PAC-Bayes theory in supervised Learning Université Laval, Québec, Canada

François Laviolette

March 22, 2010

Summary

Today, I intend to

- present some basic mathematics that underlies the PAC-Bayes theory

Summary

Today, I intend to

- present some basic mathematics that underlies the PAC-Bayes theory
- look for PAC-Bayes bound minimization algorithms and compare them with existing ones.

Definitions

- Each example $(\mathbf{x}, y) \in \mathcal{X} \times\{-1,+1\}$, is drawn acc. to D.

> The learner's goal is to choose a posterior distribution Q on a space \mathcal{H} of classifiers such that the risk of the Q-weighted majority vote B_{Q} is as small as possible.

Definitions

- Each example $(\mathbf{x}, y) \in \mathcal{X} \times\{-1,+1\}$, is drawn acc. to D.
- The (true) risk $R(h)$ and training error $R_{S}(h)$ are defined as:
$R(h) \stackrel{\text { def }}{=} \underset{(\mathbf{x}, y) \sim D}{\mathbf{E}} I(h(\mathbf{x}) \neq y) \quad ; \quad R_{S}(h) \stackrel{\text { def }}{=} \frac{1}{m} \sum_{i=1}^{m} I\left(h\left(\mathbf{x}_{i}\right) \neq y_{i}\right)$.

The learner's goal is to choose a posterior distribution Q on a snare \mathcal{H} of classifiers such that the risk of the Ω-mpighted majority vote B_{Q} is as small as possible.

Definitions

- Each example $(\mathbf{x}, y) \in \mathcal{X} \times\{-1,+1\}$, is drawn acc. to D.
- The (true) risk $R(h)$ and training error $R_{S}(h)$ are defined as:

$$
R(h) \stackrel{\text { def }}{=} \underset{(\mathbf{x}, y) \sim D}{\mathbf{E}} I(h(\mathbf{x}) \neq y) \quad ; \quad R_{S}(h) \stackrel{\text { def }}{=} \frac{1}{m} \sum_{i=1}^{m} I\left(h\left(\mathbf{x}_{i}\right) \neq y_{i}\right) .
$$

- The learner's goal is to choose a posterior distribution Q on a space \mathcal{H} of classifiers such that the risk of the Q-weighted majority vote B_{Q} is as small as possible.

Definitions

- Each example $(\mathbf{x}, y) \in \mathcal{X} \times\{-1,+1\}$, is drawn acc. to D.
- The (true) risk $R(h)$ and training error $R_{S}(h)$ are defined as:

$$
R(h) \stackrel{\text { def }}{=} \underset{(\mathbf{x}, y) \sim D}{\mathbf{E}} I(h(\mathbf{x}) \neq y) \quad ; \quad R_{S}(h) \stackrel{\text { def }}{=} \frac{1}{m} \sum_{i=1}^{m} I\left(h\left(\mathbf{x}_{i}\right) \neq y_{i}\right) .
$$

- The learner's goal is to choose a posterior distribution Q on a space \mathcal{H} of classifiers such that the risk of the Q-weighted majority vote B_{Q} is as small as possible.

$$
B_{Q}(\mathbf{x}) \stackrel{\text { def }}{=} \operatorname{sgn}[\underset{h \sim Q}{\mathbf{E}} h(\mathbf{x})]
$$

- B_{Q} is also called the Bayes classifier.

Definitions

- Each example $(\mathbf{x}, y) \in \mathcal{X} \times\{-1,+1\}$, is drawn acc. to D.
- The (true) risk $R(h)$ and training error $R_{S}(h)$ are defined as:

$$
R(h) \stackrel{\text { def }}{=} \underset{(\mathbf{x}, y) \sim D}{\mathbf{E}} I(h(\mathbf{x}) \neq y) \quad ; \quad R_{S}(h) \stackrel{\text { def }}{=} \frac{1}{m} \sum_{i=1}^{m} I\left(h\left(\mathbf{x}_{i}\right) \neq y_{i}\right) .
$$

- The learner's goal is to choose a posterior distribution Q on a space \mathcal{H} of classifiers such that the risk of the Q-weighted majority vote B_{Q} is as small as possible.

$$
B_{Q}(\mathbf{x}) \stackrel{\text { def }}{=} \operatorname{sgn}[\underset{h \sim Q}{\mathbf{E}} h(\mathbf{x})]
$$

- B_{Q} is also called the Bayes classifier.

The Gibbs clasifier

- PAC-Bayes approach does not directly bounds the risk of B_{Q}

The Gibbs clasifier

- PAC-Bayes approach does not directly bounds the risk of B_{Q}
- It bounds the risk of the Gibbs classifier G_{Q} :
- The risk and the training error of G_{Q} are thus defined as:

The Gibbs clasifier

－PAC－Bayes approach does not directly bounds the risk of B_{Q}
－It bounds the risk of the Gibbs classifier G_{Q} ：
－to predict the label of \mathbf{x}, G_{Q} draws h from \mathcal{H} and predicts $h(\mathbf{x})$
－The risk and the training error of G_{Q} are thus defined as：

The Gibbs clasifier

- PAC-Bayes approach does not directly bounds the risk of B_{Q}
- It bounds the risk of the Gibbs classifier G_{Q} :
- to predict the label of \mathbf{x}, G_{Q} draws h from \mathcal{H} and predicts $h(\mathbf{x})$
- The risk and the training error of G_{Q} are thus defined as:

$$
R\left(G_{Q}\right)=\underset{h \sim Q}{\mathbf{E}} R(h) ; \quad R_{S}\left(G_{Q}\right)=\underset{h \sim Q}{\mathbf{E}} R_{S}(h) .
$$

G_{Q}, B_{Q}, and $\operatorname{KL}(Q \| P)$

- If B_{Q} misclassifies \mathbf{x}, then at least half of the classifiers (under measure Q) err on \mathbf{x}.

Thus, an upper bound on $R\left(G_{Q}\right)$ gives rise to an upper
bound on $R\left(B_{Q}\right)$

G_{Q}, B_{Q}, and $\operatorname{KL}(Q \| P)$

- If B_{Q} misclassifies \mathbf{x}, then at least half of the classifiers (under measure Q) err on \mathbf{x}.
- Hence: $R\left(B_{Q}\right) \leq 2 R\left(G_{Q}\right)$
bound on $R\left(B_{Q}\right)$
- PAC-Bayes makes use of a prior distribution P on \mathcal{H}

G_{Q}, B_{Q}, and $\operatorname{KL}(Q \| P)$

- If B_{Q} misclassifies \mathbf{x}, then at least half of the classifiers (under measure Q) err on \mathbf{x}.
- Hence: $R\left(B_{Q}\right) \leq 2 R\left(G_{Q}\right)$
- Thus, an upper bound on $R\left(G_{Q}\right)$ gives rise to an upper bound on $R\left(B_{Q}\right)$
- PAC-Bayes makes use of a prior distribution P on \mathcal{H}
- The risk bound depends on the Kullback-Leibler divergence:

G_{Q}, B_{Q}, and $\mathrm{KL}(Q \| P)$

- If B_{Q} misclassifies \mathbf{x}, then at least half of the classifiers (under measure Q) err on \mathbf{x}.
- Hence: $R\left(B_{Q}\right) \leq 2 R\left(G_{Q}\right)$
- Thus, an upper bound on $R\left(G_{Q}\right)$ gives rise to an upper bound on $R\left(B_{Q}\right)$
- PAC-Bayes makes use of a prior distribution P on \mathcal{H}.
- The risk bound depends on the Kullback-Leibler divergence

G_{Q}, B_{Q}, and $K L(Q \| P)$

- If B_{Q} misclassifies \mathbf{x}, then at least half of the classifiers (under measure Q) err on \mathbf{x}.
- Hence: $R\left(B_{Q}\right) \leq 2 R\left(G_{Q}\right)$
- Thus, an upper bound on $R\left(G_{Q}\right)$ gives rise to an upper bound on $R\left(B_{Q}\right)$
- PAC-Bayes makes use of a prior distribution P on \mathcal{H}.
- The risk bound depends on the Kullback-Leibler divergence:

$$
\mathrm{KL}(Q \| P) \stackrel{\text { def }}{=} \underset{h \sim Q}{\mathbf{E}} \ln \frac{Q(h)}{P(h)} .
$$

A PAC-Bayes bound to rule them all!

$$
\begin{aligned}
& \text { J.R.R. Tolkien, roughly } \\
& \text { or John Langford, less roughly. }
\end{aligned}
$$

Theorem 1 Germain et al. 2009

For any distribution D on $\mathcal{X} \times \mathcal{Y}$, for any set \mathcal{H} of classifiers, for any prior distribution P of support \mathcal{H}, for any $\delta \in(0,1]$, and for any convex function $\mathcal{D}:[0,1] \times[0,1] \rightarrow \mathbb{R}$, we have

$$
\begin{aligned}
& \operatorname{Pr}_{S \sim D^{m}}\left(\forall Q \text { on } \mathcal{H}: \mathcal{D}\left(R_{S}\left(G_{Q}\right), R\left(G_{Q}\right)\right) \leq\right. \\
& \left.\quad \frac{1}{m}\left[K L(Q \| P)+\ln \left(\frac{1}{\delta} \underset{S \sim D}{\mathbf{E}} \underset{h \sim P}{\mathbf{E}} e^{m \mathcal{D}\left(R_{S}(h), R(h)\right)}\right)\right]\right) \\
& \geq 1-\delta
\end{aligned}
$$

A PAC-Bayes bound to rule them all!
 J.R.R. Tolkien, roughly or John Langford, less roughly.

Theorem $1^{+} \quad$ Lever et al (2010)

For any functions $A(h), B(h)$ over \mathcal{H}, either of which may be a statistic of a sample S of size n, any distributions P over \mathcal{H}, any $\delta \in(0,1]$, any $t>0$, and convex function $\mathcal{D}: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}$, we have

$$
\begin{aligned}
& \operatorname{Pr}_{S \sim D^{m}}(\forall Q \text { on } \mathcal{H}: \mathcal{D}(\underset{h \in Q}{\mathbf{E}} A(h), \underset{h \in Q}{\mathbf{E}} B(h)) \leq \\
& \left.\quad \frac{1}{t}\left[K L(Q \| P)+\ln \left(\frac{1}{\delta} \underset{S \sim D}{\mathbf{E}} \underset{h \sim P}{\mathbf{E}} e^{t \cdot \mathcal{D}(A(h), B(h))}\right)\right]\right) \geq 1-\delta .
\end{aligned}
$$

The mathematics of the PAC-Bayes Theory
PAC-Bayes bounds and algorithms

Proof of Theorem 1

- Since $\underset{h \sim P}{\mathbf{E}} e^{m \mathcal{D}\left(R_{S}(h), R(h)\right)}$ is a non-negative r.v., Markov's inequality gives

$$
\operatorname{Pr}_{S \sim D^{m}}\left(\underset{h \sim P}{\mathbf{E}} e^{m \mathcal{D}\left(R_{S}(h), R(h)\right)} \leq \frac{1}{\delta} \underset{S \sim D^{m}}{\mathbf{E}} \underset{h \sim P}{\mathbf{E}} e^{m \mathcal{D}\left(R_{S}(h), R(h)\right)}\right) \geq 1-\delta .
$$

- Then, exploiting the fact that the logarithm is a concave function, by an application of Jensen's inequality, we obtain

The mathematics of the PAC-Bayes Theory
PAC-Bayes bounds and algorithms

Proof of Theorem 1

- Since $\underset{h \sim P}{\mathbf{E}} e^{m \mathcal{D}\left(R_{S}(h), R(h)\right)}$ is a non-negative r.v., Markov's inequality gives

$$
\underset{S \sim D^{m}}{\operatorname{Pr}}\left(\underset{h \sim P}{\mathbf{E}} e^{m \mathcal{D}\left(R_{S}(h), R(h)\right)} \leq \frac{1}{\delta} \underset{S \sim D^{m}}{\mathbf{E}} \underset{h \sim P}{\mathbf{E}} e^{m \mathcal{D}\left(R_{S}(h), R(h)\right)}\right) \geq 1-\delta .
$$

- Hence, by taking the logarithm on each side of the inequality and by transforming the expectation over P into an expectation over Q :

$$
\underset{S \sim D^{m}}{\operatorname{Pr}}\left(\forall Q: \ln \left[\underset{h \sim Q}{\mathbf{E}} \frac{P(h)}{Q(h)} e^{m \mathcal{D}\left(R_{S}(h), R(h)\right)}\right] \leq \ln \left[\frac{1}{\delta} \underset{S \sim D^{m}}{\mathbf{E}} \underset{h \sim P}{\mathbf{E}} e^{m \mathcal{D}\left(R_{S}(h), R(h)\right)}\right]\right) \geq 1-\delta .
$$

- Then, exploiting the fact that the logarithm is a concave function, by an application of Jensen's inequality, we obtain

Proof of Theorem 1

- Since $\underset{h \sim P}{\mathbf{E}} e^{m \mathcal{D}\left(R_{S}(h), R(h)\right)}$ is a non-negative r.v., Markov's inequality gives

$$
\underset{S \sim D^{m}}{\operatorname{Pr}}\left(\underset{h \sim P}{\mathbf{E}} e^{m \mathcal{D}\left(R_{S}(h), R(h)\right)} \leq \frac{1}{\delta} \underset{S \sim D^{m}}{\mathbf{E}} \underset{h \sim P}{\mathbf{E}} e^{m \mathcal{D}\left(R_{S}(h), R(h)\right)}\right) \geq 1-\delta .
$$

- Hence, by taking the logarithm on each side of the inequality and by transforming the expectation over P into an expectation over Q :

$$
\operatorname{Pr}_{S \sim D^{m}}\left(\forall Q: \ln \left[\underset{h \sim Q}{\mathbf{E}} \frac{P(h)}{Q(h)} e^{m \mathcal{D}\left(R_{S}(h), R(h)\right)}\right] \leq \ln \left[\frac{1}{\delta} \underset{S \sim D^{m}}{\mathbf{E}} \underset{h \sim P}{\mathbf{E}} e^{m \mathcal{D}\left(R_{S}(h), R(h)\right)}\right]\right) \geq 1-\delta .
$$

- Then, exploiting the fact that the logarithm is a concave function, by an application of Jensen's inequality, we obtain

$$
\operatorname{Pr}_{S \sim D^{m}}\left(\forall Q: \underset{h \sim Q}{\mathbf{E}} \ln \left[\frac{P(h)}{Q(h)} e^{m \mathcal{D}\left(R_{S}(h), R(h)\right)}\right] \leq \ln \left[\frac{1}{\delta} \underset{S \sim D^{m}}{\mathbf{E}} \underset{h \sim P}{\mathbf{E}} e^{m \mathcal{D}\left(R_{S}(h), R(h)\right)}\right]\right) \geq 1-\delta
$$

Proof of Theorem 1 (cont)

$$
\operatorname{Pr}_{S \sim D^{m}}\left(\forall Q: \underset{h \sim Q}{\mathbf{E}} \ln \left[\frac{P(h)}{Q(h)} e^{m \mathcal{D}\left(R_{S}(h), R(h)\right)}\right] \leq \ln \left[\frac{1}{\delta} \underset{S \sim D^{m}}{\mathbf{E}} \underset{h \sim P}{\mathbf{E}} e^{m \mathcal{D}\left(R_{S}(h), R(h)\right)}\right]\right) \geq 1-\delta .
$$

- From basic logarithm properties, and from the fact that
$\underset{h \sim Q}{E} \ln \left[\frac{P(h)}{Q(h)}\right] \stackrel{\text { def }}{=}-\mathrm{KL}(Q \| P)$, we now have

$$
\operatorname{Pr}_{S \sim D^{m}}\left(\forall Q:-\mathrm{KL}(Q \| P)+\underset{h \sim Q}{\mathbf{E}} m \mathcal{D}\left(R_{S}(h), R(h)\right) \leq \ln \left[\frac{1}{\delta} \underset{S \sim D^{m}}{\mathbf{E}} \underset{h \sim P}{\mathbf{E}} e^{m \mathcal{D}\left(R_{S}(h), R(h)\right)}\right]\right) \geq 1-\delta .
$$

- Then, since \mathcal{D} has been supposed convexe, again by the Jensen inequality, we have
which immediately implies the result.

Proof of Theorem 1 (cont)

$$
\operatorname{Pr}_{S \sim D^{m}}\left(\forall Q: \underset{h \sim Q}{\mathbf{E}} \ln \left[\frac{P(h)}{Q(h)} e^{m \mathcal{D}\left(R_{S}(h), R(h)\right)}\right] \leq \ln \left[\frac{1}{\delta} \underset{S \sim D^{m}}{\mathbf{E}_{h \sim P}} \underset{h}{\mathbf{E}} e^{m \mathcal{D}\left(R_{S}(h), R(h)\right)}\right]\right) \geq 1-\delta .
$$

- From basic logarithm properties, and from the fact that

$$
\begin{aligned}
& \underset{h \sim Q}{\mathbf{E}} \ln \left[\frac{P(h)}{Q(h)}\right] \stackrel{\text { def }}{=}-\mathrm{KL}(Q \| P), \text { we now have } \\
& \underset{S \sim D^{m}}{\operatorname{Pr}}\left(\forall Q:-\mathrm{KL}(Q \| P)+\underset{h \sim Q}{\mathbf{E}} m \mathcal{D}\left(R_{S}(h), R(h)\right) \leq \ln \left[\frac{1}{\delta} \underset{S \sim D^{m}}{\mathbf{E}} \underset{h \sim P}{\mathbf{E}} e^{m \mathcal{D}\left(R_{S}(h), R(h)\right)}\right]\right) \geq 1-\delta .
\end{aligned}
$$

- Then, since \mathcal{D} has been supposed convexe, again by the Jensen inequality, we have

$$
\underset{h \sim Q}{\mathbf{E}} m \mathcal{D}\left(R_{S}(h), R(h)\right)=m \mathcal{D}\left(\underset{h \sim Q}{\mathbf{E}} R_{S}(h), \underset{h \sim Q}{\mathbf{E}} R(h)\right),
$$

which immediately implies the result.

Proof of Theorem 1 (cont)

$$
\operatorname{Pr}_{S \sim D^{m}}\left(\forall Q: \underset{h \sim Q}{\mathbf{E}} \ln \left[\frac{P(h)}{Q(h)} e^{m \mathcal{D}\left(R_{S}(h), R(h)\right)}\right] \leq \ln \left[\frac{1}{\delta} \underset{S \sim D^{m}}{\mathbf{E}_{h \sim P}} \underset{h}{\mathbf{E}} e^{m \mathcal{D}\left(R_{S}(h), R(h)\right)}\right]\right) \geq 1-\delta .
$$

- From basic logarithm properties, and from the fact that

$$
\begin{aligned}
& \underset{h \sim Q}{\mathbf{E}} \ln \left[\frac{P(h)}{Q(h)}\right] \stackrel{\text { def }}{=}-\mathrm{KL}(Q \| P), \text { we now have } \\
& \underset{S \sim D^{m}}{\operatorname{Pr}}\left(\forall Q:-\mathrm{KL}(Q \| P)+\underset{h \sim Q}{\mathbf{E}} m \mathcal{D}\left(R_{S}(h), R(h)\right) \leq \ln \left[\frac{1}{\delta} \underset{S \sim D^{m}}{\mathbf{E}} \underset{h \sim P}{\mathbf{E}} e^{m \mathcal{D}\left(R_{S}(h), R(h)\right)}\right]\right) \geq 1-\delta .
\end{aligned}
$$

- Then, since \mathcal{D} has been supposed convexe, again by the Jensen inequality, we have

$$
\underset{h \sim Q}{\mathbf{E}} m \mathcal{D}\left(R_{S}(h), R(h)\right)=m \mathcal{D}\left(\underset{h \sim Q}{\mathbf{E}} R_{S}(h), \underset{h \sim Q}{\mathbf{E}} R(h)\right),
$$

which immediately implies the result.

Applicability of Theorem 1

How can we estimate $\ln \left[\frac{1}{\delta} \underset{S \sim D^{m}}{\mathbf{E}} \underset{h \sim P}{\mathbf{E}} e^{m \mathcal{D}\left(R_{S}(h), R(h)\right)}\right]$?

The Seeger's bound (2002)

Seeger Bound

For any D, any \mathcal{H}, any P of support \mathcal{H}, any $\delta \in(0,1]$, we have

$$
\begin{aligned}
& \operatorname{Pr}_{S \sim D^{m}}\left(\forall Q \text { on } \mathcal{H}: \operatorname{kl}\left(R_{S}\left(G_{Q}\right), R\left(G_{Q}\right)\right) \leq\right. \\
& \left.\qquad \frac{1}{m}\left[\operatorname{KL}(Q \| P)+\ln \frac{\xi(m)}{\delta}\right]\right) \geq 1-\delta,
\end{aligned}
$$

where

$$
\mathrm{kl}(q, p) \stackrel{\text { def }}{=} q \ln \frac{q}{p}+(1-q) \ln \frac{1-q}{1-p},
$$

$$
\text { and where } \xi(m) \stackrel{\text { def }}{=} \sum_{k=0}^{m}\binom{m}{k}(k / m)^{k}(1-k / m)^{m-k} \text {. }
$$

- Note: $\xi(m) \in \Theta(\sqrt{m})$ and $\xi(m) \leq m+1$

The Seeger's bound (2002)

Seeger Bound

For any D, any \mathcal{H}, any P of support \mathcal{H}, any $\delta \in(0,1]$, we have

$$
\begin{aligned}
& \operatorname{Pr}_{S \sim D^{m}}\left(\forall Q \text { on } \mathcal{H}: \operatorname{kl}\left(R_{S}\left(G_{Q}\right), R\left(G_{Q}\right)\right) \leq\right. \\
& \left.\qquad \frac{1}{m}\left[\operatorname{KL}(Q \| P)+\ln \frac{\xi(m)}{\delta}\right]\right) \geq 1-\delta,
\end{aligned}
$$

where

$$
\mathrm{kl}(q, p) \stackrel{\text { def }}{=} q \ln \frac{q}{p}+(1-q) \ln \frac{1-q}{1-p},
$$

$$
\text { and where } \xi(m) \stackrel{\text { def }}{=} \sum_{k=0}^{m}\binom{m}{k}(k / m)^{k}(1-k / m)^{m-k} \text {. }
$$

- Note: $\xi(m) \in \Theta(\sqrt{m})$ and $\quad \xi(m) \leq m+1$

Graphical illustration of the Seeger bound

Proof of the Seeger bound

Follows immediately from Theorem 1 by choosing $\mathcal{D}(q, p)=\mathrm{kl}(q, p)$.

- Note that, in Line (1) of the proof, $\operatorname{Pr}\left(R_{S}(h)=\frac{k}{m}\right)$ is replaced by the
probability mass function of the binomial

The mathematics of the PAC-Bayes Theory
PAC-Bayes bounds and algorithms

Proof of the Seeger bound

Follows immediately from Theorem 1 by choosing $\mathcal{D}(q, p)=\mathrm{kl}(q, p)$.

- Indeed, in that case we have

$$
\begin{align*}
\underset{S \sim D^{m}}{\mathbf{E}_{h \sim P}^{\mathbf{E}} e^{m \mathcal{D}\left(R_{S}(h), R(h)\right)}} & =\underset{h \sim P}{\mathbf{E}} \underset{S \sim D^{m}}{\mathbf{E}}\left(\frac{R_{S}(h)}{R(h)}\right)^{m R_{S}(h)}\left(\frac{1-R_{S}(h)}{1-R(h)}\right)^{m\left(1-R_{S}(h)\right)} \\
& =\underset{h \sim P}{\mathbf{E}} \sum_{k=0}^{m} \underset{S \sim D^{m}}{\operatorname{Pr}^{m}}\left(R_{S}(h)=\frac{k}{m}\right)\left(\frac{\frac{k}{m}}{R(h)}\right)^{k}\left(\frac{1-\frac{k}{m}}{1-R(h)}\right)^{m-k} \\
& =\sum_{k=0}^{m}\binom{m}{k}(k / m)^{k}(1-k / m)^{m-k} \tag{1}\\
& \leq m+1 .
\end{align*}
$$

- Note that, in Line (1) of the proof, $\operatorname{Pr}\left(R_{S}(h)=\frac{k}{m}\right)$ is replaced by the probability mass function of the binomial
- This is only true if the examples of S are drawn iid

Proof of the Seeger bound

Follows immediately from Theorem 1 by choosing $\mathcal{D}(q, p)=\mathrm{kl}(q, p)$.

- Indeed, in that case we have

$$
\begin{align*}
\underset{S \sim D^{m}}{\mathbf{E}_{h \sim P}^{\mathbf{E}}} e^{m \mathcal{D}\left(R_{S}(h), R(h)\right)} & =\underset{h \sim P}{\mathbf{E}} \underset{S \sim D^{m}}{\mathbf{E}^{m}}\left(\frac{R_{S}(h)}{R(h)}\right)^{m R_{S}(h)}\left(\frac{1-R_{S}(h)}{1-R(h)}\right)^{m\left(1-R_{S}(h)\right)} \\
& =\underset{h \sim P}{\mathbf{E}} \sum_{k=0}^{m} \underset{S \sim D^{m}}{\operatorname{Pr}^{m}}\left(R_{S}(h)=\frac{k}{m}\right)\left(\frac{\frac{k}{m}}{R(h)}\right)^{k}\left(\frac{1-\frac{k}{m}}{1-R(h)}\right)^{m-k} \\
& =\sum_{k=0}^{m}\binom{m}{k}(k / m)^{k}(1-k / m)^{m-k} \tag{1}\\
& \leq m+1 .
\end{align*}
$$

- Note that, in Line (1) of the proof, $\operatorname{Pr}_{D^{m}}\left(R_{S}(h)=\frac{k}{m}\right)$ is replaced by the probability mass function of the binomial.
- This is only true if the examples of S are drawn iid.
- So this result is no longuer valid in the non iid case, even if Theorem 1 is

Proof of the Seeger bound

Follows immediately from Theorem 1 by choosing $\mathcal{D}(q, p)=\mathrm{kl}(q, p)$.

- Indeed, in that case we have

$$
\begin{align*}
\underset{\sim \sim D^{m}}{\mathbf{E}_{h \sim P}^{\mathbf{E}}} e^{m \mathcal{D}\left(R_{S}(h), R(h)\right)} & =\underset{h \sim P}{\mathbf{E}} \underset{S \sim D^{m}}{\mathbf{E}^{m}}\left(\frac{R_{S}(h)}{R(h)}\right)^{m R_{S}(h)}\left(\frac{1-R_{S}(h)}{1-R(h)}\right)^{m\left(1-R_{S}(h)\right)} \\
& =\underset{h \sim P}{\mathbf{E}} \sum_{k=0}^{m} \underset{S \sim D^{m}}{\operatorname{Pr}_{r}}\left(R_{S}(h)=\frac{k}{m}\right)\left(\frac{\frac{k}{m}}{R(h)}\right)^{k}\left(\frac{1-\frac{k}{m}}{1-R(h)}\right)^{m-k} \\
& =\sum_{k=0}^{m}\binom{m}{k}(k / m)^{k}(1-k / m)^{m-k} \tag{1}\\
& \leq m+1 .
\end{align*}
$$

- Note that, in Line (1) of the proof, $\operatorname{Pr}_{D^{m}}\left(R_{S}(h)=\frac{k}{m}\right)$ is replaced by the probability mass function of the binomial.
- This is only true if the examples of S are drawn iid. (i.e., $S \sim D^{m}$)
- So this result is no longuer valid in the non iid case, even if Theorem 1 is

Proof of the Seeger bound

Follows immediately from Theorem 1 by choosing $\mathcal{D}(q, p)=\mathrm{kl}(q, p)$.

- Indeed, in that case we have

$$
\begin{align*}
\underset{S \sim D^{m}}{\mathbf{E}} \underset{h \sim P}{\mathbf{E}} e^{m \mathcal{D}\left(R_{S}(h), R(h)\right)} & =\underset{h \sim P}{\mathbf{E}} \underset{S \sim D^{m}}{\mathbf{E}}\left(\frac{R_{S}(h)}{R(h)}\right)^{m R_{S}(h)}\left(\frac{1-R_{S}(h)}{1-R(h)}\right)^{m\left(1-R_{S}(h)\right)} \\
& =\underset{h \sim P}{\mathbf{E}} \sum_{k=0}^{m} \underset{S \sim D^{m}}{\operatorname{Pr}^{m}}\left(R_{S}(h)=\frac{k}{m}\right)\left(\frac{\frac{k}{m}}{R(h)}\right)^{k}\left(\frac{1-\frac{k}{m}}{1-R(h)}\right)^{m-k} \\
& =\sum_{k=0}^{m}\binom{m}{k}(k / m)^{k}(1-k / m)^{m-k}, \tag{1}\\
& \leq m+1 .
\end{align*}
$$

- Note that, in Line (1) of the proof, $\operatorname{Pr}_{D^{m}}\left(R_{S}(h)=\frac{k}{m}\right)$ is replaced by the probability mass function of the binomial.
- This is only true if the examples of S are drawn iid. (i.e., $S \sim D^{m}$)
- So this result is no longuer valid in the non iid case, even if Theorem 1 is.

The McAllester's bound (1998)

Put $\mathcal{D}(q, p)=\frac{1}{2}(q-p)^{2}$, Theorem 1 then gives

McAllester Bound

For any D, any \mathcal{H}, any P of support \mathcal{H}, any $\delta \in(0,1]$, we have

$$
\begin{aligned}
\operatorname{Pr}_{\sim D^{m}}(\forall Q \text { on } \mathcal{H}: & \frac{1}{2}\left(R_{S}\left(G_{Q}\right), R\left(G_{Q}\right)\right)^{2}
\end{aligned} \quad \begin{aligned}
& \\
& \left.\qquad \frac{1}{m}\left[K L(Q \| P)+\ln \frac{\xi(m)}{\delta}\right]\right) \geq 1-\delta,
\end{aligned}
$$

where

$$
\mathrm{kl}(q, p) \stackrel{\text { def }}{=} q \ln \frac{q}{p}+(1-q) \ln \frac{1-q}{1-p},
$$

and where $\xi(m) \stackrel{\text { def }}{=} \sum_{k=0}^{m}\binom{m}{k}(k / m)^{k}(1-k / m)^{m-k}$.

- Note: $\xi(m) \in \Theta(\sqrt{m})$ and $\xi(m) \leq m+1$

The McAllester's bound (1998)

Put $\mathcal{D}(q, p)=\frac{1}{2}(q-p)^{2}$, Theorem 1 then gives

McAllester Bound

For any D, any \mathcal{H}, any P of support \mathcal{H}, any $\delta \in(0,1]$, we have

$$
\begin{aligned}
\operatorname{Pr}_{S \sim D^{m}}(\forall Q \text { on } \mathcal{H}: & \frac{1}{2}\left(R_{S}\left(G_{Q}\right), R\left(G_{Q}\right)\right)^{2}
\end{aligned} \quad \begin{aligned}
& \\
& \left.\qquad \frac{1}{m}\left[K L(Q \| P)+\ln \frac{\xi(m)}{\delta}\right]\right) \geq 1-\delta,
\end{aligned}
$$

where

$$
\mathrm{kl}(q, p) \stackrel{\text { def }}{=} q \ln \frac{q}{p}+(1-q) \ln \frac{1-q}{1-p},
$$

and where $\xi(m) \stackrel{\text { def }}{=} \sum_{k=0}^{m}\binom{m}{k}(k / m)^{k}(1-k / m)^{m-k}$.

- Note: $\xi(m) \in \Theta(\sqrt{m}) \quad$ and $\quad \xi(m) \leq m+1$

The Catoni's bound (2004)

In Theorem 1, let $\mathcal{D}(q, p)=\mathcal{F}(p)-C \cdot q$. , then

The Catoni's bound (2004)

In Theorem 1, let $\mathcal{D}(q, p)=\mathcal{F}(p)-\mathcal{C} \cdot q$., then

Catoni's bound

For any D, any \mathcal{H}, any P of support \mathcal{H}, any $\delta \in(0,1]$, and any positive real number C, we have

$$
\operatorname{Pr}_{S \sim D^{m}}\left(\begin{array}{l}
\forall Q \text { on } \mathcal{H}: \\
R\left(G_{Q}\right) \leq \frac{1}{1-e^{-c}}\left\{1-\exp \left[-\left(C \cdot R_{S}\left(G_{Q}\right)\right.\right.\right. \\
\left.\left.\left.\quad+\frac{1}{m}\left[\operatorname{KL}(Q \| P)+\ln \frac{1}{\delta}\right]\right)\right]\right\}
\end{array}\right) \geq 1-\delta .
$$

- Because

The Catoni's bound (2004)

In Theorem 1, let $\mathcal{D}(q, p)=\mathcal{F}(p)-\mathcal{C} \cdot q$., then

Catoni's bound

For any D, any \mathcal{H}, any P of support \mathcal{H}, any $\delta \in(0,1]$, and any positive real number C, we have

$$
\operatorname{Pr}_{S \sim D^{m}}\left(\begin{array}{l}
\forall Q \text { on } \mathcal{H}: \\
R\left(G_{Q}\right) \leq \frac{1}{1-e^{-c}}\left\{1-\exp \left[-\left(C \cdot R_{S}\left(G_{Q}\right)\right.\right.\right. \\
\left.\left.\left.\quad+\frac{1}{m}\left[K L(Q \| P)+\ln \frac{1}{\delta}\right]\right)\right]\right\}
\end{array}\right) \geq 1-\delta .
$$

- Because,

$$
\underset{S \sim D^{m}}{\mathbf{E}} \underset{h \sim P}{\mathbf{E}} e^{m \mathcal{D}\left(R_{S}(h), R(h)\right)} \quad=\underset{h \sim P}{\mathbf{E}} e^{m \mathcal{F}(R(h))}\left(R(h) e^{-C}+(1-R(h))\right)^{m} .
$$

Observations about Catoni's bound

- G_{Q} is minimizing the Catoni's bound iff it minimizes the following cost function (linear in $R_{S}\left(G_{Q}\right)$):

$$
C m R_{S}\left(G_{Q}\right)+\operatorname{KL}(Q \| P)
$$

- We have a hyperparameter C to tune (in contrast with the Seeger' bound).
- Seeger' bound gives a bound which is always tighter except for a narrow range of C values.

Observations about Catoni's bound

- G_{Q} is minimizing the Catoni's bound iff it minimizes the following cost function (linear in $R_{S}\left(G_{Q}\right)$):

$$
C m R_{S}\left(G_{Q}\right)+\operatorname{KL}(Q \| P)
$$

- We have a hyperparameter C to tune (in contrast with the Seeger' bound).
- Seeger' bound gives a bound which is always tighter except for a narrow range of C values.

Observations about Catoni's bound

- G_{Q} is minimizing the Catoni's bound iff it minimizes the following cost function (linear in $R_{S}\left(G_{Q}\right)$):

$$
C m R_{S}\left(G_{Q}\right)+\operatorname{KL}(Q \| P)
$$

- We have a hyperparameter C to tune (in contrast with the Seeger' bound).
- Seeger' bound gives a bound which is always tighter except for a narrow range of C values.
- In fact, if we would replace $\xi(m)$ by one, LS-bound would always be a tighter.

Observations about Catoni's bound (cont)

- Given any prior P, the posterior Q^{*} minimizing the bound of Catoni's bound is given by the Boltzman distribution:

$$
Q^{*}(h)=\frac{1}{Z} P(h) e^{-C \cdot m R_{S}(h)}
$$

To avoid MCMC, let us analyse the case where Q is chosen from a parameterized set of distributions over the (continuous) space of linear classifiers.

Observations about Catoni's bound (cont)

- Given any prior P, the posterior Q^{*} minimizing the bound of Catoni's bound is given by the Boltzman distribution:

$$
Q^{*}(h)=\frac{1}{Z} P(h) e^{-C \cdot m R_{S}(h)} .
$$

- We could sample Q^{*} by Markov Chain Monté Carlo.
- But the mixing time being unknown, we have few control over the precision of the approximation.
- To avoid MCMC, let us analyse the case where Q is chosen from a parameterized set of distributions over the (continuous) space of linear classifiers.

Observations about Catoni's bound (cont)

- Given any prior P, the posterior Q^{*} minimizing the bound of Catoni's bound is given by the Boltzman distribution:

$$
Q^{*}(h)=\frac{1}{Z} P(h) e^{-C \cdot m R_{S}(h)}
$$

- We could sample Q^{*} by Markov Chain Monté Carlo.
- But the mixing time being unknown, we have few control over the precision of the approximation.
- To avoid MCMC, let us analyse the case where Q is chosen from a parameterized set of distributions over the (continuous) space of linear classifiers.

Bounding

 $\mathbf{E} \quad \mathrm{E}^{m \mathcal{D}\left(R_{s}(h), R(h)\right)}$: other ways

 $\mathbf{E} \quad \mathrm{E}^{m \mathcal{D}\left(R_{s}(h), R(h)\right)}$: other ways}

- via concentration inequality

Bounding E E $e^{m \mathcal{D}\left(R_{s}(h), R(h)\right)}$: other ways

- via concentration inequality
- used in the original proof of Seeger (and in the one due to Langford).

Bounding E E $e^{m \mathcal{D}\left(R_{s}(h), R(h)\right)}$: other ways

- via concentration inequality
- used in the original proof of Seeger (and in the one due to Langford).
- used by Higgs (2009) to generalized the Seeger's bound the the transductive case

Bounding E E $e^{m \mathcal{D}\left(R_{s}(h), R(h)\right)}$: other ways

- via concentration inequality
- used in the original proof of Seeger (and in the one due to Langford).
- used by Higgs (2009) to generalized the Seeger's bound the the transductive case
- used by Ralaivola et al. (2008) for the non iid case.
- via martingales

Bounding $\quad \mathbf{E}_{\tilde{D}} \quad \mathbf{E}_{h} e^{m \mathcal{D}\left(R_{s}(h), R(h)\right)}$: other ways

- via concentration inequality
- used in the original proof of Seeger (and in the one due to Langford).
- used by Higgs (2009) to generalized the Seeger's bound the the transductive case
- used by Ralaivola et al. (2008) for the non iid case.
- via martingales

Bounding
 $\mathbf{E}_{\tilde{D}} \mathbf{E}_{\mathrm{p}} \mathrm{e}^{m \mathcal{D}\left(R_{s}(h), R(h)\right)}$: other ways S~D $h \sim P$

- via concentration inequality
- used in the original proof of Seeger (and in the one due to Langford).
- used by Higgs (2009) to generalized the Seeger's bound the the transductive case
- used by Ralaivola et al. (2008) for the non iid case.
- via martingales
- used by Lever et al (2010) to generalized PAC-Bayes bound to U -statistics of order >1. (See later on in this workshop)

Supervised learning in the non iid case

- Given a training set of m examples

$$
S \stackrel{\text { def }}{=}\left\{\left(\mathbf{x}_{1}, y_{1}\right) \ldots\left(\mathbf{x}_{m}, y_{m}\right)\right\}
$$

where each generated according to a (unknown) distribution \tilde{D} over the set $(\mathcal{X} \times \mathcal{Y})^{m}$ of all possible labeled examples.
find a classifier h with the smallest possible risk $R(h)$

And the question is again: What should the learner optimize on S to obtain a classifier h having the smallest possible risk $R(h)$?

Supervised learning in the non iid case

- Given a training set of m examples

$$
S \stackrel{\text { def }}{=}\left\{\left(\mathbf{x}_{1}, y_{1}\right) \ldots\left(\mathbf{x}_{m}, y_{m}\right)\right\}
$$

where each generated according to a (unknown) distribution \tilde{D} over the set $(\mathcal{X} \times \mathcal{Y})^{m}$ of all possible labeled examples.

- in the traditionnal iid case, the goal of the learner is, to try to find a classifier h with the smallest possible risk $R(h)$
$R(h) \stackrel{\text { def }}{=} \mathbf{E}_{S \sim D} \frac{1}{|S|} \sum_{(\mathbf{x}, y) \in S} I(h(\mathbf{x}) \neq y) \quad\left(\neq \operatorname{Pr}_{(\mathbf{x}, y) \sim D}\{h(\mathbf{x}) \neq y\}\right)$.
- And the question is again: What should the learner optimize on S to obtain a classifier h having the smallest possible risk $R(h)$?

Supervised learning in the non iid case

- Given a training set of m examples

$$
S \stackrel{\text { def }}{=}\left\{\left(\mathbf{x}_{1}, y_{1}\right) \ldots\left(\mathbf{x}_{m}, y_{m}\right)\right\}
$$

where each generated according to a (unknown) distribution \tilde{D} over the set $(\mathcal{X} \times \mathcal{Y})^{m}$ of all possible labeled examples.

- in the traditionnal iid case, the goal of the learner is, to try to find a classifier h with the smallest possible risk $R(h)$

$$
R(h) \stackrel{\text { def }}{=} \mathbf{E}_{S \sim D} \frac{1}{|S|} \sum_{(\mathbf{x}, y) \in S} I(h(\mathbf{x}) \neq y) \quad\left(\neq \operatorname{Pr}_{(\mathbf{x}, y) \sim D}\{h(\mathbf{x}) \neq y\}\right) .
$$

- And the question is again: What should the learner optimize on S to obtain a classifier h having the smallest possible risk $R(h)$?

The problem of bounding
 $$
\underset{S \sim \tilde{D}}{\boldsymbol{E}_{h \sim P}} \mathbf{E}^{m \mathcal{D}\left(R_{S}(h), R(h)\right)}
$$

Theorem 1

For any distribution D_{0}, for any set \mathcal{H} of classifiers, for any prior distribution P of support \mathcal{H}, for any $\delta \in(0,1]$, and for any convex function $\mathcal{D}:[0,1] \times[0,1] \rightarrow \mathbb{R}$, we have

$$
\begin{aligned}
& \operatorname{Pr}_{S \sim D}\left(\forall Q \text { on } \mathcal{H}: \quad \mathcal{D}\left(R_{S}\left(G_{Q}\right), R\left(G_{Q}\right)\right) \leq\right. \\
& \\
& \left.\frac{1}{m}\left[K L(Q \| P)+\ln \left(\frac{1}{\delta} \underset{S \sim \tilde{D}}{\mathbf{E}} \underset{h \sim P}{\mathbf{E}} e^{m \mathcal{D}\left(R_{S}(h), R(h)\right)}\right)\right]\right) \geq 1-\delta .
\end{aligned}
$$

- We will here restrict ourself to the particular non iid case where there exists a function g, and an integer $n \leq m$ such that the D-drawing of a training set is of the form $S=g\left(Z_{1}, \ldots, Z_{n}\right)$ for some pairewise independent random

The problem of bounding
 E E $e^{m \mathcal{D}\left(R_{s}(h), R(h)\right)}$
 S~D $h \sim P$

Theorem 1

For any distribution D_{0}, for any set \mathcal{H} of classifiers, for any prior distribution P of support \mathcal{H}, for any $\delta \in(0,1]$, and for any convex function $\mathcal{D}:[0,1] \times[0,1] \rightarrow \mathbb{R}$, we have

$$
\begin{aligned}
& \underset{S \sim D}{\operatorname{Pr}}\left(\forall Q \text { on } \mathcal{H}: \quad \mathcal{D}\left(R_{S}\left(G_{Q}\right), R\left(G_{Q}\right)\right) \leq\right. \\
& \left.\qquad \frac{1}{m}\left[K L(Q \| P)+\ln \left(\frac{1}{\delta} \underset{S \sim \tilde{D}}{\mathbf{E}} \underset{h \sim P}{E} e^{m \mathcal{D}\left(R_{S}(h), R(h)\right)}\right)\right]\right) \geq 1-\delta .
\end{aligned}
$$

- We will here restrict ourself to the particular non iid case where there exists a function g, and an integer $n \leq m$ such that the \tilde{D}-drawing of a training set is of the form $S=g\left(\mathbf{Z}_{1}, \ldots, \mathbf{Z}_{n}\right)$ for some pairewise independent random variables $\mathbf{Z}_{i} \in \mathcal{Z}$'s.

The fractional chromatic number of the dependency graph

- Another approach is to directly take advantage of the assumption that there exists a function g, and an integer $n \leq m$ such that the D-drawing of a training set is of the form $S=g\left(\mathbf{Z}_{1}, \ldots, \mathbf{Z}_{n}\right)$ for some pairewise independent random variables $\mathbf{Z}_{i} \in \mathcal{Z}$'s,
ndeed, we can then subdivise S in various iid subsets S togheter with weights ω_{j} such that each example $\left(x_{i}, y_{i}\right)$, the total of the weights associate with the S_{i} 's that contain

[^0]
The fractional chromatic number of the dependency graph

- Another approach is to directly take advantage of the assumption that there exists a function g, and an integer $n \leq m$ such that the D-drawing of a training set is of the form $S=g\left(\mathbf{Z}_{1}, \ldots, \mathbf{Z}_{n}\right)$ for some pairewise independent random variables $\mathbf{Z}_{i} \in \mathcal{Z}$'s,
- Indeed, we can then subdivise S in various iid subsets S_{j}, togheter with weights ω_{j} such that each example (\mathbf{x}_{i}, y_{i}), the total of the weights associate with the S_{j} 's that contain $\left(\mathbf{x}_{i}, y_{i}\right)$ is 1 .
- This is the idea of Ralaivola et al. (2008)
- Based on this idea, Theorem 1 can be restated as follows.

The fractional chromatic number of the dependency graph

- Another approach is to directly take advantage of the assumption that there exists a function g, and an integer $n \leq m$ such that the D-drawing of a training set is of the form $S=g\left(\mathbf{Z}_{1}, \ldots, \mathbf{Z}_{n}\right)$ for some pairewise independent random variables $\mathbf{Z}_{i} \in \mathcal{Z}$'s,
- Indeed, we can then subdivise S in various iid subsets S_{j}, togheter with weights ω_{j} such that each example (\mathbf{x}_{i}, y_{i}), the total of the weights associate with the S_{j} 's that contain $\left(\mathbf{x}_{i}, y_{i}\right)$ is 1 .
- This is the idea of Ralaivola et al. (2008)
- Based on this idea, Theorem 1 can be restated as follows.

The fractional chromatic number of the dependency graph

- Another approach is to directly take advantage of the assumption that there exists a function g, and an integer $n \leq m$ such that the D-drawing of a training set is of the form $S=g\left(\mathbf{Z}_{1}, \ldots, \mathbf{Z}_{n}\right)$ for some pairewise independent random variables $\mathbf{Z}_{i} \in \mathcal{Z}$'s,
- Indeed, we can then subdivise S in various iid subsets S_{j}, togheter with weights ω_{j} such that each example (\mathbf{x}_{i}, y_{i}), the total of the weights associate with the S_{j} 's that contain $\left(\mathbf{x}_{i}, y_{i}\right)$ is 1 .
- This is the idea of Ralaivola et al. (2008)
- Based on this idea, Theorem 1 can be restated as follows.

Theorem 1 (revisited)

- Suppose that from any training set S drawn according to D, there is a $\left(S_{j}, \omega_{j}\right)_{j=1, . . n}$ that are only defined based on the indices of elements of S is such that
- S_{j} is iid and a subset of S for all $j=1, . ., n$
- $\sum_{i=1}^{n} \omega_{j} l\left(\left(\mathbf{x}_{i}, y_{i}\right) \in S_{j}\right)=1 \quad$ for all $i=1, . ., m$.

Theorem 1 (revisited for the non id case)

For any distribution D, for any set \mathcal{H} of classifiers, for any prior distribution $P 1, \ldots, P_{n}$ of support \mathcal{H}, for any $\delta \in(0,1]$, and for any convex function $\mathcal{D}:[0,1] \times[0,1] \rightarrow \mathbb{R}$, we have

$$
\begin{aligned}
& \quad \operatorname{Pr}_{S \sim D}\left(\forall Q_{1}, . . Q_{n} \text { on } \mathcal{H}: \mathcal{D}\left(\sum_{j=1}^{n} \frac{\omega_{j}}{\sum \omega_{j}} R_{S}\left(G_{Q_{j}}\right), \sum_{j=1}^{n} \frac{\omega_{j}}{\sum_{j} \omega_{j}} R\left(G_{Q_{j}}\right)\right) \leq\right. \\
& \left.\frac{\sum_{j=1}^{n} \omega_{j}}{m}\left[\frac{\omega_{j}}{\sum_{j=1}^{n} \omega_{j}} \mathrm{KL}\left(Q_{j} \| P_{j}\right)+\ln \left(\frac{1}{\delta} \underset{S \sim D}{\mathbf{E}} \underset{h \sim P}{\mathbf{E}} \sum_{j=1}^{n} e^{m\left|S_{j}\right| \mathcal{D}\left(R_{S_{j}}\left(h_{j}\right), R\left(h_{j}\right)\right)}\right)\right]\right) \geq 1-\delta .
\end{aligned}
$$

The problem of bounding $R\left(G_{Q}\right)$ instead of $R\left(B_{Q}\right)$

The main problem PAC-Bayes theory is the fact that it allows us to bound the Gibbs risk but, most of the time, it is the Bayes risk we are in. To this problem I will discuss here two possible answers:

- Answer\#1: if a non too small "part" of the classifier of \mathcal{H} are strong, then one can obtained a quiet tight bound (exemple: if \mathcal{H} is the set of all linear classifiers in a high-dimensional feature vectors space, like in SVM)

The problem of bounding $R\left(G_{Q}\right)$ instead of $R\left(B_{Q}\right)$

The main problem PAC-Bayes theory is the fact that it allows us to bound the Gibbs risk but, most of the time, it is the Bayes risk we are in. To this problem I will discuss here two possible answers:

- Answer\#1: if a non too small "part" of the classifier of \mathcal{H} are strong, then one can obtained a quiet tight bound (exemple: if \mathcal{H} is the set of all linear classifiers in a high-dimensional feature vectors space, like in SVM)
- Answer\#2: otherwise, extend the PAC-Bayes bound to something else than the Gibbs's Risk

Specialization to Linear classifiers

- Each \mathbf{x} is mapped to a high-dimensional feature vector $\boldsymbol{\phi}(\mathbf{x})$:

$$
\phi(\mathbf{x}) \stackrel{\text { def }}{=}\left(\phi_{1}(\mathbf{x}), \ldots, \phi_{N}(\mathbf{x})\right) .
$$

- The output $h_{\mathbf{v}}(\mathbf{x})$ of linear classifier $h_{\mathbf{v}}$ with weight vector \mathbf{v} is $h_{v}(x)=\operatorname{sgn}(v \cdot \phi(x))$

Specialization to Linear classifiers

- Each \mathbf{x} is mapped to a high-dimensional feature vector $\phi(\mathbf{x})$:

$$
\phi(\mathbf{x}) \stackrel{\text { def }}{=}\left(\phi_{1}(\mathbf{x}), \ldots, \phi_{N}(\mathbf{x})\right) .
$$

- ϕ is often implicitly given by a Mercer kernel

$$
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\phi(\mathbf{x}) \cdot \phi\left(\mathbf{x}^{\prime}\right)
$$

The output $h_{\mathrm{v}}(\mathrm{x})$ of linear classifier h_{v} wit
given by

$$
h_{\mathrm{v}}(\mathrm{x})=\operatorname{sgn}(\mathrm{v} \cdot \phi(\mathrm{x}))
$$

- Let us moreover suppose that each posterior Q_{w} is an isotropic Gaussian centered on w:

Specialization to Linear classifiers

- Each \mathbf{x} is mapped to a high-dimensional feature vector $\phi(\mathbf{x})$:

$$
\phi(\mathbf{x}) \stackrel{\text { def }}{=}\left(\phi_{1}(\mathbf{x}), \ldots, \phi_{N}(\mathbf{x})\right)
$$

- ϕ is often implicitly given by a Mercer kernel

$$
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\phi(\mathbf{x}) \cdot \phi\left(\mathbf{x}^{\prime}\right)
$$

- The output $h_{\mathbf{v}}(\mathbf{x})$ of linear classifier $h_{\mathbf{v}}$ with weight vector \mathbf{v} is given by

$$
h_{\mathbf{v}}(\mathbf{x})=\operatorname{sgn}(\mathbf{v} \cdot \boldsymbol{\phi}(\mathbf{x}))
$$

- Let us moreover suppose that each posterior Q_{w} is an isotropic Gaussian centered on w:

Specialization to Linear classifiers

- Each \mathbf{x} is mapped to a high-dimensional feature vector $\phi(\mathbf{x})$:

$$
\boldsymbol{\phi}(\mathbf{x}) \stackrel{\text { def }}{=}\left(\phi_{1}(\mathbf{x}), \ldots, \phi_{N}(\mathbf{x})\right) .
$$

- ϕ is often implicitly given by a Mercer kernel

$$
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\phi(\mathbf{x}) \cdot \phi\left(\mathbf{x}^{\prime}\right)
$$

- The output $h_{\mathbf{v}}(\mathbf{x})$ of linear classifier $h_{\mathbf{v}}$ with weight vector \mathbf{v} is given by

$$
h_{\mathbf{v}}(\mathbf{x})=\operatorname{sgn}(\mathbf{v} \cdot \boldsymbol{\phi}(\mathbf{x}))
$$

- Let us moreover suppose that each posterior Q_{w} is an isotropic Gaussian centered on w:

$$
Q_{\mathbf{w}}(\mathbf{v})=\left(\frac{1}{\sqrt{2 \pi}}\right)^{N} \exp \left(-\frac{1}{2}\|\mathbf{v}-\mathbf{w}\|^{2}\right)
$$

Bayes-equivalent classifiers

- With this choice for Q_{w}, the majority vote $B_{Q_{w}}$ is the same classifier as h_{w} since:
$B_{Q_{\mathbf{w}}}(\mathbf{x})=\operatorname{sgn}\left(\underset{\mathbf{v} \sim Q_{\mathbf{w}}}{\mathbf{E}} \operatorname{sgn}(\mathbf{v} \cdot \boldsymbol{\phi}(\mathbf{x}))\right)=\operatorname{sgn}(\mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x}))=h_{\mathbf{w}}(\mathbf{x})$.
Thus $R\left(h_{w}\right)=R\left(B_{Q_{w}}\right) \leq 2 R\left(G_{Q_{w}}\right)$: an upper bound on $R\left(G_{Q_{w}}\right)$ also provides an upper bound on $R\left(h_{w}\right)$.
- The prior $P_{\mathbf{w}_{p}}$ is also an isotropic Gaussian centered on \mathbf{w}_{p}. Consequently:

Bayes-equivalent classifiers

- With this choice for Q_{w}, the majority vote $B_{Q_{w}}$ is the same classifier as h_{w} since:

$$
B_{Q_{\mathbf{w}}}(\mathbf{x})=\operatorname{sgn}\left(\underset{\mathbf{v} \sim Q_{\mathbf{w}}}{\mathbf{E}} \operatorname{sgn}(\mathbf{v} \cdot \boldsymbol{\phi}(\mathbf{x}))\right)=\operatorname{sgn}(\mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x}))=h_{\mathbf{w}}(\mathbf{x})
$$

- Thus $R\left(h_{\mathbf{w}}\right)=R\left(B_{Q_{w}}\right) \leq 2 R\left(G_{Q_{w}}\right)$: an upper bound on $R\left(G_{Q_{w}}\right)$ also provides an upper bound on $R\left(h_{\mathbf{w}}\right)$.
- The prior $P_{\mathbf{w}_{p}}$ is also an isotropic Gaussian centered on \mathbf{w}_{p}. Consequently:

Bayes-equivalent classifiers

- With this choice for Q_{w}, the majority vote $B_{Q_{w}}$ is the same classifier as h_{w} since:
$B_{Q_{\mathbf{w}}}(\mathbf{x})=\operatorname{sgn}\left(\underset{\mathbf{v} \sim Q_{\mathbf{w}}}{\mathbf{E}} \operatorname{sgn}(\mathbf{v} \cdot \boldsymbol{\phi}(\mathbf{x}))\right)=\operatorname{sgn}(\mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x}))=h_{\mathbf{w}}(\mathbf{x})$.
- Thus $R\left(h_{\mathbf{w}}\right)=R\left(B_{Q_{w}}\right) \leq 2 R\left(G_{Q_{w}}\right)$: an upper bound on $R\left(G_{Q_{w}}\right)$ also provides an upper bound on $R\left(h_{w}\right)$.
- The prior $P_{\mathbf{w}_{p}}$ is also an isotropic Gaussian centered on \mathbf{w}_{p}. Consequently:

$$
\mathrm{KL}\left(Q_{\mathbf{w}} \| P_{\mathbf{w}_{p}}\right)=\frac{1}{2}\left\|\mathbf{w}-\mathbf{w}_{p}\right\|^{2}
$$

Gibbs' risk

We need to compute Gibb's risk $R_{(\mathrm{x}, \mathrm{y})}\left(G_{Q_{\mathrm{w}}}\right)$ on (x, y) since:

$$
R_{(\mathbf{x}, y)}\left(G_{Q_{\mathbf{w}}}\right) \stackrel{\text { def }}{=} \int_{\mathbb{R}^{N}} Q_{\mathbf{w}}(\mathbf{v}) I(y \mathbf{v} \cdot \boldsymbol{\phi}(\mathbf{x})<0) d \mathbf{v}
$$

we have:

$$
R\left(G_{Q_{w}}\right)=\underset{(\mathrm{x}, y) \sim D}{E} R_{(x, y)}\left(G_{Q_{w}}\right) \quad \text { and } \quad R_{S}\left(G_{Q_{w}}\right)=\frac{1}{m} \sum_{i=1}^{m} R_{\left(x_{i}, y_{i}\right)}\left(G_{Q_{w}}\right) .
$$

Moreover, as in Langford (2005), the Gaussian integral gives:

$$
R_{(\mathrm{x}, \mathrm{y})}\left(G_{Q_{\mathbf{w}}}\right)=\Phi\left(\|\mathbf{w}\| \Gamma_{\mathbf{w}}(\mathbf{x}, y)\right)
$$

where: $\quad \Gamma_{\mathbf{w}}(\mathbf{x}, y) \stackrel{\text { def }}{=} \frac{y \mathbf{w} \cdot \phi(\mathbf{x})}{\|\mathbf{w}\|\|(\mathbf{x})\|}$ and $\Phi(a) \stackrel{\text { def }}{=} \frac{1}{\sqrt{2 \pi}} \int_{a}^{\infty} \exp \left(-\frac{1}{2} x^{2}\right) d x$.

Probit loss

Objective function from Catoni's bound

Recall that, to minimize the Catoni's bound, for fixed C and \mathbf{w}_{p}, we need to find \mathbf{w} that minimizes:

$$
C m R_{S}\left(G_{Q_{\mathbf{w}}}\right)+\operatorname{KL}\left(Q_{\mathbf{w}} \| P_{\mathbf{w}_{p}}\right)
$$

Which, according to preceding slides, corresponds of minimizing

Objective function from Catoni's bound

Recall that, to minimize the Catoni's bound, for fixed C and \mathbf{w}_{p}, we need to find \mathbf{w} that minimizes:

$$
C m R_{S}\left(G_{Q_{w}}\right)+\operatorname{KL}\left(Q_{\mathbf{w}} \| P_{\mathbf{w}_{p}}\right)
$$

Which, according to preceding slides, corresponds of minimizing

$$
C \sum_{i=1}^{m} \Phi\left(\frac{y_{i} \mathbf{w} \cdot \boldsymbol{\phi}\left(\mathbf{x}_{i}\right)}{\left\|\boldsymbol{\phi}\left(\mathbf{x}_{i}\right)\right\|}\right)+\frac{1}{2}\left\|\mathbf{w}-\mathbf{w}_{p}\right\|^{2}
$$

Objective function from Catoni's bound

So PAC-Bayes tells us to minimize

$$
C \sum_{i=1}^{m} \Phi\left(\frac{y_{i} \mathbf{w} \cdot \boldsymbol{\phi}\left(\mathbf{x}_{i}\right)}{\left\|\boldsymbol{\phi}\left(\mathbf{x}_{i}\right)\right\|}\right)+\frac{1}{2}\left\|\mathbf{w}-\mathbf{w}_{p}\right\|^{2}
$$

Note that, when $w_{p}=0$ (absence of prior knowledge), this is very similar to SVM . Indeed, SVM minimizes:

Objective function from Catoni's bound

So PAC-Bayes tells us to minimize

$$
C \sum_{i=1}^{m} \Phi\left(\frac{y_{i} \mathbf{w} \cdot \boldsymbol{\phi}\left(\mathbf{x}_{i}\right)}{\left\|\boldsymbol{\phi}\left(\mathbf{x}_{i}\right)\right\|}\right)+\frac{1}{2}\left\|\mathbf{w}-\mathbf{w}_{p}\right\|^{2}
$$

Note that, when $\mathbf{w}_{p}=\mathbf{0}$ (absence of prior knowledge), this is very similar to SVM .

- The probit loss is simply replaced by the convex hinge loss.

Objective function from Catoni's bound

So PAC-Bayes tells us to minimize

$$
C \sum_{i=1}^{m} \Phi\left(\frac{y_{i} \mathbf{w} \cdot \boldsymbol{\phi}\left(\mathbf{x}_{i}\right)}{\left\|\boldsymbol{\phi}\left(\mathbf{x}_{i}\right)\right\|}\right)+\frac{1}{2}\left\|\mathbf{w}-\mathbf{w}_{p}\right\|^{2}
$$

Note that, when $\mathbf{w}_{p}=\mathbf{0}$ (absence of prior knowledge), this is very similar to SVM. Indeed, SVM minimizes:

$$
C \sum_{i=1}^{m} \max \left(0,1-y_{i} \mathbf{w} \cdot \phi\left(\mathbf{x}_{i}\right)\right)+\frac{1}{2}\|\mathbf{w}\|^{2}
$$

- The probit loss is simply replaced by the convex hinge loss.

- Up to convexe relaxation, PAC-Bayes theory has rediscover

Objective function from Catoni's bound

So PAC-Bayes tells us to minimize

$$
C \sum_{i=1}^{m} \Phi\left(\frac{y_{i} \mathbf{w} \cdot \boldsymbol{\phi}\left(\mathbf{x}_{i}\right)}{\left\|\boldsymbol{\phi}\left(\mathbf{x}_{i}\right)\right\|}\right)+\frac{1}{2}\left\|\mathbf{w}-\mathbf{w}_{p}\right\|^{2}
$$

Note that, when $\mathbf{w}_{p}=\mathbf{0}$ (absence of prior knowledge), this is very similar to SVM. Indeed, SVM minimizes:

$$
C \sum_{i=1}^{m} \max \left(0,1-y_{i} \mathbf{w} \cdot \phi\left(\mathbf{x}_{i}\right)\right)+\frac{1}{2}\|\mathbf{w}\|^{2}
$$

- The probit loss is simply replaced by the convex hinge loss.
- Up to convexe relaxation, PAC-Bayes theory has rediscover

Objective function from Catoni's bound

So PAC-Bayes tells us to minimize

$$
C \sum_{i=1}^{m} \Phi\left(\frac{y_{i} \mathbf{w} \cdot \boldsymbol{\phi}\left(\mathbf{x}_{i}\right)}{\left\|\boldsymbol{\phi}\left(\mathbf{x}_{i}\right)\right\|}\right)+\frac{1}{2}\left\|\mathbf{w}-\mathbf{w}_{p}\right\|^{2}
$$

Note that, when $\mathbf{w}_{p}=\mathbf{0}$ (absence of prior knowledge), this is very similar to SVM. Indeed, SVM minimizes:

$$
C \sum_{i=1}^{m} \max \left(0,1-y_{i} \mathbf{w} \cdot \phi\left(\mathbf{x}_{i}\right)\right)+\frac{1}{2}\|\mathbf{w}\|^{2}
$$

- The probit loss is simply replaced by the convex hinge loss.
- Up to convexe relaxation, PAC-Bayes theory has rediscover SVM !!!

Numerical result [ICML09]

Dataset				(s) SVM		(1) PBGD1			(2) PBGD2			(3) PBGD3			
Name	\|S		\|T		n	$R_{T}(\mathbf{w})$	Bnd	$R_{T}(\mathbf{w})$	$G_{T}(\mathbf{w})$	Bnd	$R_{T}(\mathbf{w})$	$G_{T}(\mathbf{w})$	Bnd	$R_{T}(\mathbf{w})$	$G_{T}(\mathbf{w})$
Usvotes	235	200	16	0.055	0.370	0.080	0.117	0.244	0.050	0.050	0.153	0.075	0.085		
Credit-A	353	300	15	0.183	0.591	0.150	0.196	0.341	0.150	0.152	0.248	0.160	0.267		
Glass	107	107	9	0.178	0.571	0.168	0.349	0.539	0.215	0.232	0.430	0.168	0.316		
Haberman	144	150	3	0.280	0.423	0.280	0.285	0.417	0.327	0.323	0.444	0.253	0.250		
Heart	150	147	13	0.197	0.513	0.190	0.236	0.441	0.184	0.190	0.400	0.197	0.246		
Sonar	104	104	60	0.163	0.599	0.250	0.379	0.560	0.173	0.231	0.477	0.144	0.243		
BreastCancer	343	340	9	0.038	0.146	0.044	0.056	0.132	0.041	0.046	0.101	0.047	0.051		
Tic-tac-toe	479	479	9	0.081	0.555	0.365	0.369	0.426	0.173	0.193	0.287	0.077	0.107		
Ionosphere	176	175	34	0.097	0.531	0.114	0.242	0.395	0.103	0.151	0.376	0.091	0.165		
Wdbc	285	284	30	0.074	0.400	0.074	0.204	0.366	0.067	0.119	0.298	0.074	0.210		
MNIST:0vs8	500	1916	784	0.003	0.257	0.009	0.053	0.202	0.007	0.015	0.058	0.004	0.011		
MNIST:1vs7	500	1922	784	0.011	0.216	0.014	0.045	0.161	0.009	0.015	0.052	0.010	0.012		
MNIST:1vs8	500	1936	784	0.011	0.306	0.014	0.066	0.204	0.011	0.019	0.060	0.010	0.024		
MNIST:2vs3	500	1905	784	0.020	0.348	0.038	0.112	0.265	0.028	0.043	0.096	0.023	0.036		
Letter:AvsB	500	1055	16	0.001	0.491	0.005	0.043	0.170	0.003	0.009	0.064	0.001	0.408		
Letter:DvsO	500	1058	16	0.014	0.395	0.017	0.095	0.267	0.024	0.030	0.086	0.013	0.031		
Letter:OvsQ	500	1036	16	0.015	0.332	0.029	0.130	0.299	0.019	0.032	0.078	0.014	0.045		
Adult	1809	10000	14	0.159	0.535	0.173	0.198	0.274	0.180	0.181	0.224	0.164	0.174		
Mushroom	4062	4062	22	0.000	0.213	0.007	0.032	0.119	0.001	0.003	0.011	0.000	0.001		

Majority vote of weak classifiers

- The classical PAC-Bayes theory bounds the risk of the majority vote $R\left(B_{Q}\right)$, trought twice the Gibbs's risk $2 R\left(G_{Q}\right)$
relatively small, it seems to be a good idea, but what if the set \mathcal{H} of voters is onlv compo sed of weak voters ? (Like in Boosting)

Majority vote of weak classifiers

- The classical PAC-Bayes theory bounds the risk of the majority vote $R\left(B_{Q}\right)$, trought twice the Gibbs's risk $2 R\left(G_{Q}\right)$
- In the case of linear classifiers, there exists Q s.t. $R\left(G_{Q}\right)$ is relatively small, it seems to be a good idea,
voters ? (Like in Boosting)

Majority vote of weak classifiers

- The classical PAC-Bayes theory bounds the risk of the majority vote $R\left(B_{Q}\right)$, trought twice the Gibbs's risk $2 R\left(G_{Q}\right)$
- In the case of linear classifiers, there exists Q s.t. $R\left(G_{Q}\right)$ is relatively small, it seems to be a good idea,
- but what if the set \mathcal{H} of voters is only composed of weak voters ? (Like in Boosting)

compensate the individual errors.
- So what can we do in this case?

Majority vote of weak classifiers

- The classical PAC-Bayes theory bounds the risk of the majority vote $R\left(B_{Q}\right)$, trought twice the Gibbs's risk $2 R\left(G_{Q}\right)$
- In the case of linear classifiers, there exists Q s.t. $R\left(G_{Q}\right)$ is relatively small, it seems to be a good idea,
- but what if the set \mathcal{H} of voters is only composed of weak voters ? (Like in Boosting)
- In that case, the Gibbs's risk cannot be a good predictor for the Bayes's risk.
- Indeed, it is well-known that voting can dramatically improve performance when the "community" of classifiers tend to compensate the individual errors.
- So what can we do in this case ?

Majority vote of weak classifiers

- The classical PAC-Bayes theory bounds the risk of the majority vote $R\left(B_{Q}\right)$, trought twice the Gibbs's risk $2 R\left(G_{Q}\right)$
- In the case of linear classifiers, there exists Q s.t. $R\left(G_{Q}\right)$ is relatively small, it seems to be a good idea,
- but what if the set \mathcal{H} of voters is only composed of weak voters ? (Like in Boosting)
- In that case, the Gibbs's risk cannot be a good predictor for the Bayes's risk.
- Indeed, it is well-known that voting can dramatically improve performance when the "community" of classifiers tend to compensate the individual errors.
- So what can we do in this case ?

Answer \# 1

- Suppose $\mathcal{H}=\left\{h_{1}, . ., h_{n}, h_{n+1}, . ., h_{2 n}\right\}$ with $h_{i+n}=-h_{i}$, and consider instead, the set of all the majority votes over \mathcal{H} where $\phi(\mathbf{x}) \stackrel{\text { def }}{=}\left(h_{1}(\mathbf{x}), \ldots, h_{2 n}(\mathbf{x})\right)$ - Then we are back to the linear classifier specialization.

Answer \# 1

- Suppose $\mathcal{H}=\left\{h_{1}, . ., h_{n}, h_{n+1}, . ., h_{2 n}\right\}$ with $h_{i+n}=-h_{i}$,
- and consider instead, the set of all the majority votes over \mathcal{H}

$$
\mathcal{H}^{M V} \stackrel{\text { def }}{=}\left\{\operatorname{sgn}(\mathbf{v} \cdot \boldsymbol{\phi}(\mathbf{x})): \mathbf{v} \in \mathbb{R}^{|\mathcal{H}|}\right\}
$$

where $\boldsymbol{\phi}(\mathbf{x}) \stackrel{\text { def }}{=}\left(h_{1}(\mathbf{x}), \ldots, h_{2 n}(\mathbf{x})\right)$.

Answer \# 1

- Suppose $\mathcal{H}=\left\{h_{1}, . ., h_{n}, h_{n+1}, . ., h_{2 n}\right\}$ with $h_{i+n}=-h_{i}$,
- and consider instead, the set of all the majority votes over \mathcal{H}

$$
\mathcal{H}^{M V} \stackrel{\text { def }}{=}\left\{\operatorname{sgn}(\mathbf{v} \cdot \boldsymbol{\phi}(\mathbf{x})): \mathbf{v} \in \mathbb{R}^{|\mathcal{H}|}\right\}
$$

where $\boldsymbol{\phi}(\mathbf{x}) \stackrel{\text { def }}{=}\left(h_{1}(\mathbf{x}), \ldots, h_{2 n}(\mathbf{x})\right)$.

- Then we are back to the linear classifier specialization.

Numerical result [ICML09], with decision stumps as weak learners

Dataset				(a) AdaBoost		(1) PBGD1			(2) PBGD2			(3) PBGD3			
Name	\|S		$\|T\|$	n	R_{T} (w)	Bnd	R_{T} (w)	$G_{T}(\mathrm{w})$	Bnd	$R_{T}(\mathbf{w})$	$G_{T}(\mathbf{w})$	Bnd	$R_{T}(\mathbf{w})$	$G_{T}(\mathbf{w})$	Bnd
Usvotes	235	200	16	0.055	0.346	0.085	0.103	0.207	0.060	0.058	0.165	0.060	0.057	0.261	
Credit-A	353	300	15	0.170	0.504	0.177	0.243	0.375	0.187	0.191	0.272	0.143	0.159	0.420	
Glass	107	107	9	0.178	0.636	0.196	0.346	0.562	0.168	0.176	0.395	0.150	0.226	0.581	
Haber	144	150	3	0.260	0.590	0.273	0.283	0.422	0.267	0.287	0.465	0.273	0.386	0.424	
Heart	150	147	13	0.259	0.569	0.170	0.250	0.461	0.190	0.205	0.379	0.184	0.214	0.473	
Sonar	104	104	60	0.231	0.644	0.269	0.376	0.579	0.173	0.168	0.547	0.125	0.209	0.622	
BreastCance	343	340	9	0.053	0.295	0.041	0.058	0.129	0.047	0.054	0.104	0.044	0.048	0.190	
Tic-tac-toe	479	479	9	0.357	0.483	0.294	0.384	0.462	0.207	0.208	0.302	0.207	0.217	0.474	
Ionosphere	176	175	34	0.120	0.602	0.120	0.223	0.425	0.109	0.129	0.347	0.103	0.125	0.557	
Wdbc	285	284	30	0.049	0.447	0.042	0.099	0.272	0.049	0.048	0.147	0.035	0.051	0.319	
MNIST:0vs8	500	1916	784	0.008	0.528	0.015	0.052	0.191	0.011	0.016	0.062	0.006	0.011	0.262	
MNIST:1vs7	500	1922	78	0.013	0.541	0.020	0.055	0.184	0.015	0.016	0.050	0.016	0.017	0.233	
MNIST:1vs8	500	1936	78	0.025	0.552	0.037	0.097	0.247	0.027	0.030	0.087	0.018	0.037	0.305	
MNIST:2vs3	500	1905	784	0.047	0.558	0.046	0.118	0.264	0.040	0.044	0.105	0.034	0.048	0.356	
Letter:AvsB	500	1055	16	0.010	0.254	0.009	0.050	0.180	0.007	0.011	0.065	0.007	0.044	0.180	
Letter:DvsO	500	1058	16	0.036	0.378	0.043	0.124	0.314	0.033	0.039	0.090	0.024	0.038	0.360	
Letter:OvsQ	500	1036	16	0.038	0.431	0.061	0.170	0.357	0.053	0.053	0.106	0.042	0.049	0.454	
Adult	1809	10000	14	0.149	0.394	0.168	0.196	0.270	0.169	0.169	0.209	0.159	0.160	0.364	
Mushroom	4062	4062	22	0.000	0.200	0.046	0.065	0.130	0.016	0.017	0.030	0.002	0.004	0.150	

Answer \# 2: generalize the PAC-Bayes theorem to something else than the Gibbs's risk !

- Consider the margin on an example: $M_{Q}(\mathbf{x}, y) \stackrel{\text { def }}{=} \mathbf{E}_{h \sim Q} y h(\mathbf{x})$

- and any convex margin loss function $\zeta_{Q}(\alpha)$ that can be expanded ir

a Taylor series around $M_{Q}(x, y)=0$

Answer \# 2: generalize the PAC-Bayes theorem to something else than the Gibbs's risk!

- Consider the margin on an example: $M_{Q}(\mathbf{x}, y) \stackrel{\text { def }}{=} \mathbf{E}_{h \sim Q} y h(\mathbf{x})$
- and any convex margin loss function $\zeta_{Q}(\alpha)$ that can be expanded in a Taylor series around $M_{Q}(\mathbf{x}, y)=0$:

$$
\zeta_{Q}\left(M_{Q}(\mathbf{x}, y)\right) \stackrel{\text { def }}{=} \sum_{k=0}^{\infty} a_{k}\left(M_{Q}(\mathbf{x}, y)\right)^{k}
$$

and that upper bounds the risk of the majority vote B_{Q}, i.e.

Answer \# 2: generalize the PAC-Bayes theorem to something else than the Gibbs's risk!

- Consider the margin on an example: $M_{Q}(\mathbf{x}, y) \stackrel{\text { def }}{=} \mathbf{E}_{h \sim Q} y h(\mathbf{x})$
- and any convex margin loss function $\zeta_{Q}(\alpha)$ that can be expanded in a Taylor series around $M_{Q}(\mathbf{x}, y)=0$:

$$
\zeta_{Q}\left(M_{Q}(\mathbf{x}, y)\right) \stackrel{\text { def }}{=} \sum_{k=0}^{\infty} a_{k}\left(M_{Q}(\mathbf{x}, y)\right)^{k}
$$

and that upper bounds the risk of the majority vote B_{Q}, i.e.

Answer \# 2: generalize the PAC-Bayes theorem to something else than the Gibbs's risk!

- Consider the margin on an example: $M_{Q}(\mathbf{x}, y) \stackrel{\text { def }}{=} \mathbf{E}_{h \sim Q} y h(\mathbf{x})$
- and any convex margin loss function $\zeta_{Q}(\alpha)$ that can be expanded in a Taylor series around $M_{Q}(\mathbf{x}, y)=0$:

$$
\zeta_{Q}\left(M_{Q}(\mathbf{x}, y)\right) \stackrel{\text { def }}{=} \sum_{k=0}^{\infty} a_{k}\left(M_{Q}(\mathbf{x}, y)\right)^{k}
$$

and that upper bounds the risk of the majority vote B_{Q}, i.e.,

$$
\zeta_{Q}\left(M_{Q}(\mathbf{x}, y)\right) \geq I\left(M_{Q}(\mathbf{x}, y)<0\right) \quad \forall Q, \mathbf{x}, y .
$$

- Conclusion: if we can obtain a PAC-Bayes bound on $\zeta_{Q}(x, y)$, we will then have a "new" bound on $R\left(B_{\cap}\right)$

Answer \# 2: generalize the PAC-Bayes theorem to something else than the Gibbs's risk!

- Consider the margin on an example: $M_{Q}(\mathbf{x}, y) \stackrel{\text { def }}{=} \mathbf{E}_{h \sim Q} y h(\mathbf{x})$
- and any convex margin loss function $\zeta_{Q}(\alpha)$ that can be expanded in a Taylor series around $M_{Q}(\mathbf{x}, y)=0$:

$$
\zeta_{Q}\left(M_{Q}(\mathbf{x}, y)\right) \stackrel{\text { def }}{=} \sum_{k=0}^{\infty} a_{k}\left(M_{Q}(\mathbf{x}, y)\right)^{k}
$$

and that upper bounds the risk of the majority vote B_{Q}, i.e.,

$$
\zeta_{Q}\left(M_{Q}(\mathbf{x}, y)\right) \geq I\left(M_{Q}(\mathbf{x}, y)<0\right) \quad \forall Q, \mathbf{x}, y .
$$

- Conclusion: if we can obtain a PAC-Bayes bound on $\zeta_{Q}(x, y)$, we will then have a "new" bound on $R\left(B_{\cap}\right)$

Answer \# 2: generalize the PAC-Bayes theorem to something else than the Gibbs's risk!

- Consider the margin on an example: $M_{Q}(\mathbf{x}, y) \stackrel{\text { def }}{=} \mathbf{E}_{h \sim Q} y h(\mathbf{x})$
- and any convex margin loss function $\zeta_{Q}(\alpha)$ that can be expanded in a Taylor series around $M_{Q}(\mathbf{x}, y)=0$:

$$
\zeta_{Q}\left(M_{Q}(\mathbf{x}, y)\right) \stackrel{\text { def }}{=} \sum_{k=0}^{\infty} a_{k}\left(M_{Q}(\mathbf{x}, y)\right)^{k}
$$

and that upper bounds the risk of the majority vote B_{Q}, i.e.,

$$
\zeta_{Q}\left(M_{Q}(\mathbf{x}, y)\right) \geq I\left(M_{Q}(\mathbf{x}, y)<0\right) \quad \forall Q, \mathbf{x}, y .
$$

- Conclusion: if we can obtain a PAC-Bayes bound on $\zeta_{Q}(\mathbf{x}, y)$, we will then have a "new" bound on $R\left(B_{Q}\right)$

Note: $1-M_{Q}(x, y)=2 R\left(G_{Q}\right)$
Thus the green and the black curves illustrate: $R\left(B_{Q}\right) \leq 2 R\left(G_{Q}\right)$

Catoni's bound for a general loss

If we define

$$
\begin{aligned}
& \zeta_{Q} \stackrel{\text { def }}{=} \\
&(\mathbf{x}, y) \sim D \\
& \widehat{\zeta_{Q}} \stackrel{\text { def }}{=} \\
& \frac{1}{m} \sum_{i=1}^{m} \zeta_{Q}\left(M_{Q}(\mathbf{x}, y)\right) \\
& c_{a}\left.\stackrel{\text { def }}{=}\left(\mathbf{x}_{i}, y_{i}\right)\right) \\
& \bar{k}=\zeta(1) \\
&= \zeta^{\prime}(1)
\end{aligned}
$$

Catoni's bound become :
Theorem 3.2. For any D, any \mathcal{H}, any P of support \mathcal{H}, any $\delta \in(0,1]$, any positive real number C^{\prime}, any loss function $\zeta_{Q}(\mathbf{x}, y)$ defined above, we have

$$
\operatorname{Pr}_{S \sim D^{m}}\left(\forall Q \text { on } \mathcal{H}: \zeta_{Q} \leq g\left(c_{a}, C^{\prime}\right)+\frac{C^{\prime}}{1-e^{-C^{\prime}}}\left[\widehat{\zeta_{Q}}+\frac{2 c_{a}}{m C^{\prime}}\left[\bar{k} \cdot \mathrm{KL}(Q \| P)+\ln \frac{1}{\delta}\right]\right]\right) \geq 1-\delta
$$

where $g\left(c_{a}, C^{\prime}\right) \stackrel{\text { def }}{=} 1-c_{a}+\frac{C^{\prime}}{1-e^{-C^{\prime}}} \cdot\left(c_{a}-1\right)$.

The mathematics of the PAC-Bayes Theory PAC-Bayes bounds and algorithms

Answer \# 2 (cont)

The trick !

- Since $R_{\{(x, y)\}}\left(G_{Q}\right)$ is the expectation of boolean random variable, the Catoni's bound holds if we replace (P, Q) by (\bar{P}, \bar{Q})

Answer \# 2 (cont)

The trick !

- $\zeta_{Q}(\mathbf{x}, y)$ can be expressed in terms of the risk on example (\mathbf{x}, y) of a Gibbs classifier described by a transformed posterior \bar{Q} on $\mathbb{N} \times \mathcal{H}^{\infty}$

$$
\zeta_{Q}\left(M_{Q}(\mathbf{x}, y)\right)=c_{a}\left[M_{\bar{Q}}(\mathbf{x}, y)\right],
$$

where $c_{a} \stackrel{\text { def }}{=} \sum_{k=0}^{\infty} a_{k}$ and where

$$
R_{\{(x, y)\}}\left(G_{Q}\right) \stackrel{\text { def }}{=} \frac{1}{c_{a}} \sum_{k=1}^{\infty}\left|a_{k}\right| \underset{h_{1} \sim Q}{\mathbf{E}} \cdots \underset{h_{k} \sim Q}{\mathbf{E}} I\left((-y)^{k} h_{1}(\mathbf{x}) \ldots h_{k}(\mathbf{x})=-\operatorname{sgn}\left(a_{k}\right)\right) .
$$

- Since $R_{\{(x, y)\}}\left(G_{Q}\right)$ is the expectation of boolean random variable, the Catoni's bound holds if we replace (P, Q) by (\bar{P}, \bar{Q})

Answer \# 2 (cont)

The trick !

- $\zeta_{Q}(\mathbf{x}, y)$ can be expressed in terms of the risk on example (\mathbf{x}, y) of a Gibbs classifier described by a transformed posterior \bar{Q} on $\mathbb{N} \times \mathcal{H}^{\infty}$

$$
\zeta_{Q}\left(M_{Q}(\mathbf{x}, y)\right)=c_{a}\left[M_{\bar{Q}}(\mathbf{x}, y)\right],
$$

where $c_{a} \stackrel{\text { def }}{=} \sum_{k=0}^{\infty} a_{k}$ and where

$$
R_{\{(x, y)\}}\left(G_{Q}\right)=\left.\frac{\operatorname{def}}{=} \frac{1}{c_{Q}} \sum_{k=1}^{\infty}\left|a_{k}\right|\right|_{h_{1} \sim Q}{ }^{\mathbf{E}} \cdots h_{h_{k}} \mathbf{E Q Q}^{\prime}\left((-y)^{k} h_{1}(\mathrm{x}) \ldots h_{k}(\mathrm{x})=-\operatorname{sgn}\left(a_{k}\right)\right) .
$$

- Since $R_{\{(\mathrm{x}, \mathrm{y})\}}\left(G_{\bar{Q}}\right)$ is the expectation of boolean random variable, the Catoni's bound holds if we replace (P, Q) by (\bar{P}, \bar{Q})

Minimizing Catoni's bound for a general loss

Minimizing this version of the Catoni's bound is equivalent to finding Q that minimizes

$$
f(Q) \stackrel{\text { def }}{=} C \sum_{i=1}^{m} \zeta_{Q}\left(\mathbf{x}_{i}, y_{i}\right)+\mathrm{KL}(Q \| P)
$$

here: $C \stackrel{\text { def }}{=} C^{\prime} /\left(2 c_{a} \bar{k}\right)$.

Minimizing Catoni's bound for a general loss

- To compare the proposed learning algorithms with AdaBoost, we will consider, for $\zeta_{Q}(\mathbf{x}, y)$, the exponential loss given by

$$
\exp \left(-\frac{1}{\gamma} y \sum_{h \in \mathcal{H}} Q(h) h(\mathrm{x})\right)=\exp \left(\frac{1}{\gamma}\left[M_{Q}(\mathbf{x}, y)\right]\right)
$$

- Because of its simplicity, let us also consider, for $\zeta_{Q}(x, y)$, the quadratic loss given by

Minimizing Catoni's bound for a general loss

- To compare the proposed learning algorithms with AdaBoost, we will consider, for $\zeta_{Q}(\mathbf{x}, y)$, the exponential loss given by

$$
\exp \left(-\frac{1}{\gamma} y \sum_{h \in \mathcal{H}} Q(h) h(\mathrm{x})\right)=\exp \left(\frac{1}{\gamma}\left[M_{Q}(\mathbf{x}, y)\right]\right)
$$

- Because of its simplicity, let us also consider, for $\zeta_{Q}(\mathbf{x}, y)$, the quadratic loss given by

$$
\left(\frac{1}{\gamma} y \sum_{h \in \mathcal{H}} Q(h) h(x)-1\right)^{2}=\left(\frac{1}{\gamma} M_{Q}(x, y)-1\right)^{2} .
$$

Empirical results (Nips[09])

Dataset				(1) AdB	(2) RR		(3) KL-EL			(4) KL-QL		
Name	$\|S\|$	$\|T\|$	a	R_{T}	R_{T}	C	R_{T}	C	-	R_{T}	C	γ
BreastCancer	343	340	9	0.053	0.050	10	0.047	0.1	0.1	0.047	0.02	0.4
Liver	170	175	6	0.320	0.309	5	0.360	0.5	0.02	0.286	0.02	0.3
Credit-A	353	300	15	0.170	0.157	2	0.227	0.1	0.2	0.183	0.02	0.05
Glass	107	107	9	0.178	0.206	5	0.187	500	0.01	0.196	0.02	0.01
Haberman	144	150	3	0.260	0.273	100	0.253	500	0.2	0.260	0.02	0.5
Heart	150	147	13	0.252	0.197	1	0.211	0.2	0.1	0.177	0.05	0.2
Ionosphere	176	175	34	0.120	0.131	0.05	0.120	20	0.0001	0.097	0.2	0.1
Letter:AB	500	1055	16	0.010	0.004	0.5	0.006	0.1	0.02	0.006	1000	0.1
Letter:DO	500	1058	16	0.036	0.026	0.05	0.019	500	0.01	0.020	0.02	0.05
Letter:OQ	500	1036	16	0.038	0.045	0.5	0.043	10	0.0001	0.047	0.1	0.05
MNIST:0vs8	500	1916	784	0.008	0.015	0.05	0.006	500	0.001	0.015	0.2	0.02
MNIST:1vs7	500	1922	784	0.013	0.012	1	0.01	500	0.02	0.014	1000	0.1
MNIST:1vs8	500	1936	784	025	0.024	0.2	0.016	0.2	0.001	0.031	1	0.02
MNIST:2vs3	500	1905	784	0.047	0.033	0.2	0.03	500	0.000	0.02	0.02	
Mushroom	4062	4062	22	0.000	0.001	0.5	0.000	10	0.001	0.000	000	0.02
Ringnorm	3700	3700	20	0.043	0.037	0.05	0.025	50	0.01	0.039	0.05	0.05
Sonar	104	104	60	0.231	0.192	0.05	0.135	500	0.05	0.115	1000	0.1
Usvotes	235	200	16	0.055	0.060	2	0.060	0.5	0.1	0.055	1000	0.05
Waveform	4000	4000	21	0.085	0.079	0.02	0.080	0.2	0.05	0.080	0.02	0.05
Wdbc	285	284	30	0.049	0.04	0.2	0.03	500	0.02	0.0	1000	

From $\mathrm{KL}(Q \| P)$ to ℓ_{2} regularization

We can recover ℓ_{2} regularization if we upper-bound $\operatorname{KL}(Q \| P)$ by a quadratic function. Indeed, if we use

$$
q \ln q+\left(\frac{1}{n}-q\right) \ln \left(\frac{1}{n}-q\right) \leq \frac{1}{n} \ln \frac{1}{2 n}+4 n\left(q-\frac{1}{2 n}\right)^{2} \forall q \in[0,1 / n]
$$

Moreover, if we suppose we have
\qquad

- a uniform prior $\left(P\left(h_{i}\right)=1 /(2 n)\right)$
- a posterion distrilution Q aligned on the prior P
- and defined: $w_{j} \stackrel{\text { def }}{=} Q\left(h_{j}\right)-Q\left(h_{j+n}\right)$

Then,

From $\mathrm{KL}(Q \| P)$ to ℓ_{2} regularization

We can recover ℓ_{2} regularization if we upper-bound $\operatorname{KL}(Q \| P)$ by a quadratic function. Indeed, if we use

$$
q \ln q+\left(\frac{1}{n}-q\right) \ln \left(\frac{1}{n}-q\right) \leq \frac{1}{n} \ln \frac{1}{2 n}+4 n\left(q-\frac{1}{2 n}\right)^{2} \forall q \in[0,1 / n]
$$

Moreover, if we suppose we have

- $\mathcal{H}=\left\{h_{1}, \ldots, h_{2 n}\right\}$ with $h_{i+n}=-h_{i}$
- a uniform prior $\left(P\left(h_{i}\right)=1 /(2 n)\right)$
- a posterior distribution Q aligned on the prior P. $\left.Q\left(h_{i}\right)+Q\left(h_{i+n}\right)=1 / n\right)$
- and defined: $w_{j}=\stackrel{\text { def }}{=} Q\left(h_{j}\right)-Q\left(h_{j+n}\right)$

Then,
$\mathrm{KL}(Q \| P)=\ln (2 n)+\sum_{i=1}^{n}\left[Q_{i} \ln Q_{i}+\left(\frac{1}{n}-Q_{i}\right) \ln \left(\frac{1}{n}-Q_{i}\right)\right]$

From $\mathrm{KL}(Q \| P)$ to ℓ_{2} regularization

We can recover ℓ_{2} regularization if we upper-bound $\operatorname{KL}(Q \| P)$ by a quadratic function. Indeed, if we use

$$
q \ln q+\left(\frac{1}{n}-q\right) \ln \left(\frac{1}{n}-q\right) \leq \frac{1}{n} \ln \frac{1}{2 n}+4 n\left(q-\frac{1}{2 n}\right)^{2} \forall q \in[0,1 / n]
$$

Moreover, if we suppose we have

- $\mathcal{H}=\left\{h_{1}, \ldots, h_{2 n}\right\}$ with $h_{i+n}=-h_{i}$
- a uniform prior $\left(P\left(h_{i}\right)=1 /(2 n)\right)$
- a posterior distribution Q aligned on the prior P. $\left.Q\left(h_{i}\right)+Q\left(h_{i+n}\right)=1 / n\right)$
- and defined: $w_{j}=\stackrel{\text { def }}{=} Q\left(h_{j}\right)-Q\left(h_{j+n}\right)$

Then,

$$
\begin{aligned}
\mathrm{KL}(Q \| P) & =\ln (2 n)+\sum_{i=1}^{n}\left[Q_{i} \ln Q_{i}+\left(\frac{1}{n}-Q_{i}\right) \ln \left(\frac{1}{n}-Q_{i}\right)\right] \\
& \leq 4 n \sum_{i=1}^{n}\left(Q_{i}-\frac{1}{2 n}\right)^{2} \\
& =n \sum_{i=1}^{n} w_{i}^{2} .
\end{aligned}
$$

PAC-Bayes vs Boosting and Ridge regression (cont)

- With this approximation, the objective function to minimize becomes

$$
f_{\ell_{2}}(\mathbf{w})=C^{\prime \prime} \sum_{i=1}^{m} \zeta\left(\frac{1}{\gamma} y_{i} \mathbf{w} \cdot \mathbf{h}\left(\mathbf{x}_{i}\right)\right)+\|\mathbf{w}\|_{2}^{2},
$$

subject to the ℓ_{∞} constraint $\left|w_{j}\right| \leq 1 / n \forall j \in\{1, \ldots, n\}$.

- Here $\|w\|_{2}$ denotes the Euclidean norm of w and $\zeta(x)=(x-1)^{2}$ for the quadratic loss and e^{-x} for the exponential loss.
- If, instead, we minimize $f_{\ell_{2}}$ for $\mathbf{v} \stackrel{\text { def }}{=} \mathbf{w} / \gamma$ and remove the ℓ_{∞} constraint we recover exactly

PAC-Bayes vs Boosting and Ridge regression (cont)

- With this approximation, the objective function to minimize becomes

$$
f_{\ell_{2}}(\mathbf{w})=C^{\prime \prime} \sum_{i=1}^{m} \zeta\left(\frac{1}{\gamma} y_{i} \mathbf{w} \cdot \mathbf{h}\left(\mathbf{x}_{i}\right)\right)+\|\mathbf{w}\|_{2}^{2},
$$

subject to the ℓ_{∞} constraint $\left|w_{j}\right| \leq 1 / n \quad \forall j \in\{1, \ldots, n\}$.

- Here $\|\mathbf{w}\|_{2}$ denotes the Euclidean norm of \mathbf{w} and $\zeta(x)=(x-1)^{2}$ for the quadratic loss and e^{-x} for the exponential loss.
- If, instead, we minimize $f_{\ell_{2}}$ for $\mathbf{v} \stackrel{\text { def }}{=} \mathbf{w} / \gamma$ and remove the ℓ_{∞} constraint, we recover exactly

PAC-Bayes vs Boosting and Ridge regression (cont)

- With this approximation, the objective function to minimize becomes

$$
f_{\ell_{2}}(\mathbf{w})=C^{\prime \prime} \sum_{i=1}^{m} \zeta\left(\frac{1}{\gamma} y_{i} \mathbf{w} \cdot \mathbf{h}\left(\mathbf{x}_{i}\right)\right)+\|\mathbf{w}\|_{2}^{2},
$$

subject to the ℓ_{∞} constraint $\left|w_{j}\right| \leq 1 / n \quad \forall j \in\{1, \ldots, n\}$.

- Here $\|\mathbf{w}\|_{2}$ denotes the Euclidean norm of \mathbf{w} and $\zeta(x)=(x-1)^{2}$ for the quadratic loss and e^{-x} for the exponential loss.
- If, instead, we minimize $f_{\ell_{2}}$ for $\mathbf{v} \stackrel{\text { def }}{=} \mathbf{w} / \gamma$ and remove the ℓ_{∞} constraint, we recover exactly
- ridge regression for the quadratic loss case !
- ℓ_{2}-regularized boosting for the exponential loss case !!

PAC-Bayes vs Boosting and Ridge regression (cont)

- With this approximation, the objective function to minimize becomes

$$
f_{\ell_{2}}(\mathbf{w})=C^{\prime \prime} \sum_{i=1}^{m} \zeta\left(\frac{1}{\gamma} y_{i} \mathbf{w} \cdot \mathbf{h}\left(\mathbf{x}_{i}\right)\right)+\|\mathbf{w}\|_{2}^{2},
$$

subject to the ℓ_{∞} constraint $\left|w_{j}\right| \leq 1 / n \quad \forall j \in\{1, \ldots, n\}$.

- Here $\|\mathbf{w}\|_{2}$ denotes the Euclidean norm of \mathbf{w} and $\zeta(x)=(x-1)^{2}$ for the quadratic loss and e^{-x} for the exponential loss.
- If, instead, we minimize $f_{\ell_{2}}$ for $\mathbf{v} \stackrel{\text { def }}{=} \mathbf{w} / \gamma$ and remove the ℓ_{∞} constraint, we recover exactly
- ridge regression for the quadratic loss case!
- ℓ_{2}-regularized boosting for the exponential loss case !!

PAC-Bayes vs Boosting and Ridge regression (cont)

- With this approximation, the objective function to minimize becomes

$$
f_{\ell_{2}}(\mathbf{w})=C^{\prime \prime} \sum_{i=1}^{m} \zeta\left(\frac{1}{\gamma} y_{i} \mathbf{w} \cdot \mathbf{h}\left(\mathbf{x}_{i}\right)\right)+\|\mathbf{w}\|_{2}^{2},
$$

subject to the ℓ_{∞} constraint $\left|w_{j}\right| \leq 1 / n \quad \forall j \in\{1, \ldots, n\}$.

- Here $\|\mathbf{w}\|_{2}$ denotes the Euclidean norm of \mathbf{w} and $\zeta(x)=(x-1)^{2}$ for the quadratic loss and e^{-x} for the exponential loss.
- If, instead, we minimize $f_{\ell_{2}}$ for $\mathbf{v} \stackrel{\text { def }}{=} \mathbf{w} / \gamma$ and remove the ℓ_{∞} constraint, we recover exactly
- ridge regression for the quadratic loss case!
- ℓ_{2}-regularized boosting for the exponential loss case !!

Answer\#2 and kernel methods

- Note that in contrast with the approach Answer\#1, the approach (Answer\#2) can not, as it is presently stated, construct kernel based algorithm.

- For that we need to extend the PAC-Bayes theorem to the sample compression setting (see presentation of Pascal Germain)

Answer\#2 and kernel methods

- Note that in contrast with the approach Answer\#1, the approach (Answer\#2) can not, as it is presently stated, construct kernel based algorithm.
- For that we need to extend the PAC-Bayes theorem to the sample compression setting (see presentation of Pascal Germain).

Conclusion

- Theorem 1, being relatively simple, represent a good starting point for an introduction to PAC-Bayes theory

Again because of its simplicity, it represents an interesting tool for developping new PAC-Bayes bounds (not necessary in binary classification under the iid assumption). Up to some convex relaxation PAC-Bayes rediscovers existing algorithms,

Conclusion

- Theorem 1, being relatively simple, represent a good starting point for an introduction to PAC-Bayes theory
- Again because of its simplicity, it represents an interesting tool for developping new PAC-Bayes bounds (not necessary in binary classification under the iid assumption).
- Up to some convex relaxation PAC-Bayes rediscovers existing algorithms,

Conclusion

- Theorem 1, being relatively simple, represent a good starting point for an introduction to PAC-Bayes theory
- Again because of its simplicity, it represents an interesting tool for developping new PAC-Bayes bounds (not necessary in binary classification under the iid assumption).
- Up to some convex relaxation PAC-Bayes rediscovers existing algorithms,
- this is nice
- and should be interesting for other paradigms than iid supervised learning. where our knowledge is not as "extended'

Conclusion

- Theorem 1, being relatively simple, represent a good starting point for an introduction to PAC-Bayes theory
- Again because of its simplicity, it represents an interesting tool for developping new PAC-Bayes bounds (not necessary in binary classification under the iid assumption).
- Up to some convex relaxation PAC-Bayes rediscovers existing algorithms,
- this is nice
- and should be interesting for other paradigms than iid supervised learning, where our knowledge is not as "extended"

Conclusion

- Theorem 1, being relatively simple, represent a good starting point for an introduction to PAC-Bayes theory
- Again because of its simplicity, it represents an interesting tool for developping new PAC-Bayes bounds (not necessary in binary classification under the iid assumption).
- Up to some convex relaxation PAC-Bayes rediscovers existing algorithms,
- this is nice
- and should be interesting for other paradigms than iid supervised learning, where our knowledge is not as "extended".

Conclusion

- Minimizing PAC-Bayes bounds seems to produce performing algorithms !!!
but these algorithms nevertheless need to have some parameter to be tune via cross-validation in order to perform as well as the state of the art

Conclusion

- Minimizing PAC-Bayes bounds seems to produce performing algorithms !!!
- but these algorithms nevertheless need to have some parameter to be tune via cross-validation in order to perform as well as the state of the art
- Why this is so ?
- Possibly because the loss of those bounds are only based on

Conclusion

- Minimizing PAC-Bayes bounds seems to produce performing algorithms !!!
- but these algorithms nevertheless need to have some parameter to be tune via cross-validation in order to perform as well as the state of the art
- Why this is so ?
- Possibly because the loss of those bounds are only based on
- The U-statistic involved here is therefore of order one,

Conclusion

- Minimizing PAC-Bayes bounds seems to produce performing algorithms !!!
- but these algorithms nevertheless need to have some parameter to be tune via cross-validation in order to perform as well as the state of the art
- Why this is so ?
- Possibly because the loss of those bounds are only based on the margin
- The U-statistic involved here is therefore of order one,

Conclusion

- Minimizing PAC-Bayes bounds seems to produce performing algorithms !!!
- but these algorithms nevertheless need to have some parameter to be tune via cross-validation in order to perform as well as the state of the art
- Why this is so ?
- Possibly because the loss of those bounds are only based on the margin
- The U-statistic involved here is therefore of order one,
- what if we consider higher order ?
- Note: PAC-Bayes bound of U-statistic of high orders will be in a non iid setting

Conclusion

- Minimizing PAC-Bayes bounds seems to produce performing algorithms !!!
- but these algorithms nevertheless need to have some parameter to be tune via cross-validation in order to perform as well as the state of the art
- Why this is so ?
- Possibly because the loss of those bounds are only based on the margin
- The U-statistic involved here is therefore of order one,
- what if we consider higher order ?
- Note: PAC-Bayes bound of U-statistic of high orders will be in a non iid setting

Conclusion

- Minimizing PAC-Bayes bounds seems to produce performing algorithms !!!
- but these algorithms nevertheless need to have some parameter to be tune via cross-validation in order to perform as well as the state of the art
- Why this is so ?
- Possibly because the loss of those bounds are only based on the margin
- The U-statistic involved here is therefore of order one,
- what if we consider higher order ?
- Note: PAC-Bayes bound of U-statistic of high orders will be in a non iid setting

QUESTIONS ?

[^0]: - This is the idea of Ralaivola et al. (2008)

