_{g\sim\hat{\rho}}g(X_i) + C_2 \frac{1}{n} \frac{K(\hat{\rho},\pi) + \log(2\log(2n)\epsilon^{-1})}{\lambda} \right\}.$$

(日) (日) (日) (日) (日) (日) (日)

Convex aggregation in high dimension

The minimizer of the PAC-Bayes bound

- π = uniform distribution on { g_1, \ldots, g_d }
- $\hat{\rho}_{\mathbf{C}}$ = distribution minimizing the upper bound

•
$$g^*_{\mathbf{C}} = \mathbb{E}_{g \sim \rho^*_{\mathbf{C}}} g.$$

• Theoretical guarantee: with probability at least $1 - \epsilon$,

$$egin{aligned} & \mathcal{R}(\mathbb{E}_{g\sim \hat{
ho}_{\mathbf{C}}}g) - \mathcal{R}(g_{\mathbf{C}}^*) \leq C \sqrt{rac{\log(d\log(2n)\epsilon^{-1})}{n}} \mathbb{E} \mathbf{V} ext{ar}_{g\sim
ho_{\mathbf{C}}^*}g(X) \ &+ C rac{\log(d\log(2n)\epsilon^{-1})}{n}, \end{aligned}$$

• Excess risk at most of order $\sqrt{\frac{\log(d\log(2n))}{n}}$

• If $\rho_{\mathbf{C}}^*$ is a Dirac, excess risk at most of order $\frac{\log(d \log(2n))}{n}$

Linear aggregation

$$g^*_{\mathsf{L}} \in rgmin_{g \in \{\sum_{j=1}^d heta_j g_j; heta_1 \in \mathbb{R}, ..., heta_d \in \mathbb{R}\}} R(g).$$

- Linear aggregation = linear least squares regression
- Assume that we know that $g_{L}^{*} \in \mathcal{G}$, where \mathcal{G} is L_{∞} bounded
- There is no simple *d*/*n* bound which does not require strong assumptions if we care about logarithmic factors

$$R(\hat{g}_{\mathsf{ERM}}) - R(g^*) \leq C rac{d \log(2+n/d) + \log(\epsilon^{-1})}{n}.$$

(Birgé and Massart, 1998)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Linear aggregation

A PAC-Bayesian approach with Gaussian prior (A. and Catoni, 2009)

- π uniform distribution on \mathcal{G}
- For an appropriate $\lambda > 0$, with probability at least 1ϵ ,

$$R(\mathbb{E}_{g\sim\pi_{-\lambda r}}g)-R(g^*)\leq C\,rac{d+\log(2\epsilon^{-1})}{n},$$

• Shrinking effect of $\pi_{-\lambda r}$ when compared to \hat{g}_{ERM} .

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

High-dimensional input and sparsity

$n \ll d \ll e^n$

- predicting as $g_{\mathbf{C}}^*$ = achievable : $\sqrt{\frac{\log d}{n}}$
- predicting as g_{L}^{*} = not achievable : $\frac{d}{n}$

 $g^* \in rgmin_{g \in \{\sum_{j=1}^d heta_j g_j; heta_1 \in \mathbb{R}, ..., heta_d \in \mathbb{R}, \sum_{j=1}^d \mathbf{1}_{ heta_j
eq 0} \leq s\}} R(g).$

g* achievable by Lasso (L₁ regularization) under strong assumptions on the correlations of g₁(X),..., g_d(X)

The three aggregation problems

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

High-dimensional input and sparsity

A model selection approach

•
$$\mathcal{L}_1 = \{Z_1, \dots, Z_{n/2}\}, \text{ and } \mathcal{L}_2 = \{Z_{n/2+1}, \dots, Z_n\}$$

- For any *I* ⊂ {1,..., *d*} of size *s*, let *ĝ_I* be the Gibbs estimator for linear aggregation of (*g_j*)_{*j*∈*I*} trained on *L*₁
- Let
 ĝ be the empirical star estimator trained on
 *L*₂ and associated with the
 ^d_s functions
 *ĝ*_l

$$R(\hat{g}) - R(g^*) \leq C rac{s \log(d/s) + \log(2\epsilon^{-1})}{n}$$