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Outline

In this lecture, we will :

Review some elements of the Sample-Compress theory

See how we can describe a SVM as a Majority Vote of

Sample-Compressed classifiers (the Sc-SVM)

Use the PAC-Bayes theory to upper-bound the risk of our Sc-SVM

Minimize this PAC-Bayes bound and present experimental results

and Conclude...
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The Classification problem

We consider a training set S of m examples

S
def
= (z1, z2, . . . , zm)

where each zi is a input-output pair:

zi
def
= (xi , yi )

xi ∈ X ⊆ R
n (Real atttibutes)

yi ∈ Y = {−1, +1} (Binary classif.)

Each example zi is drawn IID according to an unknown probability
distribution D on X × Y. Hence :

S ∼ Dm

.
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Elements of the Sample Compression theory

A sc-classifier hµ
i is a data-dependent classifier described by two variables:

A compression-set Si containing a subset of the training sequence S
describing the classifier

i
def
= 〈i1, i2, . . . , i|i|〉 with 1 ≤ i1 < i2 < . . . < i|i| ≤ m

A message string µ containing the additional information needed to
construct the classifier.

µ is choosen among Mi, a predefined set of all messages that can be
supplied with Si.

Given Si and µ, a reconstruction function R outputs a classifier :

hµ
i

def
= R(Si, µ) .
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Risk of a sc-classifier

The risk (or generalization error) of a classifier h is defined as

RD(h)
def
= E

(x,y)∼D
I (h(x) 6= y) = Pr

(x,y)∼D
(h(x) 6= y)

where I (a) = 1 if predicate a is true and 0 otherwise.

The empirical risk of a sc-classifier hµ
i on the training set S is defined by

RS(hµ
i )

def
=

1

m

m∑

j=1

R〈(xj ,yj )〉(h
µ
i ) ,

where

R〈(xj ,yj )〉(h
µ
i )

def
=

{
I (hµ

i (xj) 6= yj) if j 6∈ i

0 otherwise.

Thus, mRs(h
µ
i ) ∼ Bin

(
m−‖i‖, RD(hµ

i )
)

.
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Pascal Germain (GRAAL, Université Laval) PAC-Bayes, Sample C. & Kernel Methods March 22, 2010 6 / 25



Redefining the SVM as a Majority Vote of sc-classifiers

We denote HS the set of all sc-classifiers. Each hµ
i ∈ HS is such as :

The compression-set contains one training example :

Si ∈ {S〈1〉, S〈2〉, . . . ,S〈m〉}

The message string is formed by a real number and a sign :

µ ∈ Mi = [−1, 1] × {+,−}

We consider pairs of boolean complement classifiers such as :

h
(σ,−)
i (x) = −h

(σ,+)
i (x) ∀ x ∈ X , σ ∈ [−1, 1] .
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sc-classifier h
µ
i ∈ HS

Comp-set: Si ∈ {S〈1〉, . . . , S〈m〉}
Message: µ ∈ Mi = [−1, 1] × {+,−}

Distribution Q

Q(hµ
i ) = QI(i)QSi

(µ)

Q(h
(σ,+)
i ) − Q(h

(σ,−)
i ) = wi

Let Q be a probability distribution over HS . We denote

QI , the probability that a compression-set Si is chosen by Q:

QI(i)
def
=

∫

µ∈Mi

Q(hµ
i )dµ

QSi
, the probability of choosing message µ given Si:

QSi
(µ)

def
= Q(hµ

i |Si)

Therefore, Q(hµ
i ) = QI(i)QSi

(µ) .

The output of the majority vote classifier (bayes classifier) is given by :

BQ(x)
def
= sgn

[
E

h∼Q
h(x)

]

Pascal Germain (GRAAL, Université Laval) PAC-Bayes, Sample C. & Kernel Methods March 22, 2010 8 / 25



sc-classifier h
µ
i ∈ HS

Comp-set: Si ∈ {S〈1〉, . . . , S〈m〉}
Message: µ ∈ Mi = [−1, 1] × {+,−}

Distribution Q

Q(hµ
i ) = QI(i)QSi

(µ)

Q(h
(σ,+)
i ) − Q(h

(σ,−)
i ) = wi

Before seing the data, we define a prior distribution over the
compression-sets and the message strings. This gives us indirectly a prior
P over HS such as :

PI is an uniform distribution over all possible compression-sets ;
For each compression-set Si, PSi

is uniform over all messages.

PI






h〈1〉

...

h〈m〉

+
+
+
+
+

-

-
-

-
-

h(−1,−) . . . h(+1,−), h(−1,+) . . . h(+1,+)

︸ ︷︷ ︸
PMi
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sc-classifier h
µ
i ∈ HS

Comp-set: Si ∈ {S〈1〉, . . . , S〈m〉}
Message: µ ∈ Mi = [−1, 1] × {+,−}

Distribution Q

Q(hµ
i ) = QI(i)QSi

(µ)

Q(h
(σ,+)
i ) − Q(h

(σ,−)
i ) = wi

We say that a posterior Q is aligned on a prior P when for all i and σ:

Q(h
(σ,+)
i ) + Q(h

(σ,−)
i ) = P(h

(σ,+)
i ) + P(h

(σ,−)
i )

Moreover, we say that a posterior Q is strongly aligned when for all i,
there is a wi such that for all σ:

Q(h
(σ,+)
i ) − Q(h

(σ,−)
i ) = wi

By restricting ourself to strongly aligned posterior, we obtain a posterior
distribution totally defined by the wi’s :

Q(h
(σ,+)
i ) =

1

2

(
P(h

(σ,+)
i ) + P(h

(σ,−)
i ) + wi

)

Q(h
(σ,−)
i ) =

1

2

(
P(h

(σ,+)
i ) + P(h

(σ,−)
i ) − wi

)
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



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-

-
-

-
-
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︸ ︷︷ ︸
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sc-classifier h
µ
i ∈ HS

Comp-set: Si ∈ {S〈1〉, . . . , S〈m〉}
Message: µ ∈ Mi = [−1, 1] × {+,−}

Distribution Q

Q(hµ
i ) = QI(i)QSi

(µ)

Q(h
(σ,+)
i ) − Q(h

(σ,−)
i ) = wi

Consider any similarity function k(·, ·) : X × X → [−1, 1].
We say that reconstruction function R is associated to k when :

h
(σ,+)
〈i〉 (x)

def
=

{
+1 if σ < k(xi , x)
−1 otherwise

h
(σ,−)
i (x)

def
= −h

(σ,+)
i (x) .

We finally obtain that our strongly aligned posterior will be such that:

QI(〈i〉) =
1

m
, w〈i〉 · k(xi , x) =

∫

µ∈M〈i〉

hµ

〈i〉(x) · Q〈i〉(µ) dµ .

Thus, the majority vote output BQ(x) = sgn

[
E

h∼Q
h(x)

]
will be the same as

fSVM(x) = sgn
(∑m

i=1 yiαik(xi , x)
)

when w〈i〉 =
yiαi

Z · m
.

„

Z
def
=

Pm
i=1 αi

«
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PAC-Bayes bounds for Sc-SVM

PAC-Bayes theorems allow us to bound the risk of a majority vote classifier
BQ by bounding the risk of the Gibbs classifier GQ , related to BQ

Given x, GQ draws h according to Q and classifies x according to h.

It follows that RD(BQ) ≤ 2RD(GQ) .

In our setting, the Gibbs risk RD(GQ) will be likely near 1/2, even if the
Bayes risk is close to 0.

Each sc-classifier hµ
i ∈ HS might be really weak.

We want to bound a more relevant risk!

Similary at [Germain et al. PAC-Bayes bounds for general loss functions (2006)],

we can consider any non-negative loss ζ that can be expended by a Taylor
series around the margin MQ(x, y) = 0.
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Margin of the majority vote classifier

MQ(x, y)
def
= Eh

µ
i
∼Q yhµ

i (x) = 1−2R〈(xj ,yj )〉(GQ)

We choose to use the quadratic loss function ζγ(α) =
(
1 − 1

γ
α
)2

.

2

-1 0 γ 1

0-1 loss (Bayes)
Linear loss (Gibbs×2)
Quadratic loss
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First PAC-Bayes theorem

We adapted the Catoni’s theorem to consider:

A general loss function ζ

A set of (data-dependent) sc-classifiers of size ≤ l

Theorem

For any D, any family (HS)S∈Dm of sets of sc-classifiers of size at most l , any

prior P, any δ ∈ (0, 1], any C1 ∈ R
+ and any margin loss function ζ of degree m

l
:

Pr
S∼Dm

(
∀Q on HS:

ζQ
D ≤ C ′ ·

(
ζQ
S +

ζ′(1)·KL(Q‖P) + ζ(1)·ln 1
δ

C1 ·m

))
≥1−δ ,

where KL(·‖·) is the Kullback-Leibler divergence and C ′ =
C1·

m
m−l·deg ζ

1−e−C1·
m−l·deg ζ

m

.

Finding Q that minimizes this bound is equivalent to finding Q minimizing:

f (Q)
def
= C · ζQ

S + KL(Q‖P) (where C is an hyperparameter)
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Second PAC-Bayes theorem

We adapted the Langford and Seeger’s theorem which use the KL
divergence between two Bernoulli distributions of prob of success p and q:

kl(q‖p)
def
= q ln

q

p
+ (1 − q) ln

1 − q

1 − p
= kl(1 − q‖1 − p)

The usual term KL(Q‖P) disappear as we consider aligned posteriors:

Q(h) + Q(−h) = P(h) + P(−h) ∀h ∈ H

Theorem

For any D, any family (HS)S∈Dm of sets of sc-classifiers of size at most l, any

prior P, any δ ∈ (0, 1], any margin loss function ζ of degree < m/l , we have

Pr
S∼Dm

0

B

B

@

∀Q∈HS aligned on P:

kl
(

1
ζ(1) ·ζ

Q
S ‖ 1

ζ(1) ·ζ
Q
D

)
≤

ln m+1
δ

m−l ·deg ζ

1

C

C

A

≥1−δ

This bound suggests to minimize the empirical risk: f (Q)
def
= ζQ

S
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We want to bound random variable E
h∼P

em·kl(RS (h)‖R(h)) in term of R(GQ).

General theorem

Term KL(Q‖P) arises when transforming
expectation over P into expectation over Q:

ln

[
E

h∼P
em·kl(RS (h)‖R(h))

]

= ln

[
E

h∼Q

P(h)

Q(h)
em·kl(RS (h),R(h))

]

≥ E
h∼Q

ln

[
P(h)

Q(h)
em·kl(RS (h),R(h))

]

= m E
h∼Q

kl(RS(h),R(h)) − KL(Q‖P)

≥ m · kl( E
h∼Q

RS(h), E
h∼Q

R(h)) − KL(Q‖P)

= m · kl(RS(GQ),R(GQ)) − KL(Q‖P) .

Aligned posterior theorem

Here, we do the same operation for
“free” (proof on next slide):

ln

[
E

h∼P
em·kl(RS (h)‖R(h))

]

= ln

[
E

h∼Q
em·kl(RS (h)‖R(h))

]

≥ E
h∼Q

ln
[
em·kl(RS (h),R(h))

]

= m E
h∼Q

kl(RS(h),R(h))

≥ m · kl( E
h∼Q

RS(h), E
h∼Q

R(h))

= m · kl(RS(GQ),R(GQ)) .

The two “≥” come from Jensen’s inequality: E f (X ) ≥ f (EX ) for convex f .
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First, note that as we have h ∈ HS ⇒ −h ∈ HS :

E
h∼P

em·kl(RS (h)‖R(h)) =

∫

h∈H

P(h)em·kl(RS (h)‖R(h)) =

∫

h∈H

P(−h)em·kl(RS (−h)‖R(−h)) .

Then, following that Q(h) + Q(−h) = P(h) + P(−h) :

2 E
h∼P

em·kl(RS (h)‖R(h))

=

∫

h∈H

P(h)em·kl(RS (h)‖R(h)) +

∫

h∈H

P(−h)em·kl(RS (−h)‖R(−h))

=

∫

h∈H

P(h)em·kl(RS (h)‖R(h)) +

∫

h∈H

P(−h)em·kl(1−RS (h)‖1−R(h))

=

∫

h∈H

(P(h) + P(−h)) em·kl(RS (h)‖R(h))

=

∫

h∈H

(Q(h) + Q(−h)) em·kl(RS (h)‖R(h))

=

∫

h∈H

Q(h)em·kl(RS (h)‖R(h)) +

∫

h∈H

Q(−h)em·kl(RS (−h)‖R(−h))

= 2 E
h∼Q

em·kl(RS (h)‖R(h)) .
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We have designed two learning algorithms

Remember that Q is strongly aligned: Q(h
(σ,+)
i ) − Q(h

(σ,−)
i ) = wi.

The task of the algorithms is to find a vector w = (w1, . . . ,wm),

wi
def
= w〈i〉 = Q(h

(σ,+)
〈i〉 ) − Q(h

(σ,−)
〈i〉 )

|wj | ≤
1

m
∀j ∈ {1, . . . ,m}

The empirical margin M̂Q is now defined by

M̂Q(xj , yj) =
m∑

k=0

yj wk Ĝ (xk , xj)

where

Ĝ (xj , xl)
def
=

{
k(xj , xl) ∀ j ∈{1, ..,m} and j 6= l
1 ∀ j ∈{1, ..,m} and j = l
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Algorithm with KL (Based on our first PAC-Bayes theorem)

Find w that minimizes f (w)
def
= C ·

m∑

j=0

ζγ

(
yj w Ĝ(xj)

)
+ KL(Qw||P)

Parameters to tune :

C , the trade-off between the two terms to minimize

γ, the minimum of the quadratic risk

Algorithm without KL (Based on our second PAC-Bayes theorem)

Find w that minimizes f (w)
def
=

m∑

j=0

ζγ

(
yj w Ĝ(xj)

)

Parameter to tune :

γ, the minimum of the quadratic risk

Both objective functions are convex. ⇒ Only one global minimum.
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Experimental results (RBF kernel, 10-folds CV)

Dataset |T | |S | n Classic SVM SC-SVM (with KL) SC-SVM (w/o KL)
Usvotes 200 235 16 0.065 0.060 0.060

Liver 175 170 6 0.303 0.371 0.303

Credit-A 300 353 15 0.187 0.170 0.150

Glass 107 107 9 0.159 0.131 0.178
Haberman 150 144 3 0.273 0.287 0.287
Heart 147 150 13 0.184 0.163 0.190
sonar 104 104 60 0.183 0.144 0.135

BreastCancer 340 343 9 0.038 0.035 0.035

Tic-tac-toe 479 479 9 0.023 0.015 0.015

Ionosphere 175 176 34 0.051 0.029 0.029

Wdbc 284 285 30 0.070 0.092 0.067

MNIST:0vs8 1916 500 784 0.005 0.004 0.004

MNIST:1vs7 1922 500 784 0.012 0.008 0.010
MNIST:1vs8 1936 500 784 0.013 0.011 0.011

MNIST:2vs3 1905 500 784 0.023 0.016 0.018
Letter:AB 1055 500 16 0.001 0.001 0.001

Letter:DO 1058 500 16 0.013 0.009 0.009

Letter:OQ 1036 500 16 0.014 0.017 0.017
Adult 10000 1809 14 0.160 0.157 0.157

Mushroom 4062 4062 22 0.000 0.000 0.000

Waveform 4000 4000 21 0.068 0.069 0.068

Ringnorm 3700 3700 20 0.015 0.016 0.012
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Outline

In this lecture, we will :

Review some elements of the Sample-Compress theory

See how we can describe a SVM as a Majority Vote of

Sample-Compressed classifiers (the Sc-SVM)

Use the PAC-Bayes theory to upper-bound the risk of our Sc-SVM

Minimize this PAC-Bayes bound and present experimental results

and Conclude...

Pascal Germain (GRAAL, Université Laval) PAC-Bayes, Sample C. & Kernel Methods March 22, 2010 24 / 25



Future works

We presented a general framework to apply the PAC-Bayes theory to
kernels methods.

For now, we compare ourself to the Support Vector Machine, but there is
many other possibilities.

Three future research ideas (among others) :

Experimentations with non-PSD kernels

Consider a majority vote of sc-classifiers of maximum size > 1

Consider non-strongly aligned posteriors.

Pascal Germain (GRAAL, Université Laval) PAC-Bayes, Sample C. & Kernel Methods March 22, 2010 25 / 25


	Introduction
	Sample-Compression
	PAC-Bayes for Sc-SVM
	Learning Algorithms
	Conclusion

