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Summary

Today, I intend to

present some basic mathematics that underlies the PAC-Bayes
theory

look for PAC-Bayes bound minimization algorithms and
compare them with existing ones.
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The mathematics of the PAC-Bayes Theory
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Derivation of classical PAC-Bayes bound
The non iid case

Definitions

Each example (x, y) ∈ X × {−1,+1}, is drawn acc. to D.

The (true) risk R(h) and training error RS(h) are defined as:

R(h)
def
= E

(x,y)∼D
I (h(x) 6= y) ; RS(h)

def
=

1

m

m∑
i=1

I (h(xi ) 6= yi ) .

The learner’s goal is to choose a posterior distribution Q on
a space H of classifiers such that the risk of the Q-weighted
majority vote BQ is as small as possible.

BQ(x)
def
= sgn

[
E

h∼Q
h(x)

]

BQ is also called the Bayes classifier.
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Derivation of classical PAC-Bayes bound
The non iid case

The Gibbs clasifier

PAC-Bayes approach does not directly bounds the risk of BQ

It bounds the risk of the Gibbs classifier GQ :

to predict the label of x, GQ draws h from H and predicts h(x)

The risk and the training error of GQ are thus defined as:

R(GQ) = E
h∼Q

R(h) ; RS(GQ) = E
h∼Q

RS(h) .
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GQ , BQ , and KL(Q‖P)

If BQ misclassifies x, then at least half of the classifiers (under
measure Q) err on x.

Hence: R(BQ) ≤ 2R(GQ)
Thus, an upper bound on R(GQ) gives rise to an upper
bound on R(BQ)

PAC-Bayes makes use of a prior distribution P on H.

The risk bound depends on the Kullback-Leibler divergence:

KL(Q‖P)
def
= E

h∼Q
ln

Q(h)

P(h)
.
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Derivation of classical PAC-Bayes bound
The non iid case

A PAC-Bayes bound to rule them all !
J.R.R. Tolkien, roughly ,
or John Langford, less roughly.

Theorem 1 Germain et al. 2009

For any distribution D on X × Y, for any set H of classifiers, for
any prior distribution P of support H, for any δ ∈ (0, 1], and for
any convex function D : [0, 1]× [0, 1]→ R, we have

Pr
S∼Dm

(
∀Q onH : D(RS(GQ),R(GQ)) ≤

1

m

[
KL(Q‖P) + ln

(
1

δ
E

S∼D
E

h∼P
emD(RS (h),R(h))

)])
≥ 1− δ .
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A PAC-Bayes bound to rule them all !
J.R.R. Tolkien, roughly ,
or John Langford, less roughly.

Theorem 1+ Lever et al (2010)

For any functions A(h), B(h) over H, either of which may be a
statistic of a sample S of size n, any distributions P over H, any
δ ∈ (0, 1], any t > 0, and convex function D : R×R→ R, we have

Pr
S∼Dm

(
∀Q onH : D

(
E

h∈Q
A(h), E

h∈Q
B(h)

)
≤

1

t

[
KL(Q‖P) + ln

(
1

δ
E

S∼D
E

h∼P
et·D(A(h),B(h))

)])
≥ 1− δ .
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Proof of Theorem 1

Since E
h∼P

emD(RS (h),R(h)) is a non-negative r.v., Markov’s inequality gives

Pr
S∼Dm

„
E

h∼P
emD(RS (h),R(h))≤ 1

δ
E

S∼Dm
E

h∼P
emD(RS (h),R(h))

«
≥1−δ .

Hence, by taking the logarithm on each side of the inequality and by
transforming the expectation over P into an expectation over Q :

Pr
S∼Dm

„
∀Q : ln

»
E

h∼Q

P(h)
Q(h)

emD(RS (h),R(h))
–
≤ ln

»
1
δ

E
S∼Dm

E
h∼P

emD(RS (h),R(h))
–«
≥1−δ .

Then, exploiting the fact that the logarithm is a concave function, by an
application of Jensen’s inequality, we obtain

Pr
S∼Dm

„
∀Q : E

h∼Q
ln
h

P(h)
Q(h)

emD(RS (h),R(h))
i
≤ ln

»
1
δ

E
S∼Dm

E
h∼P

emD(RS (h),R(h))
–«
≥1−δ .
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Proof of Theorem 1 (cont)

Pr
S∼Dm

„
∀Q : E

h∼Q
ln
h

P(h)
Q(h)

emD(RS (h),R(h))
i
≤ ln

»
1
δ

E
S∼Dm

E
h∼P

emD(RS (h),R(h))
–«
≥1−δ .

From basic logarithm properties, and from the fact that

E
h∼Q

ln
h

P(h)
Q(h)

i
def
= −KL(Q‖P), we now have

Pr
S∼Dm

„
∀Q : −KL(Q‖P)+ E

h∼Q
mD(RS (h),R(h))≤ ln

»
1
δ

E
S∼Dm

E
h∼P

emD(RS (h),R(h))
–«
≥1−δ .

Then, since D has been supposed convexe, again by the Jensen
inequality, we have

E
h∼Q

mD(RS (h),R(h)) = mD
„

E
h∼Q

RS (h), E
h∼Q

R(h)

«
,

which immediately implies the result. 2
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Applicability of Theorem 1

How can we estimate ln

[
1
δ E
S∼Dm

E
h∼P

emD(RS (h),R(h))

]
?
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The Seeger’s bound (2002)

Seeger Bound

For any D, any H, any P of support H, any δ ∈ (0, 1], we have

Pr
S∼Dm

(
∀Q onH : kl(RS(GQ),R(GQ)) ≤

1

m

[
KL(Q‖P) + ln

ξ(m)

δ

])
≥ 1− δ ,

where kl(q, p)
def
= q ln q

p + (1− q) ln 1−q
1−p ,

and where ξ(m)
def
=
∑m

k=0

(m
k

)
(k/m)k(1− k/m)m−k .

Note: ξ(m) ∈ Θ(
√

m) and ξ(m) ≤ m + 1
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Graphical illustration of the Seeger bound
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Proof of the Seeger bound

Follows immediately from Theorem 1 by choosing D(q, p) = kl(q, p).

Indeed, in that case we have

E
S∼Dm

E
h∼P

emD(RS (h),R(h)) = E
h∼P

E
S∼Dm

“
RS (h)

R(h)

”mRS (h)“ 1−RS (h)

1−R(h)

”m(1−RS (h))

= E
h∼P

Pm
k=0 Pr

S∼Dm (RS (h)= k
m )
 

k
m

R(h)

!k 
1− k

m
1−R(h)

!m−k

= Pm
k=0 (m

k )(k/m)k (1−k/m)m−k , (1)

≤ m + 1 .
2

Note that, in Line (1) of the proof, Pr
S∼Dm

`
RS(h) = k

m

´
is replaced by the

probability mass function of the binomial.

This is only true if the examples of S are drawn iid. (i.e., S ∼ Dm)

So this result is no longuer valid in the non iid case, even if Theorem 1 is.
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The McAllester’s bound (1998)

Put D(q, p) = 1
2 (q − p)2, Theorem 1 then gives

McAllester Bound

For any D, any H, any P of support H, any δ ∈ (0, 1], we have

Pr
S∼Dm

(
∀Q onH :

1

2
(RS(GQ),R(GQ))2 ≤

1

m

[
KL(Q‖P) + ln

ξ(m)

δ

])
≥ 1− δ ,

where kl(q, p)
def
= q ln q

p + (1− q) ln 1−q
1−p ,

and where ξ(m)
def
=
∑m

k=0

(m
k

)
(k/m)k(1− k/m)m−k .

Note: ξ(m) ∈ Θ(
√

m) and ξ(m) ≤ m + 1
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The Catoni’s bound (2004)

In Theorem 1, let D(q, p) = F(p)− C · q., then

Catoni’s bound

For any D, any H, any P of support H, any δ ∈ (0, 1], and any
positive real number C , we have

Pr
S∼Dm


∀Q onH :

R(GQ) ≤ 1
1−e−C

{
1−exp

[
−
(
C ·RS(GQ)

+ 1
m

[
KL(Q‖P) + ln 1

δ

])]}
 ≥ 1 − δ.

Because,
E

S∼Dm
E

h∼P
emD(RS (h),R(h)) = E

h∼P
emF(R(h))(R(h)e−C +(1−R(h)))

m
.
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Observations about Catoni’s bound

GQ is minimizing the Catoni’s bound iff it minimizes the
following cost function (linear in RS(GQ)):

C m RS(GQ) + KL(Q‖P)

We have a hyperparameter C to tune (in contrast with the
Seeger’ bound).

Seeger’ bound gives a bound which is always tighter except
for a narrow range of C values.

In fact, if we would replace ξ(m) by one, LS-bound would
always be a tighter.
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Observations about Catoni’s bound (cont)

Given any prior P, the posterior Q∗ minimizing the bound of
Catoni’s bound is given by the Boltzman distribution:

Q∗(h) =
1

Z
P(h)e−C ·mRS (h) .

We could sample Q∗ by Markov Chain Monté Carlo.

But the mixing time being unknown, we have few control over
the precision of the approximation.

To avoid MCMC, let us analyse the case where Q is chosen
from a parameterized set of distributions over the
(continuous) space of linear classifiers.
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Derivation of classical PAC-Bayes bound
The non iid case

Bounding E
S∼D̃

E
h∼P

emD(RS(h),R(h)) : other ways

via concentration inequality

used in the original proof of Seeger (and in the one due to
Langford).
used by Higgs (2009) to generalized the Seeger’s bound the
the transductive case
used by Ralaivola et al. (2008) for the non iid case.

via martingales

used by Lever et al (2010) to generalized PAC-Bayes bound to
U-statistics of order > 1. (See later on in this workshop)
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Derivation of classical PAC-Bayes bound
The non iid case

Supervised learning in the non iid case

Given a training set of m examples

S
def
= {(x1, y1) . . . (xm, ym)}

where each generated according to a (unknown) distribution
D̃ over the set (X × Y)m of all possible labeled examples.

in the traditionnal iid case, the goal of the learner is, to try to
find a classifier h with the smallest possible risk R(h)

R(h)
def
= E

S∼D

1

|S |
∑

(x,y)∈S

I (h(x) 6= y)
(
6= Pr

(x,y)∼D

{
h(x) 6= y

})
.

And the question is again: What should the learner
optimize on S to obtain a classifier h having the smallest
possible risk R(h)?
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The problem of bounding E
S∼D̃

E
h∼P

emD(RS(h),R(h))

Theorem 1

For any distribution D0, for any set H of classifiers, for any prior distribution P
of support H, for any δ ∈ (0, 1], and for any convex function
D : [0, 1]× [0, 1]→ R, we have

Pr
S∼D

„
∀Q onH : D(RS(GQ),R(GQ)) ≤

1

m

»
KL(Q‖P) + ln

„
1

δ
E

S∼D̃
E

h∼P
emD(RS (h),R(h))

«–«
≥ 1− δ .

We will here restrict ourself to the particular non iid case
where there exists a function g , and an integer n ≤ m such
that the D̃-drawing of a training set is of the form
S = g(Z1, . . . ,Zn) for some pairewise independent random
variables Zi ∈ Z’s.
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The non iid case

The fractional chromatic number of the dependency graph

Another approach is to directly take advantage of the
assumption that there exists a function g , and an integer
n ≤ m such that the D-drawing of a training set is of the
form S = g(Z1, . . . ,Zn) for some pairewise independent
random variables Zi ∈ Z’s,

Indeed, we can then subdivise S in various iid subsets Sj ,
togheter with weights ωj such that each example (xi , yi ), the
total of the weights associate with the Sj ’s that contain
(xi , yi ) is 1.

This is the idea of Ralaivola et al. (2008)

Based on this idea, Theorem 1 can be restated as follows.
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Theorem 1 (revisited)

Suppose that from any training set S drawn according to D,
there is a (Sj , ωj)j=1,..n that are only defined based on the
indices of elements of S is such that

Sj is iid and a subset of S for all j = 1, .., n∑n
i=1 ωj I ((xi , yi ) ∈ Sj) = 1 for all i = 1, ..,m .

Theorem 1 (revisited for the non iid case)

For any distribution D, for any set H of classifiers, for any prior distribution
P1,..,Pn of support H, for any δ ∈ (0, 1], and for any convex function
D : [0, 1]× [0, 1]→ R, we have

Pr
S∼D

„
∀Q1, ..Qn onH : D

 
nX

j=1

ωjP
ωj

RS(GQj ),
nX

j=1

ωjP
ωj

R(GQj )

!
≤

Pn
j=1 ωj

m

"
ωjPn
j=1 ωj

KL(Qj‖Pj) + ln

 
1

δ
E

S∼D
E

h∼P

nX
j=1

e
m|Sj |D(RSj

(hj ),R(hj ))

!#«
≥ 1−δ .
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The mathematics of the PAC-Bayes Theory
PAC-Bayes bounds and algorithms

Specialization to Linear classifiers
Majority votes of weak classifiers
Answer # 1: go back to linear classifier specialization
Answer # 2: PAC-Bayes on a general loss function

The problem of bounding R(GQ) instead of R(BQ)

The main problem PAC-Bayes theory is the fact that it allows us to
bound the Gibbs risk but, most of the time, it is the Bayes risk we
are in. To this problem I will discuss here two possible answers:

Answer#1: if a non too small “part” of the classifier of H are
strong, then one can obtained a quiet tight bound (exemple:
if H is the set of all linear classifiers in a high-dimensional
feature vectors space, like in SVM)

Answer#2: otherwise, extend the PAC-Bayes bound to
something else than the Gibbs’s Risk
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Specialization to Linear classifiers

Each x is mapped to a high-dimensional feature vector φφφ(x):

φφφ(x)
def
= (φ1(x), . . . , φN(x)) .

φφφ is often implicitly given by a Mercer kernel

k(x, x′) = φφφ(x) ·φφφ(x′) .

The output hv(x) of linear classifier hv with weight vector v is
given by

hv(x) = sgn (v ·φφφ(x)) .

Let us moreover suppose that each posterior Qw is an
isotropic Gaussian centered on w:

Qw(v) =
“

1√
2π

”N
exp(− 1

2
‖v−w‖2)
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Bayes-equivalent classifiers

With this choice for Qw, the majority vote BQw is the same
classifier as hw since:

BQw (x) = sgn
(

E
v∼Qw

sgn (v ·φφφ(x))

)
= sgn (w ·φφφ(x)) = hw(x) .

Thus R(hw) = R(BQw ) ≤ 2R(GQw ): an upper bound on
R(GQw ) also provides an upper bound on R(hw).

The prior Pwp is also an isotropic Gaussian centered on wp.
Consequently:

KL(Qw‖Pwp ) =
1

2
‖w −wp‖2 .
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Gibbs’ risk

We need to compute Gibb’s risk R(x,y)(GQw ) on (x, y) since:

R(x,y)(GQw )
def
=

R
RN Qw(v) I (yv·φφφ(x)<0) dv

we have:

R(GQw ) = E
(x,y)∼D

R(x,y)(GQw ) and RS (GQw ) = 1
m

Pm
i=1 R(xi ,yi )(GQw ) .

Moreover, as in Langford (2005), the Gaussian integral gives:

R(x,y)(GQw ) = Φ

(
‖w‖ Γw(x,y)

)
where: Γw(x,y)

def
= yw·φφφ(x)
‖w‖ ‖φφφ(x)‖ and Φ(a)

def
= 1√

2π

R∞
a exp(− 1

2
x2) dx .
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Probit loss
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Objective function from Catoni’s bound

Recall that, to minimize the Catoni’s bound, for fixed C and wp,
we need to find w that minimizes:

C m RS(GQw ) + KL(Qw‖Pwp )

Which, according to preceding slides, corresponds of minimizing

C
m∑

i=1

Φ
(yiw ·φφφ(xi )

‖φφφ(xi )‖

)
+

1

2
‖w −wp‖2
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Objective function from Catoni’s bound

So PAC-Bayes tells us to minimize

C
m∑

i=1

Φ
(yiw ·φφφ(xi )

‖φφφ(xi )‖

)
+

1

2
‖w −wp‖2

Note that, when wp = 0 (absence of prior knowledge), this is very
similar to SVM . Indeed, SVM minimizes:

C
m∑

i=1

max
(

0, 1− yiw ·φφφ(xi )
)

+
1

2
‖w‖2 ,

The probit loss is simply replaced by the convex hinge loss.

Up to convexe relaxation, PAC-Bayes theory has rediscover
SVM !!!
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Numerical result [ICML09]

Dataset (s) SVM (1) PBGD1 (2) PBGD2 (3) PBGD3
Name |S| |T | n RT (w) Bnd RT (w) GT (w) Bnd RT (w) GT (w) Bnd RT (w) GT (w) Bnd
Usvotes 235 200 16 0.055 0.370 0.080 0.117 0.244 0.050 0.050 0.153 0.075 0.085 0.332
Credit-A 353 300 15 0.183 0.591 0.150 0.196 0.341 0.150 0.152 0.248 0.160 0.267 0.375
Glass 107 107 9 0.178 0.571 0.168 0.349 0.539 0.215 0.232 0.430 0.168 0.316 0.541
Haberman 144 150 3 0.280 0.423 0.280 0.285 0.417 0.327 0.323 0.444 0.253 0.250 0.555
Heart 150 147 13 0.197 0.513 0.190 0.236 0.441 0.184 0.190 0.400 0.197 0.246 0.520
Sonar 104 104 60 0.163 0.599 0.250 0.379 0.560 0.173 0.231 0.477 0.144 0.243 0.585
BreastCancer 343 340 9 0.038 0.146 0.044 0.056 0.132 0.041 0.046 0.101 0.047 0.051 0.162
Tic-tac-toe 479 479 9 0.081 0.555 0.365 0.369 0.426 0.173 0.193 0.287 0.077 0.107 0.548
Ionosphere 176 175 34 0.097 0.531 0.114 0.242 0.395 0.103 0.151 0.376 0.091 0.165 0.465
Wdbc 285 284 30 0.074 0.400 0.074 0.204 0.366 0.067 0.119 0.298 0.074 0.210 0.367
MNIST:0vs8 500 1916 784 0.003 0.257 0.009 0.053 0.202 0.007 0.015 0.058 0.004 0.011 0.320
MNIST:1vs7 500 1922 784 0.011 0.216 0.014 0.045 0.161 0.009 0.015 0.052 0.010 0.012 0.250
MNIST:1vs8 500 1936 784 0.011 0.306 0.014 0.066 0.204 0.011 0.019 0.060 0.010 0.024 0.291
MNIST:2vs3 500 1905 784 0.020 0.348 0.038 0.112 0.265 0.028 0.043 0.096 0.023 0.036
Letter:AvsB 500 1055 16 0.001 0.491 0.005 0.043 0.170 0.003 0.009 0.064 0.001 0.408 0.485
Letter:DvsO 500 1058 16 0.014 0.395 0.017 0.095 0.267 0.024 0.030 0.086 0.013 0.031 0.350
Letter:OvsQ 500 1036 16 0.015 0.332 0.029 0.130 0.299 0.019 0.032 0.078 0.014 0.045 0.329
Adult 1809 10000 14 0.159 0.535 0.173 0.198 0.274 0.180 0.181 0.224 0.164 0.174 0.372
Mushroom 4062 4062 22 0.000 0.213 0.007 0.032 0.119 0.001 0.003 0.011 0.000 0.001 0.167
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Majority vote of weak classifiers

The classical PAC-Bayes theory bounds the risk of the
majority vote R(BQ), trought twice the Gibbs’s risk 2R(GQ)

In the case of linear classifiers, there exists Q s.t. R(GQ) is
relatively small, it seems to be a good idea,

but what if the set H of voters is only composed of weak
voters ? (Like in Boosting)

In that case, the Gibbs’s risk cannot be a good predictor for
the Bayes’s risk.
Indeed, it is well-known that voting can dramatically improve
performance when the “community” of classifiers tend to
compensate the individual errors.

So what can we do in this case ?
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Answer # 1

Suppose H = {h1, .., hn, hn+1, .., h2n} with hi+n = −hi ,

and consider instead, the set of all the majority votes over H

HMV def
= {sgn (v ·φφφ(x)) : v ∈ R|H|}

where φφφ(x)
def
= (h1(x), . . . , h2n(x)).

Then we are back to the linear classifier specialization.

François Laviolette PAC-Bayes theory in supervised Learning



The mathematics of the PAC-Bayes Theory
PAC-Bayes bounds and algorithms

Specialization to Linear classifiers
Majority votes of weak classifiers
Answer # 1: go back to linear classifier specialization
Answer # 2: PAC-Bayes on a general loss function

Answer # 1

Suppose H = {h1, .., hn, hn+1, .., h2n} with hi+n = −hi ,

and consider instead, the set of all the majority votes over H

HMV def
= {sgn (v ·φφφ(x)) : v ∈ R|H|}

where φφφ(x)
def
= (h1(x), . . . , h2n(x)).

Then we are back to the linear classifier specialization.

François Laviolette PAC-Bayes theory in supervised Learning



The mathematics of the PAC-Bayes Theory
PAC-Bayes bounds and algorithms

Specialization to Linear classifiers
Majority votes of weak classifiers
Answer # 1: go back to linear classifier specialization
Answer # 2: PAC-Bayes on a general loss function

Answer # 1

Suppose H = {h1, .., hn, hn+1, .., h2n} with hi+n = −hi ,

and consider instead, the set of all the majority votes over H

HMV def
= {sgn (v ·φφφ(x)) : v ∈ R|H|}

where φφφ(x)
def
= (h1(x), . . . , h2n(x)).

Then we are back to the linear classifier specialization.

François Laviolette PAC-Bayes theory in supervised Learning



The mathematics of the PAC-Bayes Theory
PAC-Bayes bounds and algorithms

Specialization to Linear classifiers
Majority votes of weak classifiers
Answer # 1: go back to linear classifier specialization
Answer # 2: PAC-Bayes on a general loss function

Numerical result [ICML09], with decision stumps as weak learners
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Answer # 2: generalize the PAC-Bayes theorem to
something else than the Gibbs’s risk !

Consider the margin on an example: MQ(x, y)
def
= Eh∼Qyh(x)

and any convex margin loss function ζQ(α) that can be expanded in
a Taylor series around MQ(x, y) = 0:

ζQ(MQ(x, y))
def
=

∞∑
k=0

ak (MQ(x, y))k

and that upper bounds the risk of the majority vote BQ , i.e.,

ζQ (MQ (x,y))≥ I (MQ (x,y)<0) ∀Q,x,y .

Conclusion: if we can obtain a PAC-Bayes bound on ζQ(x, y), we
will then have a “new” bound on R(BQ)
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Note: 1−MQ(x, y) = 2R(GQ)
Thus the green and the black curves illustrate: R(BQ) ≤ 2R(GQ)
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Catoni’s bound for a general loss

If we define

ζQ
def
= E

(x,y)∼D
ζQ(MQ(x,y))

cζQ def
= 1

m

Pm
i=1 ζQ(MQ(xi ,yi ))

ca
def
= ζ(1)

k̄ = ζ ′(1)

Catoni’s bound become :
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Answer # 2 (cont)

The trick !

ζQ(x, y) can be expressed in terms of the risk on example (x, y) of a
Gibbs classifier described by a transformed posterior Q on N×H∞

ζQ(MQ(x, y)) = ca

[
MQ(x, y)

]
,

where ca
def
=
∑∞

k=0 ak and where

R{(x,y)}(GQ )
def
= 1

ca

P∞
k=1 |ak | E

h1∼Q
... E

hk∼Q
I

(
(−y)kh1(x)...hk (x) = −sgn(ak )

)
.

Since R{(x,y)}(GQ) is the expectation of boolean random variable,

the Catoni’s bound holds if we replace (P,Q) by (P,Q)
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Minimizing Catoni’s bound for a general loss

Minimizing this version of the Catoni’s bound is equivalent to
finding Q that minimizes

f (Q)
def
= C

m∑
i=1

ζQ(xi , yi ) + KL(Q‖P) ,

here: C
def
= C ′/(2cak) .
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Minimizing Catoni’s bound for a general loss

To compare the proposed learning algorithms with AdaBoost,
we will consider, for ζQ(x, y), the exponential loss given by

exp
“
− 1
γ

y
P

h∈H Q(h)h(x)
”

= exp
“

1
γ

[MQ(x,y)]
”
.

Because of its simplicity, let us also consider, for ζQ(x, y), the
quadratic loss given by

“
1
γ

y
P

h∈H Q(h)h(x)−1
”2

=
“

1
γ

MQ(x,y)−1
”2
.
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Empirical results (Nips[09])
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From KL(Q‖P) to `2 regularization

We can recover `2 regularization if we upper-bound KL(Q‖P) by a
quadratic function. Indeed, if we use

q ln q+( 1
n−q) ln( 1

n−q) ≤ 1
n ln 1

2n +4n(q− 1
2n )2 ∀q∈[0,1/n] ,

Moreover, if we suppose we have

H = {h1, ..., h2n} with hi+n = −hi

a uniform prior (P(hi )=1/(2n))

a posterior distribution Q aligned on the prior P. (
Q(hi )+Q(hi+n)=1/n )

and defined: wj
def
= Q(hj )−Q(hj+n)

Then,
KL(Q‖P) = ln(2n)+

Pn
i=1[Qi ln Qi +( 1

n−Qi) ln( 1
n−Qi)]

≤ 4n
Pn

i=1(Qi− 1
2n )2

= n
Pn

i=1 w2
i .
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PAC-Bayes vs Boosting and Ridge regression (cont)

With this approximation, the objective function to minimize
becomes

f`2(w) = C ′′
m∑

i=1

ζ

(
1

γ
yiw · h(xi )

)
+ ‖w‖2

2 ,

subject to the `∞ constraint |wj | ≤ 1/n ∀j ∈ {1, . . . , n}.

Here ‖w‖2 denotes the Euclidean norm of w and
ζ(x) = (x − 1)2 for the quadratic loss and e−x for the
exponential loss.

If, instead, we minimize f`2 for v
def
= w/γ and remove the `∞

constraint, we recover exactly

ridge regression for the quadratic loss case !
`2-regularized boosting for the exponential loss case !!

François Laviolette PAC-Bayes theory in supervised Learning



The mathematics of the PAC-Bayes Theory
PAC-Bayes bounds and algorithms

Specialization to Linear classifiers
Majority votes of weak classifiers
Answer # 1: go back to linear classifier specialization
Answer # 2: PAC-Bayes on a general loss function

PAC-Bayes vs Boosting and Ridge regression (cont)

With this approximation, the objective function to minimize
becomes

f`2(w) = C ′′
m∑

i=1

ζ

(
1

γ
yiw · h(xi )

)
+ ‖w‖2

2 ,

subject to the `∞ constraint |wj | ≤ 1/n ∀j ∈ {1, . . . , n}.

Here ‖w‖2 denotes the Euclidean norm of w and
ζ(x) = (x − 1)2 for the quadratic loss and e−x for the
exponential loss.

If, instead, we minimize f`2 for v
def
= w/γ and remove the `∞

constraint, we recover exactly

ridge regression for the quadratic loss case !
`2-regularized boosting for the exponential loss case !!

François Laviolette PAC-Bayes theory in supervised Learning



The mathematics of the PAC-Bayes Theory
PAC-Bayes bounds and algorithms

Specialization to Linear classifiers
Majority votes of weak classifiers
Answer # 1: go back to linear classifier specialization
Answer # 2: PAC-Bayes on a general loss function

PAC-Bayes vs Boosting and Ridge regression (cont)

With this approximation, the objective function to minimize
becomes

f`2(w) = C ′′
m∑

i=1

ζ

(
1

γ
yiw · h(xi )

)
+ ‖w‖2

2 ,

subject to the `∞ constraint |wj | ≤ 1/n ∀j ∈ {1, . . . , n}.

Here ‖w‖2 denotes the Euclidean norm of w and
ζ(x) = (x − 1)2 for the quadratic loss and e−x for the
exponential loss.

If, instead, we minimize f`2 for v
def
= w/γ and remove the `∞

constraint, we recover exactly

ridge regression for the quadratic loss case !
`2-regularized boosting for the exponential loss case !!

François Laviolette PAC-Bayes theory in supervised Learning



The mathematics of the PAC-Bayes Theory
PAC-Bayes bounds and algorithms

Specialization to Linear classifiers
Majority votes of weak classifiers
Answer # 1: go back to linear classifier specialization
Answer # 2: PAC-Bayes on a general loss function

PAC-Bayes vs Boosting and Ridge regression (cont)

With this approximation, the objective function to minimize
becomes

f`2(w) = C ′′
m∑

i=1

ζ

(
1

γ
yiw · h(xi )

)
+ ‖w‖2

2 ,

subject to the `∞ constraint |wj | ≤ 1/n ∀j ∈ {1, . . . , n}.

Here ‖w‖2 denotes the Euclidean norm of w and
ζ(x) = (x − 1)2 for the quadratic loss and e−x for the
exponential loss.

If, instead, we minimize f`2 for v
def
= w/γ and remove the `∞

constraint, we recover exactly

ridge regression for the quadratic loss case !
`2-regularized boosting for the exponential loss case !!

François Laviolette PAC-Bayes theory in supervised Learning



The mathematics of the PAC-Bayes Theory
PAC-Bayes bounds and algorithms

Specialization to Linear classifiers
Majority votes of weak classifiers
Answer # 1: go back to linear classifier specialization
Answer # 2: PAC-Bayes on a general loss function

PAC-Bayes vs Boosting and Ridge regression (cont)

With this approximation, the objective function to minimize
becomes

f`2(w) = C ′′
m∑

i=1

ζ

(
1

γ
yiw · h(xi )

)
+ ‖w‖2

2 ,

subject to the `∞ constraint |wj | ≤ 1/n ∀j ∈ {1, . . . , n}.

Here ‖w‖2 denotes the Euclidean norm of w and
ζ(x) = (x − 1)2 for the quadratic loss and e−x for the
exponential loss.

If, instead, we minimize f`2 for v
def
= w/γ and remove the `∞

constraint, we recover exactly

ridge regression for the quadratic loss case !
`2-regularized boosting for the exponential loss case !!

François Laviolette PAC-Bayes theory in supervised Learning



The mathematics of the PAC-Bayes Theory
PAC-Bayes bounds and algorithms

Specialization to Linear classifiers
Majority votes of weak classifiers
Answer # 1: go back to linear classifier specialization
Answer # 2: PAC-Bayes on a general loss function

Answer#2 and kernel methods

Note that in contrast with the approach Answer#1, the approach
(Answer#2) can not, as it is presently stated, construct kernel
based algorithm.

For that we need to extend the PAC-Bayes theorem to the sample
compression setting (see presentation of Pascal Germain).
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Conclusion

Theorem 1, being relatively simple, represent a good starting point
for an introduction to PAC-Bayes theory

Again because of its simplicity, it represents an interesting tool for
developping new PAC-Bayes bounds (not necessary in binary
classification under the iid assumption).

Up to some convex relaxation PAC-Bayes rediscovers existing
algorithms,

this is nice
and should be interesting for other paradigms than iid
supervised learning, where our knowledge is not as “extended”.
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Conclusion

Minimizing PAC-Bayes bounds seems to produce performing
algorithms !!!

but these algorithms nevertheless need to have some parameter to
be tune via cross-validation in order to perform as well as the state
of the art

Why this is so ?
Possibly because the loss of those bounds are only based on
the margin
The U-statistic involved here is therefore of order one,

what if we consider higher order ?
Note: PAC-Bayes bound of U-statistic of high orders will be in
a non iid setting
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QUESTIONS ?
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