PAC-Bayes theory in supervised Learning Université Laval, Québec, Canada

François Laviolette

March 22, 2010

François Laviolette PAC-Bayes theory in supervised Learning

Today, I intend to

- present some basic mathematics that underlies the PAC-Bayes theory
- look for PAC-Bayes bound minimization algorithms and compare them with existing ones.

Today, I intend to

- present some basic mathematics that underlies the PAC-Bayes theory
- look for PAC-Bayes bound minimization algorithms and compare them with existing ones.

- Each example $(\mathbf{x}, y) \in \mathcal{X} \times \{-1, +1\}$, is drawn acc. to D.
- The (true) risk R(h) and training error $R_S(h)$ are defined as:

$$R(h) \stackrel{\text{\tiny def}}{=} \underbrace{\mathbf{E}}_{(\mathbf{x}, y) \sim D} I(h(\mathbf{x}) \neq y) \quad ; \quad R_{\mathcal{S}}(h) \stackrel{\text{\tiny def}}{=} \frac{1}{m} \sum_{i=1}^{m} I(h(\mathbf{x}_i) \neq y_i) \,.$$

• The learner's goal is to choose a **posterior distribution** Q on a space \mathcal{H} of classifiers such that the risk of the Q-weighted **majority vote** B_Q is as small as possible.

$$B_Q(\mathbf{x}) \stackrel{\text{\tiny def}}{=} \operatorname{sgn} \left[egin{matrix} \mathbf{E} & h(\mathbf{x}) \ h\sim Q & h(\mathbf{x}) \end{bmatrix}
ight]$$

• B_Q is also called the *Bayes classifier*.

- Each example $(\mathbf{x}, y) \in \mathcal{X} \times \{-1, +1\}$, is drawn acc. to D.
- The (true) risk R(h) and training error $R_S(h)$ are defined as:

$$R(h) \stackrel{\text{\tiny def}}{=} \frac{\mathbf{E}}{(\mathbf{x}, y) \sim D} I(h(\mathbf{x}) \neq y) \quad ; \quad R_{\mathcal{S}}(h) \stackrel{\text{\tiny def}}{=} \frac{1}{m} \sum_{i=1}^{m} I(h(\mathbf{x}_i) \neq y_i) \, .$$

• The learner's goal is to choose a **posterior distribution** Q on a space \mathcal{H} of classifiers such that the risk of the Q-weighted **majority vote** B_Q is as small as possible.

$$B_Q(\mathbf{x}) \stackrel{\text{\tiny def}}{=} \operatorname{sgn} \left[egin{matrix} \mathbf{E} \ h \sim Q \end{array} h(\mathbf{x})
ight]$$

• B_Q is also called the *Bayes classifier*.

- Each example $(\mathbf{x}, y) \in \mathcal{X} \times \{-1, +1\}$, is drawn acc. to D.
- The (true) risk R(h) and training error $R_S(h)$ are defined as:

$$R(h) \stackrel{\text{\tiny def}}{=} \frac{\mathbf{E}}{(\mathbf{x}, y) \sim D} I(h(\mathbf{x}) \neq y) \quad ; \quad R_{\mathcal{S}}(h) \stackrel{\text{\tiny def}}{=} \frac{1}{m} \sum_{i=1}^{m} I(h(\mathbf{x}_i) \neq y_i) \, .$$

• The learner's goal is to choose a **posterior distribution** Q on a space \mathcal{H} of classifiers such that the risk of the Q-weighted **majority vote** B_Q is as small as possible.

$$B_Q(\mathbf{x}) \stackrel{\text{\tiny def}}{=} \operatorname{sgn} \left[\begin{array}{c} \mathbf{E} \\ h \sim Q \end{array} h(\mathbf{x}) \right]$$

• B_Q is also called the *Bayes classifier*.

・ロン ・回と ・ヨン ・ヨン

- Each example $(\mathbf{x}, y) \in \mathcal{X} \times \{-1, +1\}$, is drawn acc. to D.
- The (true) risk R(h) and training error $R_S(h)$ are defined as:

$$R(h) \stackrel{\text{\tiny def}}{=} \frac{\mathbf{E}}{(\mathbf{x}, y) \sim D} I(h(\mathbf{x}) \neq y) \quad ; \quad R_{\mathcal{S}}(h) \stackrel{\text{\tiny def}}{=} \frac{1}{m} \sum_{i=1}^{m} I(h(\mathbf{x}_i) \neq y_i) \, .$$

• The learner's goal is to choose a **posterior distribution** Q on a space \mathcal{H} of classifiers such that the risk of the Q-weighted **majority vote** B_Q is as small as possible.

$$B_Q(\mathbf{x}) \stackrel{\text{def}}{=} \operatorname{sgn} \left[egin{matrix} \mathbf{E} \ h \sim Q \end{pmatrix} \right]$$

• B_Q is also called the *Bayes classifier*.

- Each example $(\mathbf{x}, y) \in \mathcal{X} \times \{-1, +1\}$, is drawn acc. to D.
- The (true) risk R(h) and training error $R_S(h)$ are defined as:

$$R(h) \stackrel{\text{\tiny def}}{=} \frac{\mathbf{E}}{(\mathbf{x}, y) \sim D} I(h(\mathbf{x}) \neq y) \quad ; \quad R_{\mathcal{S}}(h) \stackrel{\text{\tiny def}}{=} \frac{1}{m} \sum_{i=1}^{m} I(h(\mathbf{x}_i) \neq y_i) \, .$$

• The learner's goal is to choose a **posterior distribution** Q on a space \mathcal{H} of classifiers such that the risk of the Q-weighted **majority vote** B_Q is as small as possible.

$$B_Q(\mathbf{x}) \stackrel{\text{\tiny def}}{=} \operatorname{sgn} \left[egin{matrix} \mathbf{E} \ h \sim Q \end{pmatrix} \right]$$

• B_Q is also called the *Bayes classifier*.

・ロト ・ 同ト ・ ヨト ・ ヨト

Derivation of classical PAC-Bayes bound The non iid case

The Gibbs clasifier

PAC-Bayes approach does not directly bounds the risk of B_Q
It bounds the risk of the Gibbs classifier G_Q:

• The risk and the training error of G_Q are thus defined as:

$$R(G_Q) = \mathop{\mathbf{E}}_{h\sim Q} R(h) \quad ; \quad R_S(G_Q) = \mathop{\mathbf{E}}_{h\sim Q} R_S(h) \, .$$

Derivation of classical PAC-Bayes bound The non iid case

The Gibbs clasifier

- PAC-Bayes approach does not directly bounds the risk of B_Q
- It bounds the risk of the **Gibbs classifier** G_Q :

• to predict the label of x, G_Q draws h from H and predicts h(x)

• The risk and the training error of G_Q are thus defined as:

$$R(G_Q) = \mathop{\mathbf{E}}_{h\sim Q} R(h)$$
; $R_S(G_Q) = \mathop{\mathbf{E}}_{h\sim Q} R_S(h)$.

The Gibbs clasifier

- PAC-Bayes approach does not directly bounds the risk of B_Q
- It bounds the risk of the **Gibbs classifier** G_Q:
 - to predict the label of \mathbf{x} , G_Q draws h from \mathcal{H} and predicts $h(\mathbf{x})$

• The risk and the training error of *G*_Q are thus defined as:

$$R(G_Q) = \mathop{\mathbf{E}}_{h\sim Q} R(h)$$
; $R_S(G_Q) = \mathop{\mathbf{E}}_{h\sim Q} R_S(h)$.

The Gibbs clasifier

- PAC-Bayes approach does not directly bounds the risk of B_Q
- It bounds the risk of the **Gibbs classifier** G_Q :
 - to predict the label of \mathbf{x} , G_Q draws h from \mathcal{H} and predicts $h(\mathbf{x})$
- The risk and the training error of G_Q are thus defined as:

$$R(G_Q) = \mathop{\mathbf{E}}_{h\sim Q} R(h)$$
; $R_S(G_Q) = \mathop{\mathbf{E}}_{h\sim Q} R_S(h)$.

Derivation of classical PAC-Bayes bound The non iid case

G_Q, B_Q , and KL(Q||P)

- If B_Q misclassifies x, then at least half of the classifiers (under measure Q) err on x.
 - Hence: R(B_Q) ≤ 2R(G_Q)
 Thus, an upper bound on R
- PAC-Bayes makes use of a **prior distribution** P on \mathcal{H} .
- The risk bound depends on the Kullback-Leibler divergence:

$$\operatorname{KL}(Q\|P) \stackrel{\scriptscriptstyle{\mathsf{def}}}{=} \mathop{\mathbf{E}}_{h\sim Q} \ln \frac{Q(h)}{P(h)}.$$

Derivation of classical PAC-Bayes bound The non iid case

G_Q, B_Q , and KL(Q||P)

- If B_Q misclassifies x, then at least half of the classifiers (under measure Q) err on x.
 - Hence: $R(B_Q) \leq 2R(G_Q)$
 - Thus, an upper bound on R(G_Q) gives rise to an upper bound on R(B_Q)
- PAC-Bayes makes use of a **prior distribution** P on \mathcal{H} .
- The risk bound depends on the Kullback-Leibler divergence:

$$\operatorname{KL}(Q\|P) \stackrel{\scriptscriptstyle{\mathsf{def}}}{=} \mathop{\mathbf{E}}_{h\sim Q} \ln \frac{Q(h)}{P(h)}.$$

Derivation of classical PAC-Bayes bound The non iid case

G_Q, B_Q , and KL(Q||P)

- If B_Q misclassifies x, then at least half of the classifiers (under measure Q) err on x.
 - Hence: $R(B_Q) \leq 2R(G_Q)$
 - Thus, an upper bound on $R(G_Q)$ gives rise to an upper bound on $R(B_Q)$
- PAC-Bayes makes use of a **prior distribution** P on \mathcal{H} .
- The risk bound depends on the Kullback-Leibler divergence:

$$\operatorname{KL}(Q\|P) \stackrel{\scriptscriptstyle{\mathsf{def}}}{=} \operatorname{\mathbf{E}}_{h\sim Q} \ln \frac{Q(h)}{P(h)}.$$

Derivation of classical PAC-Bayes bound The non iid case

G_Q, B_Q , and KL(Q||P)

- If B_Q misclassifies x, then at least half of the classifiers (under measure Q) err on x.
 - Hence: $R(B_Q) \leq 2R(G_Q)$
 - Thus, an upper bound on $R(G_Q)$ gives rise to an upper bound on $R(B_Q)$
- PAC-Bayes makes use of a **prior distribution** P on \mathcal{H} .
- The risk bound depends on the Kullback-Leibler divergence:

$$\operatorname{KL}(Q \| P) \stackrel{\text{\tiny def}}{=} \operatorname{\mathbf{E}}_{h \sim Q} \ln \frac{Q(h)}{P(h)}.$$

Derivation of classical PAC-Bayes bound The non iid case

G_Q, B_Q , and KL(Q||P)

- If B_Q misclassifies x, then at least half of the classifiers (under measure Q) err on x.
 - Hence: $R(B_Q) \leq 2R(G_Q)$
 - Thus, an upper bound on $R(G_Q)$ gives rise to an upper bound on $R(B_Q)$
- PAC-Bayes makes use of a **prior distribution** P on \mathcal{H} .
- The risk bound depends on the Kullback-Leibler divergence:

$$\mathrm{KL}(Q\|P) \ \stackrel{\scriptscriptstyle\mathrm{def}}{=} \ \mathop{\mathbf{E}}_{h\sim Q} \ \ln \frac{Q(h)}{P(h)} \,.$$

Derivation of classical PAC-Bayes bound The non iid case

A PAC-Bayes bound to rule them all ! J.R.R. Tolkien, roughly or John Langford, less roughly.

Theorem 1 Germain et al. 2009

For any distribution D on $\mathcal{X} \times \mathcal{Y}$, for any set \mathcal{H} of classifiers, for any prior distribution P of support \mathcal{H} , for any $\delta \in (0, 1]$, and for any convex function $\mathcal{D}: [0, 1] \times [0, 1] \to \mathbb{R}$, we have

$$\Pr_{S\sim D^m} \left(\forall Q \text{ on } \mathcal{H}: \ \mathcal{D}(R_S(G_Q), R(G_Q)) \leq \frac{1}{m} \left[\operatorname{KL}(Q \| P) + \ln \left(\frac{1}{\delta} \underset{S\sim D}{\mathsf{E}} \underset{h\sim P}{\mathsf{E}} e^{m\mathcal{D}(R_S(h), R(h))} \right) \right] \right) \geq 1 - \delta.$$

- A 🗇 🕨 - A 🖻 🕨 - A 🖻 🕨

Derivation of classical PAC-Bayes bound The non iid case

A PAC-Bayes bound to rule them all ! J.R.R. Tolkien, roughly or John Langford, less roughly.

Theorem 1⁺ Lever et al (2010)

For any functions A(h), B(h) over \mathcal{H} , either of which may be a statistic of a sample S of size n, any distributions P over \mathcal{H} , any $\delta \in (0, 1]$, any t > 0, and convex function $\mathcal{D} : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$, we have

$$\Pr_{S \sim D^m} \left(\forall Q \text{ on } \mathcal{H} \colon \mathcal{D}\left(\underset{h \in Q}{\mathsf{E}} A(h), \underset{h \in Q}{\mathsf{E}} B(h) \right) \leq \frac{1}{t} \left[\operatorname{KL}(Q \| P) + \ln \left(\frac{1}{\delta} \underset{S \sim D}{\mathsf{E}} \underset{h \sim P}{\mathsf{E}} e^{t \cdot \mathcal{D}(A(h), B(h))} \right) \right] \right) \geq 1 - \delta.$$

Proof of Theorem 1

• Since $\underset{h\sim P}{\mathbf{E}} e^{m\mathcal{D}(R_S(h),R(h))}$ is a non-negative r.v., Markov's inequality gives

$$\Pr_{S \sim D^m} \left(\underbrace{\mathbf{E}}_{h \sim P} e^{m\mathcal{D}(R_{\mathcal{S}}(h), R(h))} \leq \frac{1}{\delta} \underbrace{\mathbf{E}}_{S \sim D^m} \underbrace{\mathbf{E}}_{h \sim P} e^{m\mathcal{D}(R_{\mathcal{S}}(h), R(h))} \right) \geq 1 - \delta.$$

• Hence, by taking the logarithm on each side of the inequality and by transforming the expectation over *P* into an expectation over *Q*:

$$\Pr_{\boldsymbol{S}\sim D^m}\left(\forall \boldsymbol{Q}: \ln\left[\mathop{\mathbf{E}}_{\boldsymbol{h}\sim \boldsymbol{Q}} \frac{P(\boldsymbol{h})}{Q(\boldsymbol{h})}e^{m\mathcal{D}(\boldsymbol{R}_{\boldsymbol{S}}(\boldsymbol{h}),\boldsymbol{R}(\boldsymbol{h}))}\right] \leq \ln\left[\frac{1}{\delta} \mathop{\mathbf{E}}_{\boldsymbol{S}\sim D^m} \mathop{\mathbf{E}}_{\boldsymbol{h}\sim \boldsymbol{P}} e^{m\mathcal{D}(\boldsymbol{R}_{\boldsymbol{S}}(\boldsymbol{h}),\boldsymbol{R}(\boldsymbol{h}))}\right]\right) \geq 1-\delta.$$

• Then, exploiting the fact that the logarithm is a concave function, by an application of Jensen's inequality, we obtain

$$\Pr_{\mathcal{S}\sim D^m}\left(\forall Q: \mathop{\mathbb{E}}_{h\sim Q} \ln\left[\frac{P(h)}{Q(h)}e^{m\mathcal{D}(R_{\mathcal{S}}(h),R(h))}\right] \leq \ln\left[\frac{1}{\delta} \mathop{\mathbb{E}}_{\mathcal{S}\sim D^m} \mathop{\mathbb{E}}_{h\sim P} e^{m\mathcal{D}(R_{\mathcal{S}}(h),R(h))}\right]\right) \geq 1-\delta.$$

Proof of Theorem 1

• Since $\underset{h\sim P}{\mathbf{E}} e^{m\mathcal{D}(R_S(h),R(h))}$ is a non-negative r.v., Markov's inequality gives

$$\Pr_{S \sim D^m} \left(\underbrace{\mathbf{E}}_{h \sim P} e^{m\mathcal{D}(R_{\mathcal{S}}(h), R(h))} \leq \frac{1}{\delta} \underbrace{\mathbf{E}}_{S \sim D^m} \underbrace{\mathbf{E}}_{h \sim P} e^{m\mathcal{D}(R_{\mathcal{S}}(h), R(h))} \right) \geq 1 - \delta.$$

• Hence, by taking the logarithm on each side of the inequality and by transforming the expectation over *P* into an expectation over *Q*:

$$\Pr_{\boldsymbol{S} \sim D^m} \left(\forall \boldsymbol{Q} \colon \ln \left[\underset{h \sim \boldsymbol{Q}}{\mathbf{E}} \; \frac{P(h)}{Q(h)} e^{m \mathcal{D}(\boldsymbol{R}_{\boldsymbol{S}}(h), \boldsymbol{R}(h))} \right] \leq \ln \left[\frac{1}{\delta} \underset{\boldsymbol{S} \sim D^m}{\mathbf{E}} \; \underset{h \sim \boldsymbol{P}}{\mathbf{E}} \; e^{m \mathcal{D}(\boldsymbol{R}_{\boldsymbol{S}}(h), \boldsymbol{R}(h))} \right] \right) \geq 1 - \delta \; .$$

• Then, exploiting the fact that the logarithm is a concave function, by an application of Jensen's inequality, we obtain

$$\Pr_{\mathcal{S}\sim\mathcal{D}^{m}}\left(\forall \mathcal{Q}: \underset{h\sim\mathcal{Q}}{\mathsf{E}} \ln\left[\frac{P(h)}{Q(h)}e^{m\mathcal{D}(R_{\mathcal{S}}(h),R(h))}\right] \leq \ln\left[\frac{1}{\delta} \underset{\mathcal{S}\sim\mathcal{D}^{m}}{\mathsf{E}} \underset{h\sim\mathcal{P}}{\mathsf{E}} e^{m\mathcal{D}(R_{\mathcal{S}}(h),R(h))}\right]\right) \geq 1-\delta.$$

・ロン ・回と ・ヨン ・ヨン

Proof of Theorem 1

• Since $\underset{h\sim P}{\mathbf{E}} e^{m\mathcal{D}(R_S(h),R(h))}$ is a non-negative r.v., Markov's inequality gives

$$\Pr_{S \sim D^m} \left(\underbrace{\mathbf{E}}_{h \sim P} e^{m\mathcal{D}(R_{\mathcal{S}}(h), R(h))} \leq \frac{1}{\delta} \underbrace{\mathbf{E}}_{S \sim D^m} \underbrace{\mathbf{E}}_{h \sim P} e^{m\mathcal{D}(R_{\mathcal{S}}(h), R(h))} \right) \geq 1 - \delta.$$

• Hence, by taking the logarithm on each side of the inequality and by transforming the expectation over *P* into an expectation over *Q*:

$$\Pr_{S \sim D^m} \left(\forall Q : \ln \left[\underset{h \sim Q}{\mathsf{E}} \frac{P(h)}{Q(h)} e^{m \mathcal{D}(R_{\mathsf{S}}(h), R(h))} \right] \leq \ln \left[\frac{1}{\delta} \underset{S \sim D^m}{\mathsf{E}} \underset{h \sim P}{\mathsf{E}} e^{m \mathcal{D}(R_{\mathsf{S}}(h), R(h))} \right] \right) \geq 1 - \delta.$$

• Then, exploiting the fact that the logarithm is a concave function, by an application of Jensen's inequality, we obtain

$$\Pr_{S \sim D^m} \left(\forall Q : \mathop{\mathbf{E}}_{h \sim Q} \; \ln \left[\frac{P(h)}{Q(h)} e^{m \mathcal{D}(R_{\mathcal{S}}(h), R(h))} \right] \leq \ln \left[\frac{1}{\delta} \mathop{\mathbf{E}}_{S \sim D^m} \mathop{\mathbf{E}}_{h \sim P} \; e^{m \mathcal{D}(R_{\mathcal{S}}(h), R(h))} \right] \right) \geq 1 - \delta \; .$$

Derivation of classical PAC-Bayes bound The non iid case

Proof of Theorem 1 (cont)

$$\Pr_{S \sim D^m} \left(\forall Q : \mathop{\mathbf{E}}_{h \sim Q} \ln \left[\frac{P(h)}{Q(h)} e^{m \mathcal{D}(R_{\mathcal{S}}(h), R(h))} \right] \leq \ln \left[\frac{1}{\delta} \mathop{\mathbf{E}}_{S \sim D^m} \mathop{\mathbf{E}}_{h \sim P} e^{m \mathcal{D}(R_{\mathcal{S}}(h), R(h))} \right] \right) \geq 1 - \delta.$$

• From basic logarithm properties, and from the fact that $\underset{h\sim Q}{\mathbf{E}} \ln \left[\frac{P(h)}{Q(h)} \right] \stackrel{\text{def}}{=} -\text{KL}(Q \| P), \text{ we now have}$

$$\Pr_{S \sim D^m} \left(\forall Q : -\mathrm{KL}(Q \| P) + \mathop{\mathbf{E}}_{h \sim Q} m\mathcal{D}(R_S(h), R(h)) \leq \ln \left[\frac{1}{\delta} \mathop{\mathbf{E}}_{S \sim D^m} \mathop{\mathbf{E}}_{h \sim P} e^{m\mathcal{D}(R_S(h), R(h))} \right] \right) \geq 1 - \delta .$$

 Then, since D has been supposed convexe, again by the Jensen inequality, we have

$$\mathop{\mathbf{E}}_{h\sim Q} m\mathcal{D}(R_{\mathcal{S}}(h), R(h)) = m\mathcal{D}\left(\mathop{\mathbf{E}}_{h\sim Q} R_{\mathcal{S}}(h), \mathop{\mathbf{E}}_{h\sim Q} R(h)\right).$$

which immediately implies the result.

Derivation of classical PAC-Bayes bound The non iid case

Proof of Theorem 1 (cont)

$$\Pr_{S \sim D^m} \left(\forall Q : \mathop{\mathbf{E}}_{h \sim Q} \ln \left[\frac{P(h)}{Q(h)} e^{m \mathcal{D}(R_{\mathcal{S}}(h), R(h))} \right] \leq \ln \left[\frac{1}{\delta} \mathop{\mathbf{E}}_{S \sim D^m} \mathop{\mathbf{E}}_{h \sim P} e^{m \mathcal{D}(R_{\mathcal{S}}(h), R(h))} \right] \right) \geq 1 - \delta.$$

• From basic logarithm properties, and from the fact that $\underset{h\sim Q}{\mathbf{E}} \ln \left[\frac{P(h)}{Q(h)} \right] \stackrel{\text{def}}{=} -\text{KL}(Q || P), \text{ we now have}$

$$\Pr_{S \sim D^m} \left(\forall Q : -\mathrm{KL}(Q \| P) + \mathop{\mathbf{E}}_{h \sim Q} m\mathcal{D}(R_S(h), R(h)) \leq \ln \left[\frac{1}{\delta} \mathop{\mathbf{E}}_{S \sim D^m} \mathop{\mathbf{E}}_{h \sim P} e^{m\mathcal{D}(R_S(h), R(h))} \right] \right) \geq 1 - \delta.$$

• Then, since \mathcal{D} has been supposed convexe, again by the Jensen inequality, we have

$$\mathop{\mathbf{E}}_{h\sim Q} m\mathcal{D}(R_{\mathcal{S}}(h), R(h)) = m\mathcal{D}\left(\mathop{\mathbf{E}}_{h\sim Q} R_{\mathcal{S}}(h), \mathop{\mathbf{E}}_{h\sim Q} R(h)\right),$$

which immediately implies the result.

Derivation of classical PAC-Bayes bound The non iid case

Proof of Theorem 1 (cont)

$$\Pr_{S \sim D^m} \left(\forall Q : \mathop{\mathbf{E}}_{h \sim Q} \ln \left[\frac{P(h)}{Q(h)} e^{m \mathcal{D}(R_{\mathcal{S}}(h), R(h))} \right] \leq \ln \left[\frac{1}{\delta} \mathop{\mathbf{E}}_{S \sim D^m} \mathop{\mathbf{E}}_{h \sim P} e^{m \mathcal{D}(R_{\mathcal{S}}(h), R(h))} \right] \right) \geq 1 - \delta.$$

• From basic logarithm properties, and from the fact that $\underset{h\sim Q}{\mathbf{E}} \ln \left[\frac{P(h)}{Q(h)} \right] \stackrel{\text{def}}{=} -\text{KL}(Q || P), \text{ we now have}$

$$\Pr_{S \sim D^m} \left(\forall Q : -\mathrm{KL}(Q \| P) + \mathop{\mathbf{E}}_{h \sim Q} m\mathcal{D}(R_S(h), R(h)) \leq \ln \left[\frac{1}{\delta} \mathop{\mathbf{E}}_{S \sim D^m} \mathop{\mathbf{E}}_{h \sim P} e^{m\mathcal{D}(R_S(h), R(h))} \right] \right) \geq 1 - \delta.$$

• Then, since \mathcal{D} has been supposed convexe, again by the Jensen inequality, we have

$$\mathop{\mathbf{E}}_{h\sim Q} m\mathcal{D}(R_{\mathcal{S}}(h),R(h)) = m\mathcal{D}\left(\mathop{\mathbf{E}}_{h\sim Q} R_{\mathcal{S}}(h),\mathop{\mathbf{E}}_{h\sim Q} R(h)\right),$$

which immediately implies the result.

Derivation of classical PAC-Bayes bound The non iid case

Applicability of Theorem 1

How can we estimate
$$\ln \left[\frac{1}{\delta} \mathop{\mathbf{E}}_{S \sim D^m} \mathop{\mathbf{E}}_{h \sim P} e^{m \mathcal{D}(R_S(h), R(h))} \right]$$
?

・ロト ・回ト ・ヨト ・ヨト

3

Derivation of classical PAC-Bayes bound The non iid case

The Seeger's bound (2002)

Seeger Bound

For any D, any \mathcal{H} , any P of support \mathcal{H} , any $\delta \in (0,1]$, we have

$$\Pr_{S \sim D^m} \left(\forall Q \text{ on } \mathcal{H}: \ \operatorname{kl}(R_S(G_Q), R(G_Q)) \leq \frac{1}{m} \left[\operatorname{KL}(Q \| P) + \ln \frac{\xi(m)}{\delta} \right] \right) \geq 1 - \delta ,$$

where $\operatorname{kl}(q,p) \stackrel{\text{\tiny def}}{=} q \ln \frac{q}{p} + (1-q) \ln \frac{1-q}{1-p}$, and where $\xi(m) \stackrel{\text{\tiny def}}{=} \sum_{k=0}^{m} {m \choose k} (k/m)^{k} (1-k/m)^{m-k}$.

• Note: $\xi(m) \in \Theta(\sqrt{m})$ and $\xi(m) \le m+1$

・ロン ・回 と ・ 回 と ・ 回 と

Derivation of classical PAC-Bayes bound The non iid case

The Seeger's bound (2002)

Seeger Bound

For any D, any \mathcal{H} , any P of support \mathcal{H} , any $\delta \in (0,1]$, we have

$$\Pr_{S \sim D^m} \left(\forall Q \text{ on } \mathcal{H} \colon \operatorname{kl}(R_S(G_Q), R(G_Q)) \leq \frac{1}{m} \left[\operatorname{KL}(Q \| P) + \ln \frac{\xi(m)}{\delta} \right] \right) \geq 1 - \delta,$$

where $\operatorname{kl}(q,p) \stackrel{\text{def}}{=} q \ln \frac{q}{p} + (1-q) \ln \frac{1-q}{1-p}$, and where $\xi(m) \stackrel{\text{def}}{=} \sum_{k=0}^{m} {m \choose k} (k/m)^{k} (1-k/m)^{m-k}$.

• Note: $\xi(m)\in \ \Theta(\sqrt{m})$ and $\xi(m)\leq m+1$

イロト イポト イヨト イヨト 三日

Derivation of classical PAC-Bayes bound The non iid case

Graphical illustration of the Seeger bound

François Laviolette PAC-Bayes theory in supervised Learning

Derivation of classical PAC-Bayes bound The non iid case

Proof of the Seeger bound

Follows immediately from Theorem 1 by choosing $\mathcal{D}(q, p) = \mathrm{kl}(q, p)$.

• Indeed, in that case we have

$$\begin{split} \underset{\sim D^{m}}{\mathsf{E}} & \underset{\sim P}{\mathsf{E}} e^{m\mathcal{D}(R_{S}(h),R(h))} &= \underset{h\sim P}{\mathsf{E}} \underbrace{\mathsf{E}}_{S\sim D^{m}} \left(\frac{R_{S}(h)}{R(h)}\right)^{mR_{S}(h)} \left(\frac{1-R_{S}(h)}{1-R(h)}\right)^{m(1-R_{S}(h))} \\ &= \underset{h\sim P}{\mathsf{E}} \sum_{k=0}^{m} \sum_{S\sim D^{m}}^{\Pr} \left(R_{S}(h) = \frac{k}{m}\right) \left(\frac{k}{R(h)}\right)^{k} \left(\frac{1-\frac{k}{m}}{1-R(h)}\right)^{m-k} \\ &= \sum_{k=0}^{m} {m \choose k} (k/m)^{k} (1-k/m)^{m-k}, \qquad (1) \\ &\leq m+1. \end{split}$$

- Note that, in Line (1) of the proof, $\Pr_{S \sim D^m} (R_S(h) = \frac{k}{m})$ is replaced by the probability mass function of the binomial.
- This is only true if the examples of S are drawn iid. (i.e., $S \sim D^m$)
- So this result is no longuer valid in the non iid case, even if Theorem 1 is.

・ロト ・回ト ・ヨト ・ヨト

Derivation of classical PAC-Bayes bound The non iid case

Proof of the Seeger bound

Follows immediately from Theorem 1 by choosing $\mathcal{D}(q, p) = \mathrm{kl}(q, p)$.

Indeed, in that case we have

$$\begin{split} \underset{S \sim D^{m}}{\overset{\mathbf{E}}{}_{h \sim P}} e^{m\mathcal{D}(R_{S}(h),R(h))} &= \underset{h \sim P}{\overset{\mathbf{E}}{}_{S \sim D^{m}}} \left(\frac{R_{S}(h)}{R(h)} \right)^{mR_{S}(h)} \left(\frac{1-R_{S}(h)}{1-R(h)} \right)^{m(1-R_{S}(h))} \\ &= \underset{h \sim P}{\overset{\mathbf{E}}{}_{S \sim D^{m}}} \sum_{s \sim D^{m}}^{m} \left(R_{S}(h) = \frac{k}{m} \right) \left(\frac{k}{m} \right)^{k} \left(\frac{1-\frac{k}{m}}{1-R(h)} \right)^{m-k} \\ &= \underset{k \sim P}{\overset{m}{}_{S \sim D^{m}}} \left(\binom{m}{k} \right) (k/m)^{k} (1-k/m)^{m-k} , \end{split}$$

$$\end{split}$$

- Note that, in Line (1) of the proof, $\Pr_{S \sim D^m} (R_S(h) = \frac{k}{m})$ is replaced by the probability mass function of the binomial.
- This is only true if the examples of S are drawn iid. (i.e., $S \sim D^m$)
- So this result is no longuer valid in the non iid case, even if Theorem 1 is.

・ロン ・回と ・ヨン ・ヨン

Derivation of classical PAC-Bayes bound The non iid case

Proof of the Seeger bound

Follows immediately from Theorem 1 by choosing $\mathcal{D}(q, p) = \mathrm{kl}(q, p)$.

Indeed, in that case we have

$$\begin{split} \underset{S \sim D^{m}}{\overset{\mathbf{E}}{}_{h \sim P}} & e^{m\mathcal{D}(R_{S}(h),R(h))} &= \underset{h \sim P}{\overset{\mathbf{E}}{}_{S \sim D^{m}}} \underbrace{\underset{R(h)}{\overset{\mathbf{E}}{}_{R(h)}}}_{R(h)} \binom{1-R_{S}(h)}{(1-R(h))}^{m(1-R_{S}(h))} \\ &= \underset{h \sim P}{\overset{\mathbf{E}}{}_{S \sim D^{m}}} \sum_{s \sim D^{m}}^{m} \Big(R_{S}(h) = \frac{k}{m} \Big) \Big(\frac{k}{m} \Big)^{k} \Big(\frac{1-\frac{k}{m}}{1-R(h)} \Big)^{m-k} \\ &= \underset{k \sim P}{\overset{m}{}_{S \sim D^{m}}} \binom{m}{k} (k/m)^{k} (1-k/m)^{m-k} , \end{split}$$
(1)
$$&\leq m+1 .$$

- Note that, in Line (1) of the proof, $\Pr_{S \sim D^m} (R_S(h) = \frac{k}{m})$ is replaced by the probability mass function of the binomial.
- This is only true if the examples of S are drawn iid. (i.e., $S \sim D^m$)
- So this result is no longuer valid in the non iid case, even if Theorem 1 is.

・ロン ・回と ・ヨン ・ヨン

Derivation of classical PAC-Bayes bound The non iid case

Proof of the Seeger bound

Follows immediately from Theorem 1 by choosing $\mathcal{D}(q,p) = \mathrm{kl}(q,p)$.

• Indeed, in that case we have

$$\begin{split} \underset{S \sim D^{m}}{\overset{\mathbf{E}}{}_{h \sim P}} & e^{m\mathcal{D}(R_{S}(h),R(h))} &= \underset{h \sim P}{\overset{\mathbf{E}}{}_{S \sim D^{m}}} \underbrace{\underset{R(h)}{\overset{\mathbf{E}}{}_{R(h)}}}_{R(h)} \binom{1-R_{S}(h)}{(1-R(h))}^{m(1-R_{S}(h))} \\ &= \underset{h \sim P}{\overset{\mathbf{E}}{}_{S \sim D^{m}}} \sum_{s \sim D^{m}}^{m} \Big(R_{S}(h) = \frac{k}{m} \Big) \Big(\frac{k}{m} \Big)^{k} \Big(\frac{1-\frac{k}{m}}{1-R(h)} \Big)^{m-k} \\ &= \underset{k \sim P}{\overset{m}{}_{S \sim D^{m}}} \binom{m}{k} (k/m)^{k} (1-k/m)^{m-k} , \end{split}$$
(1)
$$&\leq m+1 .$$

- Note that, in Line (1) of the proof, $\Pr_{S \sim D^m} (R_S(h) = \frac{k}{m})$ is replaced by the probability mass function of the binomial.
- This is only true if the examples of S are drawn iid. (i.e., $S \sim D^m$)

• So this result is no longuer valid in the non iid case, even if Theorem 1 is.

Derivation of classical PAC-Bayes bound The non iid case

Proof of the Seeger bound

Follows immediately from Theorem 1 by choosing $\mathcal{D}(q, p) = \mathrm{kl}(q, p)$.

• Indeed, in that case we have

$$\begin{split} \sum_{S \sim D^{m}}^{E} \sum_{h \sim P}^{E} e^{m \mathcal{D}(R_{S}(h), R(h))} &= \sum_{h \sim P}^{E} \sum_{S \sim D^{m}}^{E} \left(\frac{R_{S}(h)}{R(h)}\right)^{m R_{S}(h)} \left(\frac{1 - R_{S}(h)}{1 - R(h)}\right)^{m(1 - R_{S}(h))} \\ &= \sum_{h \sim P}^{E} \sum_{k=0}^{m} \Pr_{S \sim D^{m}} \left(R_{S}(h) = \frac{k}{m}\right) \left(\frac{k}{R(h)}\right)^{k} \left(\frac{1 - \frac{k}{m}}{1 - R(h)}\right)^{m-k} \\ &= \sum_{k=0}^{m} {m \choose k} (k/m)^{k} (1 - k/m)^{m-k}, \end{split}$$
(1)
$$\leq m + 1.$$

- Note that, in Line (1) of the proof, $\Pr_{S \sim D^m} (R_S(h) = \frac{k}{m})$ is replaced by the probability mass function of the binomial.
- This is only true if the examples of S are drawn iid. (i.e., $S \sim D^m$)
- So this result is no longuer valid in the non iid case, even if Theorem 1 is.

イロン イヨン イヨン イヨン

Derivation of classical PAC-Bayes bound The non iid case

The McAllester's bound (1998)

Put $\mathcal{D}(q,p) = \frac{1}{2}(q-p)^2$, Theorem 1 then gives

McAllester Bound

For any \mathcal{D} , any \mathcal{H} , any \mathcal{P} of support \mathcal{H} , any $\delta \in (0,1]$, we have

$$\Pr_{S \sim D^m} \left(\forall Q \text{ on } \mathcal{H} \colon \frac{1}{2} (R_S(G_Q), R(G_Q))^2 \leq \frac{1}{m} \left[\operatorname{KL}(Q \| P) + \ln \frac{\xi(m)}{\delta} \right] \right) \geq 1 - \delta \,,$$

where $\operatorname{kl}(q,p) \stackrel{\text{def}}{=} q \ln \frac{q}{p} + (1-q) \ln \frac{1-q}{1-p}$, and where $\xi(m) \stackrel{\text{def}}{=} \sum_{k=0}^{m} {m \choose k} (k/m)^{k} (1-k/m)^{m-k}$.

• Note: $\xi(m) \in \Theta(\sqrt{m})$ and $\xi(m) \le m+1$

・ロン ・四 と ・ ヨ と ・ ヨ と …

Derivation of classical PAC-Bayes bound The non iid case

The McAllester's bound (1998)

Put $\mathcal{D}(q,p) = \frac{1}{2}(q-p)^2$, Theorem 1 then gives

McAllester Bound

For any \mathcal{D} , any \mathcal{H} , any \mathcal{P} of support \mathcal{H} , any $\delta \in (0,1]$, we have

$$\Pr_{S \sim D^m} \left(\forall Q \text{ on } \mathcal{H} \colon \frac{1}{2} (R_S(G_Q), R(G_Q))^2 \leq \frac{1}{m} \left[\operatorname{KL}(Q \| P) + \ln \frac{\xi(m)}{\delta} \right] \right) \geq 1 - \delta \,,$$

where $\operatorname{kl}(q,p) \stackrel{\text{def}}{=} q \ln \frac{q}{p} + (1-q) \ln \frac{1-q}{1-p}$, and where $\xi(m) \stackrel{\text{def}}{=} \sum_{k=0}^{m} {m \choose k} (k/m)^{k} (1-k/m)^{m-k}$.

• Note: $\xi(m)\in~\Theta(\sqrt{m})$ and $\xi(m)\leq m+1$

・ロン ・四 と ・ ヨ と ・ ヨ と …

Derivation of classical PAC-Bayes bound The non iid case

The Catoni's bound (2004)

In Theorem 1, let $\mathcal{D}(q,p) = \mathcal{F}(p) - \mathcal{C} \cdot q$., then

Catoni's bound

For any D, any \mathcal{H} , any P of support \mathcal{H} , any $\delta \in (0, 1]$, and any positive real number C, we have

$$\Pr_{\sim D^m} \begin{pmatrix} \forall Q \text{ on } \mathcal{H}:\\ R(G_Q) \leq \frac{1}{1 - e^{-C}} \left\{ 1 - \exp\left[-\left(C \cdot R_S(G_Q) + \frac{1}{m} \left[\operatorname{KL}(Q \| P) + \ln \frac{1}{\delta} \right] \right) \right] \right\} \geq 1 - \delta.$$

• Because,

 $\mathop{\mathbf{E}}_{S \sim D^m} \mathop{\mathbf{E}}_{h \sim P} e^{m \mathcal{D}(R_S(h), R(h))} = \mathop{\mathbf{E}}_{h \sim P} e^{m \mathcal{F}(R(h))} \big(R(h) e^{-C} + (1 - R(h)) \big)^m.$

(日) (同) (E) (E) (E)

Derivation of classical PAC-Bayes bound The non iid case

The Catoni's bound (2004)

In Theorem 1, let
$$\mathcal{D}(q,p) = \mathcal{F}(p) - C \cdot q$$
., then

Catoni's bound

For any D, any \mathcal{H} , any P of support \mathcal{H} , any $\delta \in (0, 1]$, and any positive real number C, we have

$$\Pr_{S \sim D^m} \begin{pmatrix} \forall Q \text{ on } \mathcal{H} :\\ R(G_Q) \leq \frac{1}{1 - e^{-C}} \left\{ 1 - \exp\left[-\left(C \cdot R_S(G_Q) \right. \right. \right. \\ \left. + \frac{1}{m} \left[\operatorname{KL}(Q \| P) + \ln \frac{1}{\delta} \right] \right) \right] \right\} \right) \geq 1 - \delta.$$

• Because,

 $\mathop{\mathbf{E}}_{S\sim D^m} \mathop{\mathbf{E}}_{h\sim P} e^{m \mathcal{D}(R_{\mathcal{S}}(h), R(h))} = \mathop{\mathbf{E}}_{h\sim P} e^{m \mathcal{F}(R(h))} \big(R(h) e^{-C} + (1-R(h)) \big)^m.$

ヘロン 人間と 人間と 人間と

Derivation of classical PAC-Bayes bound The non iid case

The Catoni's bound (2004)

In Theorem 1, let
$$\mathcal{D}(q,p) = \mathcal{F}(p) - C \cdot q$$
., then

Catoni's bound

For any D, any \mathcal{H} , any P of support \mathcal{H} , any $\delta \in (0, 1]$, and any positive real number C, we have

$$\Pr_{S \sim D^m} \begin{pmatrix} \forall Q \text{ on } \mathcal{H} :\\ R(G_Q) \leq \frac{1}{1 - e^{-C}} \left\{ 1 - \exp\left[-\left(C \cdot R_S(G_Q) \right) + \frac{1}{m} \left[\operatorname{KL}(Q \| P) + \ln \frac{1}{\delta} \right] \right) \right\} \end{pmatrix} \geq 1 - \delta.$$

Because,

$$\mathop{\mathbf{E}}_{S\sim D^m} \mathop{\mathbf{E}}_{h\sim P} e^{m\mathcal{D}(R_S(h),R(h))} = \mathop{\mathbf{E}}_{h\sim P} e^{m\mathcal{F}(R(h))} \big(R(h)e^{-C} + (1-R(h))\big)^m$$

・ロト ・同ト ・ヨト ・ヨト

Derivation of classical PAC-Bayes bound The non iid case

Observations about Catoni's bound

• G_Q is minimizing the Catoni's bound iff it minimizes the following cost function (linear in $R_S(G_Q)$):

$C\,m\,R_S(G_Q)+\mathrm{KL}(Q\|P)$

- We have a **hyperparameter** *C* to tune (in contrast with the Seeger' bound).
- Seeger' bound gives a bound which is always tighter except for a narrow range of *C* values.
 - In fact, if we would replace ξ(m) by one, LS-bound would always be a tighter.

・ロン ・回と ・ヨン・

Derivation of classical PAC-Bayes bound The non iid case

Observations about Catoni's bound

• G_Q is minimizing the Catoni's bound iff it minimizes the following cost function (linear in $R_S(G_Q)$):

 $C\,m\,R_S(G_Q) + \mathrm{KL}(Q\|P)$

- We have a **hyperparameter** *C* to tune (in contrast with the Seeger' bound).
- Seeger' bound gives a bound which is always tighter except for a narrow range of *C* values.
 - In fact, if we would replace ξ(m) by one, LS-bound would always be a tighter.

・ロン ・回と ・ヨン ・ヨン

Derivation of classical PAC-Bayes bound The non iid case

Observations about Catoni's bound

• G_Q is minimizing the Catoni's bound iff it minimizes the following cost function (linear in $R_S(G_Q)$):

 $C\,m\,R_S(G_Q) + \mathrm{KL}(Q\|P)$

- We have a **hyperparameter** *C* to tune (in contrast with the Seeger' bound).
- Seeger' bound gives a bound which is always tighter except for a narrow range of *C* values.
 - In fact, if we would replace ξ(m) by one, LS-bound would always be a tighter.

・ロト ・回ト ・ヨト ・ヨトー

Derivation of classical PAC-Bayes bound The non iid case

Observations about Catoni's bound (cont)

• Given any prior *P*, the posterior *Q*^{*} minimizing the bound of Catoni's bound is given by the Boltzman distribution:

$$Q^*(h) = \frac{1}{Z}P(h)e^{-C \cdot mR_{\mathcal{S}}(h)}$$

- We could sample Q* by Markov Chain Monté Carlo.
 - But the mixing time being unknown, we have few control over the precision of the approximation.
- To avoid MCMC, let us analyse the case where *Q* is chosen from a **parameterized set of distributions** over the (continuous) space of **linear classifiers**.

Derivation of classical PAC-Bayes bound The non iid case

Observations about Catoni's bound (cont)

• Given any prior *P*, the posterior *Q*^{*} minimizing the bound of Catoni's bound is given by the Boltzman distribution:

$$Q^*(h) = \frac{1}{Z}P(h)e^{-C \cdot mR_{\mathcal{S}}(h)}$$

- We could sample Q* by Markov Chain Monté Carlo.
 - But the mixing time being unknown, we have few control over the precision of the approximation.
- To avoid MCMC, let us analyse the case where *Q* is chosen from a **parameterized set of distributions** over the (continuous) space of **linear classifiers**.

Derivation of classical PAC-Bayes bound The non iid case

Observations about Catoni's bound (cont)

• Given any prior *P*, the posterior *Q*^{*} minimizing the bound of Catoni's bound is given by the Boltzman distribution:

$$Q^*(h) = \frac{1}{Z}P(h)e^{-C \cdot mR_S(h)}$$

- We could sample Q* by Markov Chain Monté Carlo.
 - But the mixing time being unknown, we have few control over the precision of the approximation.
- To avoid MCMC, let us analyse the case where Q is chosen from a **parameterized set of distributions** over the (continuous) space of **linear classifiers**.

・ロト ・ 同ト ・ ヨト ・ ヨト

Derivation of classical PAC-Bayes bound The non iid case

Bounding $\underset{S \sim \tilde{D}}{\mathsf{E}} \underset{h \sim P}{\mathsf{E}} e^{m\mathcal{D}(R_{S}(h),R(h))}$: other ways

• via concentration inequality

- used in the original proof of Seeger (and in the one due to Langford).
- used by Higgs (2009) to generalized the Seeger's bound the the transductive case
- used by Ralaivola et al. (2008) for the non iid case.
- via martingales
 - used by Lever et al (2010) to generalized PAC-Bayes bound to U-statistics of order > 1. (See later on in this workshop)

(a)

Derivation of classical PAC-Bayes bound The non iid case

Bounding $\underset{S \sim \tilde{D}}{\mathsf{E}} \underset{h \sim P}{\mathsf{E}} e^{m\mathcal{D}(R_{S}(h),R(h))}$: other ways

via concentration inequality

- used in the original proof of Seeger (and in the one due to Langford).
- used by Higgs (2009) to generalized the Seeger's bound the the transductive case
- used by Ralaivola et al. (2008) for the non iid case.
- via martingales
 - used by Lever et al (2010) to generalized PAC-Bayes bound to U-statistics of order > 1. (See later on in this workshop)

Derivation of classical PAC-Bayes bound The non iid case

Bounding $\underset{S \sim \tilde{D}}{\mathsf{E}} \underset{h \sim P}{\mathsf{E}} e^{m\mathcal{D}(R_{S}(h),R(h))}$: other ways

- via concentration inequality
 - used in the original proof of Seeger (and in the one due to Langford).
 - used by Higgs (2009) to generalized the Seeger's bound the the transductive case
 - used by Ralaivola et al. (2008) for the non iid case.
- via martingales
 - used by Lever et al (2010) to generalized PAC-Bayes bound to U-statistics of order > 1. (See later on in this workshop)

Derivation of classical PAC-Bayes bound The non iid case

Bounding $\underset{S \sim \tilde{D}}{\mathsf{E}} \underset{h \sim P}{\mathsf{E}} e^{m\mathcal{D}(R_S(h),R(h))}$: other ways

- via concentration inequality
 - used in the original proof of Seeger (and in the one due to Langford).
 - used by Higgs (2009) to generalized the Seeger's bound the the transductive case
 - used by Ralaivola et al. (2008) for the non iid case.
- via martingales
 - used by Lever et al (2010) to generalized PAC-Bayes bound to U-statistics of order > 1. (See later on in this workshop)

Derivation of classical PAC-Bayes bound The non iid case

Bounding $\underset{S \sim \tilde{D}}{\mathsf{E}} \underset{h \sim P}{\mathsf{E}} e^{m\mathcal{D}(R_{S}(h),R(h))}$: other ways

- via concentration inequality
 - used in the original proof of Seeger (and in the one due to Langford).
 - used by Higgs (2009) to generalized the Seeger's bound the the transductive case
 - used by Ralaivola et al. (2008) for the non iid case.
- via martingales
 - used by Lever et al (2010) to generalized PAC-Bayes bound to U-statistics of order > 1. (See later on in this workshop)

Derivation of classical PAC-Bayes bound The non iid case

Bounding $\underset{S \sim \tilde{D}}{\mathsf{E}} \underset{h \sim P}{\mathsf{E}} e^{m\mathcal{D}(R_{S}(h),R(h))}$: other ways

- via concentration inequality
 - used in the original proof of Seeger (and in the one due to Langford).
 - used by Higgs (2009) to generalized the Seeger's bound the the transductive case
 - used by Ralaivola et al. (2008) for the non iid case.
- via martingales
 - used by Lever et al (2010) to generalized PAC-Bayes bound to U-statistics of order > 1. (See later on in this workshop)

・ロト ・ 同ト ・ ヨト ・ ヨト

Derivation of classical PAC-Bayes bound The non iid case

Supervised learning in the non iid case

• Given a training set of *m* examples

$$S \stackrel{\text{\tiny def}}{=} \{ (\mathbf{x}_1, y_1) \dots (\mathbf{x}_m, y_m) \}$$

where each generated according to a (unknown) distribution \tilde{D} over the set $(\mathcal{X} \times \mathcal{Y})^m$ of all possible labeled examples.

• in the traditionnal iid case, the goal of the **learner** is, to try to find a **classifier** *h* with the smallest possible **risk** *R*(*h*)

$$R(h) \stackrel{ ext{def}}{=} \; \mathop{ extsf{E}}_{S \sim D} rac{1}{|S|} \sum_{(\mathbf{x},y) \in S} l(h(\mathbf{x})
eq y) \quad ig(
eq \mathop{ extsf{Pr}}_{(\mathbf{x},y) \sim D} \; ig\{h(\mathbf{x})
eq yig\} ig).$$

• And the question is again: What should the learner optimize on *S* to obtain a classifier *h* having the smallest possible risk *R*(*h*)?

Derivation of classical PAC-Bayes bound The non iid case

Supervised learning in the non iid case

• Given a training set of *m* examples

$$S \stackrel{\text{\tiny def}}{=} \{ (\mathbf{x}_1, y_1) \dots (\mathbf{x}_m, y_m) \}$$

where each generated according to a (unknown) distribution \tilde{D} over the set $(\mathcal{X} \times \mathcal{Y})^m$ of all possible labeled examples.

• in the traditionnal iid case, the goal of the **learner** is, to try to find a **classifier** *h* with the smallest possible **risk** *R*(*h*)

$$R(h) \stackrel{\text{def}}{=} \frac{\mathbf{E}}{S \sim D} \frac{1}{|S|} \sum_{(\mathbf{x}, y) \in S} I(h(\mathbf{x}) \neq y) \quad (\neq \Pr_{(\mathbf{x}, y) \sim D} \{h(\mathbf{x}) \neq y\}).$$

And the question is again: What should the learner optimize on S to obtain a classifier h having the smallest possible risk R(h)?

Derivation of classical PAC-Bayes bound The non iid case

Supervised learning in the non iid case

• Given a training set of *m* examples

$$S \stackrel{\text{\tiny def}}{=} \{ (\mathbf{x}_1, y_1) \dots (\mathbf{x}_m, y_m) \}$$

where each generated according to a (unknown) distribution \tilde{D} over the set $(\mathcal{X} \times \mathcal{Y})^m$ of all possible labeled examples.

• in the traditionnal iid case, the goal of the **learner** is, to try to find a **classifier** *h* with the smallest possible **risk** *R*(*h*)

$$R(h) \stackrel{\text{def}}{=} \frac{\mathbf{E}}{S \sim D} \frac{1}{|S|} \sum_{(\mathbf{x}, y) \in S} I(h(\mathbf{x}) \neq y) \quad (\neq \Pr_{(\mathbf{x}, y) \sim D} \{h(\mathbf{x}) \neq y\}).$$

And the question is again: What should the learner optimize on S to obtain a classifier h having the smallest possible risk R(h)?

Derivation of classical PAC-Bayes bound The non iid case

The problem of bounding

$$\mathbf{E}_{\mathcal{D}} \mathbf{E}_{h \sim P} e^{m \mathcal{D}(R_{\mathcal{S}}(h), R(h))}$$

Theorem 1

For any distribution D_0 , for any set \mathcal{H} of classifiers, for any prior distribution P of support \mathcal{H} , for any $\delta \in (0, 1]$, and for any convex function $\mathcal{D}: [0, 1] \times [0, 1] \to \mathbb{R}$, we have

 S_{\prime}

$$\begin{split} \Pr_{S \sim D} & \left(\forall Q \text{ on } \mathcal{H} \colon \mathcal{D}(R_S(G_Q), R(G_Q)) \leq \\ & \frac{1}{m} \left[\mathrm{KL}(Q \| P) + \ln \left(\frac{1}{\delta} \sup_{S \sim \tilde{D}} \sum_{h \sim P} e^{m \mathcal{D}(R_S(h), R(h))} \right) \right] \right) \geq 1 - \delta \,. \end{split}$$

• We will here restrict ourself to the particular non iid case where there exists a function g, and an integer $n \le m$ such that the \tilde{D} -drawing of a training set is of the form $S = g(\mathbf{Z}_1, \dots, \mathbf{Z}_n)$ for some pairewise independent random variables $\mathbf{Z}_i \in \mathbb{Z}$'s.

Derivation of classical PAC-Bayes bound The non iid case

The problem of bounding

$$\mathbf{E} \mathbf{E}_{h \sim P} e^{m \mathcal{D}(R_{\mathcal{S}}(h), R(h))}$$

Theorem 1

For any distribution D_0 , for any set \mathcal{H} of classifiers, for any prior distribution P of support \mathcal{H} , for any $\delta \in (0, 1]$, and for any convex function $\mathcal{D}: [0, 1] \times [0, 1] \to \mathbb{R}$, we have

S

$$\Pr_{S \sim D} \left(\forall Q \text{ on } \mathcal{H} \colon \mathcal{D}(R_{S}(G_{Q}), R(G_{Q})) \leq \frac{1}{m} \left[\operatorname{KL}(Q \| P) + \ln \left(\frac{1}{\delta} \underset{S \sim \tilde{D}}{\mathsf{E}} \underset{h \sim P}{\mathsf{E}} e^{m \mathcal{D}(R_{S}(h), R(h))} \right) \right] \right) \geq 1 - \delta.$$

We will here restrict ourself to the particular non iid case where there exists a function g, and an integer n ≤ m such that the *D*-drawing of a training set is of the form S = g(Z₁,..., Z_n) for some pairewise independent random variables Z_i ∈ Z's.

- Another approach is to directly take advantage of the assumption that there exists a function g, and an integer $n \leq m$ such that the D-drawing of a training set is of the form $S = g(\mathbf{Z}_1, \ldots, \mathbf{Z}_n)$ for some pairewise independent random variables $\mathbf{Z}_i \in \mathcal{Z}$'s,
- Indeed, we can then subdivise S in various iid subsets S_j, togheter with weights ω_j such that each example (x_i, y_i), the total of the weights associate with the S_j's that contain (x_i, y_i) is 1.
- This is the idea of Ralaivola et al. (2008)
- Based on this idea, Theorem 1 can be restated as follows.

- Another approach is to directly take advantage of the assumption that there exists a function g, and an integer $n \leq m$ such that the D-drawing of a training set is of the form $S = g(\mathbf{Z}_1, \ldots, \mathbf{Z}_n)$ for some pairewise independent random variables $\mathbf{Z}_i \in \mathcal{Z}$'s,
- Indeed, we can then subdivise S in various iid subsets S_j, togheter with weights ω_j such that each example (**x**_i, y_i), the total of the weights associate with the S_j's that contain (**x**_i, y_i) is 1.
- This is the idea of Ralaivola et al. (2008)
- Based on this idea, Theorem 1 can be restated as follows.

- Another approach is to directly take advantage of the assumption that there exists a function g, and an integer $n \leq m$ such that the D-drawing of a training set is of the form $S = g(\mathbf{Z}_1, \ldots, \mathbf{Z}_n)$ for some pairewise independent random variables $\mathbf{Z}_i \in \mathcal{Z}$'s,
- Indeed, we can then subdivise S in various iid subsets S_j, togheter with weights ω_j such that each example (**x**_i, y_i), the total of the weights associate with the S_j's that contain (**x**_i, y_i) is 1.
- This is the idea of Ralaivola et al. (2008)
- Based on this idea, Theorem 1 can be restated as follows.

- Another approach is to directly take advantage of the assumption that there exists a function g, and an integer $n \leq m$ such that the D-drawing of a training set is of the form $S = g(\mathbf{Z}_1, \ldots, \mathbf{Z}_n)$ for some pairewise independent random variables $\mathbf{Z}_i \in \mathcal{Z}$'s,
- Indeed, we can then subdivise S in various iid subsets S_j, togheter with weights ω_j such that each example (**x**_i, y_i), the total of the weights associate with the S_j's that contain (**x**_i, y_i) is 1.
- This is the idea of Ralaivola et al. (2008)
- Based on this idea, Theorem 1 can be restated as follows.

・ロト ・ 同ト ・ ヨト ・ ヨト

Theorem 1 (revisited)

- Suppose that from any training set S drawn according to D, there is a (S_j, ω_j)_{j=1,..n} that are only defined based on the indices of elements of S is such that
 - S_j is iid and a subset of S for all j = 1, .., n
 - $\sum_{i=1}^{n} \omega_j I((\mathbf{x}_i, y_i) \in S_j) = 1$ for all i = 1, ..., m.

Theorem 1 (revisited for the non iid case)

For any distribution D, for any set \mathcal{H} of classifiers, for any prior distribution $P1,...,P_n$ of support \mathcal{H} , for any $\delta \in (0,1]$, and for any convex function $\mathcal{D}: [0,1] \times [0,1] \to \mathbb{R}$, we have

$$\Pr_{S\sim D}\left(\forall Q_1, ...Q_n \text{ on } \mathcal{H}: \mathcal{D}\left(\sum_{j=1}^n \frac{\omega_j}{\sum \omega_j} R_S(G_{Q_j}), \sum_{j=1}^n \frac{\omega_j}{\sum \omega_j} R(G_{Q_j})\right) \leq \frac{\sum_{j=1}^n \omega_j}{m} \left[\frac{\omega_j}{\sum_{j=1}^n \omega_j} \operatorname{KL}(Q_j \| P_j) + \ln\left(\frac{1}{\delta} \underset{S\sim D}{\mathsf{E}} \underset{h\sim P}{\mathsf{E}} \sum_{j=1}^n e^{m|S_j|\mathcal{D}(R_{S_j}(h_j), R(h_j))}\right)\right]\right) \geq 1-\delta.$$

・ロン ・回と ・ヨン・

The problem of bounding $R(G_Q)$ instead of $R(B_Q)$

The main problem PAC-Bayes theory is the fact that it allows us to bound the Gibbs risk but, most of the time, it is the Bayes risk we are in. To this problem I will discuss here two possible answers:

- Answer#1: if a non too small "part" of the classifier of H are strong, then one can obtained a quiet tight bound (exemple: if H is the set of all linear classifiers in a high-dimensional feature vectors space, like in SVM)
- Answer#2: otherwise, extend the PAC-Bayes bound to something else than the Gibbs's Risk

・ロト ・回ト ・ヨト ・ヨトー

The problem of bounding $R(G_Q)$ instead of $R(B_Q)$

The main problem PAC-Bayes theory is the fact that it allows us to bound the Gibbs risk but, most of the time, it is the Bayes risk we are in. To this problem I will discuss here two possible answers:

- Answer#1: if a non too small "part" of the classifier of H are strong, then one can obtained a quiet tight bound (exemple: if H is the set of all linear classifiers in a high-dimensional feature vectors space, like in SVM)
- Answer#2: otherwise, extend the PAC-Bayes bound to something else than the Gibbs's Risk

Specialization to Linear classifiers Majority votes of weak classifiers Answer # 1: go back to linear classifier specialization Answer # 2: PAC-Bayes on a general loss function

イロン 不同と 不同と 不同と

Specialization to Linear classifiers

• Each **x** is mapped to a high-dimensional feature vector $\phi(\mathbf{x})$:

$$\boldsymbol{\phi}(\mathbf{x}) \stackrel{\text{\tiny def}}{=} (\phi_1(\mathbf{x}), \dots, \phi_N(\mathbf{x})) \, .$$

• ϕ is often implicitly given by a Mercer kernel

 $k(\mathbf{x},\mathbf{x}') = \boldsymbol{\phi}(\mathbf{x}) \cdot \boldsymbol{\phi}(\mathbf{x}').$

• The output $h_{\mathbf{v}}(\mathbf{x})$ of linear classifier $h_{\mathbf{v}}$ with weight vector \mathbf{v} is given by

 $h_{\mathbf{v}}(\mathbf{x}) = \operatorname{sgn}(\mathbf{v} \cdot \boldsymbol{\phi}(\mathbf{x}))$.

• Let us moreover suppose that each posterior Q_w is an isotropic Gaussian centered on w:

$$Q_{\mathsf{w}}(\mathsf{v}) = \left(\frac{1}{\sqrt{2\pi}}\right)^N \exp\left(-\frac{1}{2}\|\mathsf{v}-\mathsf{w}\|^2\right)$$

Specialization to Linear classifiers Majority votes of weak classifiers Answer # 1: go back to linear classifier specialization Answer # 2: PAC-Bayes on a general loss function

イロト イヨト イヨト イヨト

Specialization to Linear classifiers

• Each x is mapped to a high-dimensional feature vector $\phi(x)$:

$$\boldsymbol{\phi}(\mathbf{x}) \stackrel{\text{\tiny def}}{=} \left(\phi_1(\mathbf{x}), \ldots, \phi_N(\mathbf{x})\right).$$

ullet ϕ is often implicitly given by a Mercer kernel

$$k(\mathbf{x}, \mathbf{x}') = \boldsymbol{\phi}(\mathbf{x}) \cdot \boldsymbol{\phi}(\mathbf{x}')$$
 .

• The output $h_{\mathbf{v}}(\mathbf{x})$ of linear classifier $h_{\mathbf{v}}$ with weight vector \mathbf{v} is given by

$$h_{\mathbf{v}}(\mathbf{x}) = \operatorname{sgn}(\mathbf{v} \cdot \boldsymbol{\phi}(\mathbf{x}))$$
.

• Let us moreover suppose that each posterior Q_w is an isotropic Gaussian centered on w:

$$Q_{\mathbf{w}}(\mathbf{v}) = \left(\frac{1}{\sqrt{2\pi}}\right)^N \exp\left(-\frac{1}{2}\|\mathbf{v}-\mathbf{w}\|^2\right)$$

Specialization to Linear classifiers Majority votes of weak classifiers Answer # 1: go back to linear classifier specialization Answer # 2: PAC-Bayes on a general loss function

イロト イヨト イヨト イヨト

Specialization to Linear classifiers

• Each x is mapped to a high-dimensional feature vector $\phi(x)$:

$$\boldsymbol{\phi}(\mathbf{x}) \stackrel{\text{\tiny def}}{=} \left(\phi_1(\mathbf{x}), \dots, \phi_N(\mathbf{x})\right).$$

ullet ϕ is often implicitly given by a Mercer kernel

$$k(\mathbf{x}, \mathbf{x}') = \boldsymbol{\phi}(\mathbf{x}) \cdot \boldsymbol{\phi}(\mathbf{x}')$$
.

The output h_v(x) of linear classifier h_v with weight vector v is given by

$$h_{\mathbf{v}}(\mathbf{x}) = \operatorname{sgn}(\mathbf{v} \cdot \boldsymbol{\phi}(\mathbf{x}))$$
.

• Let us moreover suppose that each posterior Q_w is an isotropic Gaussian centered on **w**:

$$Q_{\mathbf{w}}(\mathbf{v}) = \left(\frac{1}{\sqrt{2\pi}}\right)^N \exp\left(-\frac{1}{2}\|\mathbf{v}-\mathbf{w}\|^2\right)$$

Specialization to Linear classifiers Majority votes of weak classifiers Answer # 1: go back to linear classifier specialization Answer # 2: PAC-Bayes on a general loss function

イロト イヨト イヨト イヨト

Specialization to Linear classifiers

• Each x is mapped to a high-dimensional feature vector $\phi(x)$:

$$\boldsymbol{\phi}(\mathbf{x}) \stackrel{\text{\tiny def}}{=} \left(\phi_1(\mathbf{x}), \dots, \phi_N(\mathbf{x})\right).$$

ullet ϕ is often implicitly given by a Mercer kernel

$$k(\mathbf{x}, \mathbf{x}') = \boldsymbol{\phi}(\mathbf{x}) \cdot \boldsymbol{\phi}(\mathbf{x}')$$
.

The output h_v(x) of linear classifier h_v with weight vector v is given by

$$h_{\mathbf{v}}(\mathbf{x}) = \operatorname{sgn}(\mathbf{v} \cdot \boldsymbol{\phi}(\mathbf{x}))$$
.

• Let us moreover suppose that each posterior $Q_{\mathbf{w}}$ is an isotropic Gaussian centered on \mathbf{w} :

$$Q_{\mathbf{w}}(\mathbf{v}) = \left(\frac{1}{\sqrt{2\pi}}\right)^N \exp\left(-\frac{1}{2}\|\mathbf{v}-\mathbf{w}\|^2\right)$$

・ロン ・四 と ・ ヨ と ・ ヨ と

Bayes-equivalent classifiers

• With this choice for Q_w , the majority vote B_{Q_w} is the same classifier as h_w since:

$$B_{Q_{\mathbf{w}}}(\mathbf{x}) = \operatorname{sgn}\left(\underbrace{\mathbf{E}}_{\mathbf{v} \sim Q_{\mathbf{w}}} \operatorname{sgn}\left(\mathbf{v} \cdot \boldsymbol{\phi}(\mathbf{x})\right) \right) = \operatorname{sgn}\left(\mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x})\right) = h_{\mathbf{w}}(\mathbf{x}).$$

- Thus $R(h_w) = R(B_{Q_w}) \le 2R(G_{Q_w})$: an upper bound on $R(G_{Q_w})$ also provides an upper bound on $R(h_w)$.
- The prior P_{w_p} is also an isotropic Gaussian centered on w_p. Consequently:

$$\mathrm{KL}(Q_{\mathbf{w}} \| P_{\mathbf{w}_{p}}) = \frac{1}{2} \| \mathbf{w} - \mathbf{w}_{p} \|^{2}.$$

・ロン ・回 ・ ・ ヨ ・ ・ ヨ ・

Bayes-equivalent classifiers

• With this choice for $Q_{\mathbf{w}}$, the majority vote $B_{Q_{\mathbf{w}}}$ is the same classifier as $h_{\mathbf{w}}$ since:

$$B_{Q_{\mathbf{w}}}(\mathbf{x}) = \operatorname{sgn}\left(\underbrace{\mathbf{E}}_{\mathbf{v} \sim Q_{\mathbf{w}}} \operatorname{sgn}\left(\mathbf{v} \cdot \boldsymbol{\phi}(\mathbf{x})\right) \right) = \operatorname{sgn}\left(\mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x})\right) = h_{\mathbf{w}}(\mathbf{x}).$$

- Thus $R(h_w) = R(B_{Q_w}) \le 2R(G_{Q_w})$: an upper bound on $R(G_{Q_w})$ also provides an upper bound on $R(h_w)$.
- The prior P_{w_p} is also an isotropic Gaussian centered on w_p. Consequently:

$$\mathrm{KL}(Q_{\mathbf{w}} \| P_{\mathbf{w}_p}) = \frac{1}{2} \| \mathbf{w} - \mathbf{w}_p \|^2.$$

イロト イヨト イヨト イヨト

Bayes-equivalent classifiers

• With this choice for $Q_{\mathbf{w}}$, the majority vote $B_{Q_{\mathbf{w}}}$ is the same classifier as $h_{\mathbf{w}}$ since:

$$B_{Q_{\mathbf{w}}}(\mathbf{x}) = \operatorname{sgn}\left(\underbrace{\mathbf{E}}_{\mathbf{v} \sim Q_{\mathbf{w}}} \operatorname{sgn}\left(\mathbf{v} \cdot \boldsymbol{\phi}(\mathbf{x})\right) \right) = \operatorname{sgn}\left(\mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x})\right) = h_{\mathbf{w}}(\mathbf{x}).$$

- Thus $R(h_w) = R(B_{Q_w}) \le 2R(G_{Q_w})$: an upper bound on $R(G_{Q_w})$ also provides an upper bound on $R(h_w)$.
- The prior $P_{\mathbf{w}_p}$ is also an isotropic Gaussian centered on \mathbf{w}_p . Consequently:

$$\mathrm{KL}(\boldsymbol{Q}_{\boldsymbol{\mathsf{w}}} \| \boldsymbol{P}_{\boldsymbol{\mathsf{w}}_{\boldsymbol{\rho}}}) = \frac{1}{2} \| \boldsymbol{\mathsf{w}} - \boldsymbol{\mathsf{w}}_{\boldsymbol{\rho}} \|^{2}.$$

・ロン ・回と ・ヨン ・ヨン

Gibbs' risk

We need to compute Gibb's risk $R_{(\mathbf{x},y)}(G_{Q_{\mathbf{w}}})$ on (\mathbf{x}, y) since:

$$R_{(\mathbf{x},y)}(G_{Q_{\mathbf{W}}}) \stackrel{\text{def}}{=} \int_{\mathbb{R}^N} Q_{\mathbf{w}}(\mathbf{v}) \, I(y\mathbf{v} \cdot \boldsymbol{\phi}(\mathbf{x}) < 0) \, d\mathbf{v}$$

we have:

$$R(G_{Q_{\mathbf{w}}}) = \mathop{\mathbf{E}}_{(\mathbf{x},y)\sim D} R_{(\mathbf{x},y)}(G_{Q_{\mathbf{w}}}) \quad \text{and} \quad R_{S}(G_{Q_{\mathbf{w}}}) = \frac{1}{m} \sum_{i=1}^{m} R_{(\mathbf{x}_{i},y_{i})}(G_{Q_{\mathbf{w}}}).$$

Moreover, as in Langford (2005), the Gaussian integral gives:

$$R_{(\mathbf{x},y)}(G_{Q_{\mathbf{w}}}) = \Phi\left(\|\mathbf{w}\| \Gamma_{\mathbf{w}}(\mathbf{x},y)\right)$$

where: $\Gamma_{\mathbf{w}}(\mathbf{x},y) \stackrel{\text{def}}{=} \frac{y\mathbf{w}\cdot\boldsymbol{\phi}(\mathbf{x})}{\|\mathbf{w}\| \|\boldsymbol{\phi}(\mathbf{x})\|}$ and $\Phi(a) \stackrel{\text{def}}{=} \frac{1}{\sqrt{2\pi}} \int_{a}^{\infty} \exp\left(-\frac{1}{2}x^{2}\right) dx$.

Specialization to Linear classifiers Majority votes of weak classifiers Answer # 1: go back to linear classifier specialization Answer # 2: PAC-Bayes on a general loss function

・ロト ・回ト ・ヨト ・ヨト

臣

Probit loss

・ロン ・回と ・ヨン・

Objective function from Catoni's bound

Recall that, to minimize the Catoni's bound, for fixed C and \mathbf{w}_p , we need to find \mathbf{w} that minimizes:

$C m R_S(G_{Q_w}) + \mathrm{KL}(Q_w \| P_{w_p})$

Which, according to preceding slides, corresponds of minimizing

$$C\sum_{i=1}^{m}\Phi\left(\frac{y_{i}\mathbf{w}\cdot\boldsymbol{\phi}(\mathbf{x}_{i})}{\|\boldsymbol{\phi}(\mathbf{x}_{i})\|}\right)+\frac{1}{2}\|\mathbf{w}-\mathbf{w}_{p}\|^{2}$$

イロト イヨト イヨト イヨト

Objective function from Catoni's bound

Recall that, to minimize the Catoni's bound, for fixed C and \mathbf{w}_p , we need to find \mathbf{w} that minimizes:

$$C m R_S(G_{Q_w}) + \mathrm{KL}(Q_w || P_{w_p})$$

Which, according to preceding slides, corresponds of minimizing

$$C\sum_{i=1}^{m}\Phi\left(\frac{y_{i}\mathbf{w}\cdot\boldsymbol{\phi}(\mathbf{x}_{i})}{\|\boldsymbol{\phi}(\mathbf{x}_{i})\|}\right)+\frac{1}{2}\|\mathbf{w}-\mathbf{w}_{p}\|^{2}$$

Objective function from Catoni's bound

So PAC-Bayes tells us to minimize

$$C\sum_{i=1}^{m}\Phi\left(\frac{y_i\mathbf{w}\cdot\boldsymbol{\phi}(\mathbf{x}_i)}{\|\boldsymbol{\phi}(\mathbf{x}_i)\|}\right)+\frac{1}{2}\|\mathbf{w}-\mathbf{w}_p\|^2$$

Note that, when $\mathbf{w}_{p} = \mathbf{0}$ (absence of prior knowledge), this is very similar to SVM . Indeed, SVM minimizes:

$$C\sum_{i=1}^{m} \max\left(0, 1-y_i \mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x}_i)\right) + \frac{1}{2} \|\mathbf{w}\|^2,$$

- The probit loss is simply replaced by the convex hinge loss.
- Up to convexe relaxation, PAC-Bayes theory has rediscover SVM !!!

The mathematics of the PAC-Bayes Theory PAC-Bayes bounds and algorithms Specialization to Linear classifiers Majority votes of weak classifiers Answer # 1: go back to linear classifier specialization Answer # 2: PAC-Bayes on a general loss function

Objective function from Catoni's bound

So PAC-Bayes tells us to minimize

$$C\sum_{i=1}^{m}\Phi\left(\frac{y_{i}\mathbf{w}\cdot\boldsymbol{\phi}(\mathbf{x}_{i})}{\|\boldsymbol{\phi}(\mathbf{x}_{i})\|}\right)+\frac{1}{2}\|\mathbf{w}-\mathbf{w}_{p}\|^{2}$$

Note that, when $\mathbf{w}_p = \mathbf{0}$ (absence of prior knowledge), this is very similar to SVM . Indeed, SVM minimizes:

$$C\sum_{i=1}^{m} \max\left(0, 1-y_i \mathbf{w} \cdot \boldsymbol{\phi}(\mathbf{x}_i)\right) + \frac{1}{2} \|\mathbf{w}\|^2,$$

The probit loss is simply replaced by the convex hinge loss.

• Up to convexe relaxation, PAC-Bayes theory has rediscover SVM !!! The mathematics of the PAC-Bayes Theory PAC-Bayes bounds and algorithms Specialization to Linear classifiers Majority votes of weak classifiers Answer # 1: go back to linear classifier specialization Answer # 2: PAC-Bayes on a general loss function

Objective function from Catoni's bound

So PAC-Bayes tells us to minimize

$$C\sum_{i=1}^{m}\Phi\left(\frac{y_{i}\mathbf{w}\cdot\boldsymbol{\phi}(\mathbf{x}_{i})}{\|\boldsymbol{\phi}(\mathbf{x}_{i})\|}\right)+\frac{1}{2}\|\mathbf{w}-\mathbf{w}_{p}\|^{2}$$

Note that, when $\mathbf{w}_p = \mathbf{0}$ (absence of prior knowledge), this is very similar to SVM . Indeed, SVM minimizes:

$$C\sum_{i=1}^m \max\Bigl(0,1-y_i \mathbf{w}\cdot oldsymbol{\phi}(\mathbf{x}_i)\Bigr) + rac{1}{2}\|\mathbf{w}\|^2\,,$$

The probit loss is simply replaced by the convex hinge loss.

• Up to convexe relaxation, PAC-Bayes theory has rediscover SVM !!!

Objective function from Catoni's bound

So PAC-Bayes tells us to minimize

$$C\sum_{i=1}^{m}\Phi\left(\frac{y_{i}\mathbf{w}\cdot\boldsymbol{\phi}(\mathbf{x}_{i})}{\|\boldsymbol{\phi}(\mathbf{x}_{i})\|}\right)+\frac{1}{2}\|\mathbf{w}-\mathbf{w}_{p}\|^{2}$$

Note that, when $\mathbf{w}_p = \mathbf{0}$ (absence of prior knowledge), this is very similar to SVM . Indeed, SVM minimizes:

$$C\sum_{i=1}^m \max\Bigl(0,1-y_i \mathbf{w}\cdot oldsymbol{\phi}(\mathbf{x}_i)\Bigr) + rac{1}{2}\|\mathbf{w}\|^2\,,$$

- The probit loss is simply replaced by the convex hinge loss.
- Up to convexe relaxation, PAC-Bayes theory has rediscover SVM !!!

Objective function from Catoni's bound

So PAC-Bayes tells us to minimize

$$C\sum_{i=1}^{m}\Phi\left(\frac{y_{i}\mathbf{w}\cdot\boldsymbol{\phi}(\mathbf{x}_{i})}{\|\boldsymbol{\phi}(\mathbf{x}_{i})\|}\right)+\frac{1}{2}\|\mathbf{w}-\mathbf{w}_{p}\|^{2}$$

Note that, when $\mathbf{w}_{p} = \mathbf{0}$ (absence of prior knowledge), this is very similar to SVM . Indeed, SVM minimizes:

$$C\sum_{i=1}^m \max\Bigl(0,1-y_i \mathbf{w}\cdot oldsymbol{\phi}(\mathbf{x}_i)\Bigr) + rac{1}{2}\|\mathbf{w}\|^2\,,$$

- The probit loss is simply replaced by the convex hinge loss.
- Up to convexe relaxation, PAC-Bayes theory has rediscover SVM !!!

(ロ) (四) (目) (日) (日)

크

Numerical result [ICML09]

Г			(s) S	VM	(1) PBGD1			(2) PBGD2	(3) PBGD3			
Name	Dataset		n	$R_{T}(\mathbf{w})$	Bnd	$R_{T}(\mathbf{w})$	$G_T(\mathbf{w})$	Bnd	$R_T(\mathbf{w})$	$G_T(\mathbf{w})$	$R_{\tau}(\mathbf{w})$	$G_T(\mathbf{w})$	
				1			1.		1.	,	Bnd		
Usvotes	235	200	16	0.055	0.370	0.080	0.117	0.244	0.050	0.050	0.153	0.075	0.085
Credit-A	353	300	15	0.183	0.591	0.150	0.196	0.341	0.150	0.152	0.248	0.160	0.267
Glass	107	107	9	0.178	0.571	0.168	0.349	0.539	0.215	0.232	0.430	0.168	0.316
Haberman	144	150	3	0.280	0.423	0.280	0.285	0.417	0.327	0.323	0.444	0.253	0.250
Heart	150	147	13	0.197	0.513	0.190	0.236	0.441	0.184	0.190	0.400	0.197	0.246
Sonar	104	104	60	0.163	0.599	0.250	0.379	0.560	0.173	0.231	0.477	0.144	0.243
BreastCancer	343	340	9	0.038	0.146	0.044	0.056	0.132	0.041	0.046	0.101	0.047	0.051
Tic-tac-toe	479	479	9	0.081	0.555	0.365	0.369	0.426	0.173	0.193	0.287	0.077	0.107
Ionosphere	176	175	34	0.097	0.531	0.114	0.242	0.395	0.103	0.151	0.376	0.091	0.165
Wdbc	285	284	30	0.074	0.400	0.074	0.204	0.366	0.067	0.119	0.298	0.074	0.210
MNIST:0vs8	500	1916	784	0.003	0.257	0.009	0.053	0.202	0.007	0.015	0.058	0.004	0.011
MNIST:1vs7	500	1922	784	0.011	0.216	0.014	0.045	0.161	0.009	0.015	0.052	0.010	0.012
MNIST:1vs8	500	1936	784	0.011	0.306	0.014	0.066	0.204	0.011	0.019	0.060	0.010	0.024
MNIST:2vs3	500	1905	784	0.020	0.348	0.038	0.112	0.265	0.028	0.043	0.096	0.023	0.036
Letter:AvsB	500	1055	16	0.001	0.491	0.005	0.043	0.170	0.003	0.009	0.064	0.001	0.408
Letter:DvsO	500	1058	16	0.014	0.395	0.017	0.095	0.267	0.024	0.030	0.086	0.013	0.031
Letter:OvsQ	500	1036	16	0.015	0.332	0.029	0.130	0.299	0.019	0.032	0.078	0.014	0.045
Adult	1809	10000	14	0.159	0.535	0.173	0.198	0.274	0.180	0.181	0.224	0.164	0.174
Mushroom	4062	4062	22	0.000	0.213	0.007	0.032	0.119	0.001	0.003	0.011	0.000	0.001

イロト イヨト イヨト イヨト

- The classical PAC-Bayes theory bounds the risk of the majority vote R(B_Q), trought twice the Gibbs's risk 2R(G_Q)
- In the case of linear classifiers, there exists Q s.t. $R(G_Q)$ is relatively small, it seems to be a good idea,
- but what if the set \mathcal{H} of voters is only composed of weak voters ? (Like in Boosting)
 - In that case, the Gibbs's risk cannot be a good predictor for the Bayes's risk.
 - Indeed, it is well-known that voting can dramatically improve performance when the "community" of classifiers tend to compensate the individual errors.
- So what can we do in this case ?

イロト イヨト イヨト イヨト

- The classical PAC-Bayes theory bounds the risk of the majority vote R(B_Q), trought twice the Gibbs's risk 2R(G_Q)
- In the case of linear classifiers, there exists Q s.t. $R(G_Q)$ is relatively small, it seems to be a good idea,
- but what if the set \mathcal{H} of voters is only composed of weak voters ? (Like in Boosting)
 - In that case, the Gibbs's risk cannot be a good predictor for the Bayes's risk.
 - Indeed, it is well-known that voting can dramatically improve performance when the "community" of classifiers tend to compensate the individual errors.
- So what can we do in this case ?

イロト イヨト イヨト イヨト

- The classical PAC-Bayes theory bounds the risk of the majority vote R(B_Q), trought twice the Gibbs's risk 2R(G_Q)
- In the case of linear classifiers, there exists Q s.t. $R(G_Q)$ is relatively small, it seems to be a good idea,
- but what if the set \mathcal{H} of voters is only composed of weak voters ? (Like in Boosting)
 - In that case, the Gibbs's risk cannot be a good predictor for the Bayes's risk.
 - Indeed, it is well-known that voting can dramatically improve performance when the "community" of classifiers tend to compensate the individual errors.
- So what can we do in this case ?

イロト イヨト イヨト イヨト

- The classical PAC-Bayes theory bounds the risk of the majority vote R(B_Q), trought twice the Gibbs's risk 2R(G_Q)
- In the case of linear classifiers, there exists Q s.t. $R(G_Q)$ is relatively small, it seems to be a good idea,
- but what if the set \mathcal{H} of voters is only composed of weak voters ? (Like in Boosting)
 - In that case, the Gibbs's risk cannot be a good predictor for the Bayes's risk.
 - Indeed, it is well-known that voting can dramatically improve performance when the "community" of classifiers tend to compensate the individual errors.
- So what can we do in this case ?

イロト イヨト イヨト イヨト

- The classical PAC-Bayes theory bounds the risk of the majority vote R(B_Q), trought twice the Gibbs's risk 2R(G_Q)
- In the case of linear classifiers, there exists Q s.t. $R(G_Q)$ is relatively small, it seems to be a good idea,
- but what if the set \mathcal{H} of voters is only composed of weak voters ? (Like in Boosting)
 - In that case, the Gibbs's risk cannot be a good predictor for the Bayes's risk.
 - Indeed, it is well-known that voting can dramatically improve performance when the "community" of classifiers tend to compensate the individual errors.
- So what can we do in this case ?

・ロン ・回と ・ヨン・

Answer # 1

• Suppose $\mathcal{H} = \{h_1, .., h_n, h_{n+1}, .., h_{2n}\}$ with $h_{i+n} = -h_i$,

ullet and consider instead, the set of all the majority votes over $\mathcal H$

$$\mathcal{H}^{MV} \stackrel{\mathsf{\tiny def}}{=} \{ \mathrm{sgn} \left(\mathbf{v} \cdot oldsymbol{\phi}(\mathbf{x})
ight) : \mathbf{v} \in \mathbb{R}^{|\mathcal{H}|} \}$$

where $\boldsymbol{\phi}(\mathbf{x}) \stackrel{\text{\tiny def}}{=} (h_1(\mathbf{x}), \dots, h_{2n}(\mathbf{x})).$

• Then we are back to the linear classifier specialization.

・ロン ・回と ・ヨン・

Answer # 1

- Suppose $\mathcal{H} = \{h_1,..,h_n,h_{n+1},..,h_{2n}\}$ with $h_{i+n} = -h_i$,
- \bullet and consider instead, the set of all the majority votes over ${\cal H}$

$$\mathcal{H}^{MV} \stackrel{\scriptscriptstyle{\mathsf{def}}}{=} \{ \operatorname{sgn}\left(\mathbf{v} \cdot oldsymbol{\phi}(\mathbf{x})
ight) \, : \mathbf{v} \in \mathbb{R}^{|\mathcal{H}|} \}$$

where
$$\boldsymbol{\phi}(\mathbf{x}) \stackrel{\text{\tiny def}}{=} (h_1(\mathbf{x}), \dots, h_{2n}(\mathbf{x})).$$

Then we are back to the linear classifier specialization.

・ロン ・回と ・ヨン ・ヨン

Answer # 1

- Suppose $\mathcal{H} = \{h_1,..,h_n,h_{n+1},..,h_{2n}\}$ with $h_{i+n} = -h_i$,
- \bullet and consider instead, the set of all the majority votes over ${\cal H}$

$$\mathcal{H}^{MV} \stackrel{ ext{def}}{=} \{ \operatorname{sgn}\left(\mathbf{v} \cdot oldsymbol{\phi}(\mathbf{x})
ight) \, : \mathbf{v} \in \mathbb{R}^{|\mathcal{H}|} \}$$

where $\boldsymbol{\phi}(\mathbf{x}) \stackrel{\text{\tiny def}}{=} (h_1(\mathbf{x}), \dots, h_{2n}(\mathbf{x})).$

• Then we are back to the linear classifier specialization.

・ロン ・回と ・ヨン・

Numerical result [ICML09], with decision stumps as weak learners

Da		(a) AdaBoost		(1) PBGD1			(2)	PBGD	2	(3) PBGD3				
Name	S	T	n	$R_T(\mathbf{w})$	Bnd	$R_T(\mathbf{w})$	$G_T(\mathbf{w})$	Bnd	$R_T(\mathbf{w})$	$G_T(\mathbf{w})$	Bnd	$R_T(\mathbf{w})$	$G_T(\mathbf{w})$	Bnd
Usvotes	235	200	16	0.055	0.346	0.085	0.103	0.207	0.060	0.058	0.165	0.060	0.057	0.261
Credit-A	353	300	15	0.170	0.504	0.177	0.243	0.375	0.187	0.191	0.272	0.143	0.159	0.420
Glass	107	107	9	0.178	0.636	0.196	0.346	0.562	0.168	0.176	0.395	0.150	0.226	0.581
Haberman	144	150	3	0.260	0.590	0.273	0.283	0.422	0.267	0.287	0.465	0.273	0.386	0.424
Heart	150	147	13	0.259	0.569	0.170	0.250	0.461	0.190	0.205	0.379	0.184	0.214	0.473
Sonar	104	104	60	0.231	0.644	0.269	0.376	0.579	0.173	0.168	0.547	0.125	0.209	0.622
BreastCancer	343	340	9	0.053	0.295	0.041	0.058	0.129	0.047	0.054	0.104	0.044	0.048	0.190
Tic-tac-toe	479	479	9	0.357	0.483	0.294	0.384	0.462	0.207	0.208	0.302	0.207	0.217	0.474
Ionosphere	176	175	34	0.120	0.602	0.120	0.223	0.425	0.109	0.129	0.347	0.103	0.125	0.557
Wdbc	285	284	30	0.049	0.447	0.042	0.099	0.272	0.049	0.048	0.147	0.035	0.051	0.319
MNIST:0vs8	500	1916	784	0.008	0.528	0.015	0.052	0.191	0.011	0.016	0.062	0.006	0.011	0.262
MNIST:1vs7	500	1922	784	0.013	0.541	0.020	0.055	0.184	0.015	0.016	0.050	0.016	0.017	0.233
MNIST:1vs8	500	1936	784	0.025	0.552	0.037	0.097	0.247	0.027	0.030	0.087	0.018	0.037	0.305
MNIST:2vs3	500	1905	784	0.047	0.558	0.046	0.118	0.264	0.040	0.044	0.105	0.034	0.048	0.356
Letter:AvsB	500	1055	16	0.010	0.254	0.009	0.050	0.180	0.007	0.011	0.065	0.007	0.044	0.180
Letter:DvsO	500	1058	16	0.036	0.378	0.043	0.124	0.314	0.033	0.039	0.090	0.024	0.038	0.360
Letter:OvsQ	500	1036	16	0.038	0.431	0.061	0.170	0.357	0.053	0.053	0.106	0.042	0.049	0.454
Adult	1809	10000	14	0.149	0.394	0.168	0.196	0.270	0.169	0.169	0.209	0.159	0.160	0.364
Mushroom	4062	4062	22	0.000	0.200	0.046	0.065	0.130	0.016	0.017	0.030	0.002	0.004	0.150

・ロン ・回と ・ヨン ・ヨン

Answer # 2: generalize the PAC-Bayes theorem to something else than the Gibbs's risk !

- Consider the margin on an example: $M_Q(\mathbf{x}, y) \stackrel{\text{def}}{=} \mathbf{E}_{h \sim Q} yh(\mathbf{x})$
- and any convex margin loss function $\zeta_Q(\alpha)$ that can be expanded in a Taylor series around $M_Q(\mathbf{x}, y) = 0$:

$$\zeta_Q(M_Q(\mathbf{x}, y)) \stackrel{\text{def}}{=} \sum_{k=0}^{\infty} a_k \left(M_Q(\mathbf{x}, y) \right)^k$$

and that upper bounds the risk of the majority vote B_Q , *i.e.*, $\zeta_Q(M_Q(\mathbf{x},\mathbf{y})) \ge I(M_Q(\mathbf{x},\mathbf{y}) < 0) \quad \forall Q, \mathbf{x}, \mathbf{y}$.

Conclusion: if we can obtain a PAC-Bayes bound on ζ_Q(x, y), we will then have a "new" bound on R(B_Q)

・ロト ・回ト ・ヨト ・ヨト

Answer # 2: generalize the PAC-Bayes theorem to something else than the Gibbs's risk !

- Consider the margin on an example: $M_Q(\mathbf{x}, y) \stackrel{\text{def}}{=} \mathbf{E}_{h \sim Q} yh(\mathbf{x})$
- and any convex margin loss function $\zeta_Q(\alpha)$ that can be expanded in a Taylor series around $M_Q(\mathbf{x}, y) = 0$:

$$\zeta_Q(M_Q(\mathbf{x}, y)) \stackrel{\text{def}}{=} \sum_{k=0}^\infty a_k \left(M_Q(\mathbf{x}, y)\right)^k$$

and that upper bounds the risk of the majority vote B_Q , *i.e.*, $\zeta_Q(M_Q(\mathbf{x},y)) \ge I(M_Q(\mathbf{x},y) < 0) \quad \forall Q, \mathbf{x}, y$.

Conclusion: if we can obtain a PAC-Bayes bound on ζ_Q(x, y), we will then have a "new" bound on R(B_Q)

・ロト ・回ト ・ヨト ・ヨト

Answer # 2: generalize the PAC-Bayes theorem to something else than the Gibbs's risk !

- Consider the margin on an example: $M_Q(\mathbf{x}, y) \stackrel{\text{def}}{=} \mathbf{E}_{h \sim Q} yh(\mathbf{x})$
- and any convex margin loss function $\zeta_Q(\alpha)$ that can be expanded in a Taylor series around $M_Q(\mathbf{x}, y) = 0$:

$$\zeta_Q(M_Q(\mathbf{x}, y)) \stackrel{\text{def}}{=} \sum_{k=0}^\infty a_k \left(M_Q(\mathbf{x}, y)\right)^k$$

and that upper bounds the risk of the majority vote B_Q , *i.e.*, $\zeta_Q(M_Q(\mathbf{x},y)) \ge I(M_Q(\mathbf{x},y) < 0) \quad \forall Q, \mathbf{x}, y$.

Conclusion: if we can obtain a PAC-Bayes bound on ζ_Q(x, y), we will then have a "new" bound on R(B_Q)

・ロト ・回ト ・ヨト ・ヨト

Answer # 2: generalize the PAC-Bayes theorem to something else than the Gibbs's risk !

- Consider the margin on an example: $M_Q(\mathbf{x}, y) \stackrel{\text{def}}{=} \mathbf{E}_{h \sim Q} yh(\mathbf{x})$
- and any convex margin loss function $\zeta_Q(\alpha)$ that can be expanded in a Taylor series around $M_Q(\mathbf{x}, y) = 0$:

$$\zeta_Q(M_Q(\mathbf{x}, y)) \stackrel{\text{def}}{=} \sum_{k=0}^\infty a_k \left(M_Q(\mathbf{x}, y) \right)^k$$

and that upper bounds the risk of the majority vote B_Q , *i.e.*, $\zeta_Q(M_Q(\mathbf{x},y)) \ge I(M_Q(\mathbf{x},y) < 0) \quad \forall Q, \mathbf{x}, y.$

• Conclusion: if we can obtain a PAC-Bayes bound on $\zeta_Q(\mathbf{x}, y)$, we will then have a "new" bound on $R(B_Q)$

・ロト ・回ト ・ヨト ・ヨト

Answer # 2: generalize the PAC-Bayes theorem to something else than the Gibbs's risk !

- Consider the margin on an example: $M_Q(\mathbf{x}, y) \stackrel{\text{def}}{=} \mathbf{E}_{h \sim Q} yh(\mathbf{x})$
- and any convex margin loss function $\zeta_Q(\alpha)$ that can be expanded in a Taylor series around $M_Q(\mathbf{x}, y) = 0$:

$$\zeta_Q(M_Q(\mathbf{x}, y)) \stackrel{\text{def}}{=} \sum_{k=0}^\infty a_k \left(M_Q(\mathbf{x}, y) \right)^k$$

and that upper bounds the risk of the majority vote B_Q , *i.e.*, $\zeta_Q(M_Q(\mathbf{x},y)) \ge I(M_Q(\mathbf{x},y) < 0) \quad \forall Q, \mathbf{x}, y.$

• Conclusion: if we can obtain a PAC-Bayes bound on $\zeta_Q(\mathbf{x}, y)$, we will then have a "new" bound on $R(B_Q)$

イロト イヨト イヨト イヨト

Answer # 2: generalize the PAC-Bayes theorem to something else than the Gibbs's risk !

- Consider the margin on an example: $M_Q(\mathbf{x}, y) \stackrel{\text{def}}{=} \mathbf{E}_{h \sim Q} yh(\mathbf{x})$
- and any convex margin loss function $\zeta_Q(\alpha)$ that can be expanded in a Taylor series around $M_Q(\mathbf{x}, y) = 0$:

$$\zeta_Q(M_Q(\mathbf{x},y)) \stackrel{\text{def}}{=} \sum_{k=0}^\infty a_k \left(M_Q(\mathbf{x},y)\right)^k$$

and that upper bounds the risk of the majority vote B_Q , *i.e.*, $\zeta_Q(M_Q(\mathbf{x},y)) \ge I(M_Q(\mathbf{x},y) < 0) \quad \forall Q, \mathbf{x}, y.$

• Conclusion: if we can obtain a PAC-Bayes bound on $\zeta_Q(\mathbf{x}, y)$, we will then have a "new" bound on $R(B_Q)$

The mathematics of the PAC-Bayes Theory PAC-Bayes bounds and algorithms Specialization to Linear classifiers Majority votes of weak classifiers Answer # 1: go back to linear classifier specialization Answer # 2: PAC-Bayes on a general loss function

・ロト ・回ト ・ヨト ・ヨト

Note: $1 - M_Q(\mathbf{x}, y) = 2R(G_Q)$

Thus the green and the black curves illustrate: $R(B_Q) \leq 2R(G_Q)$

The mathematics of the PAC-Bayes Theory PAC-Bayes bounds and algorithms Specialization to Linear classifiers Majority votes of weak classifiers Answer # 1: go back to linear classifier specialization Answer # 2: PAC-Bayes on a general loss function

イロト イポト イヨト イヨト

Catoni's bound for a general loss

If we define

$$\begin{split} \zeta_{Q} & \stackrel{\text{def}}{=} \quad \underset{(\mathbf{x}, y) \sim D}{\mathbf{E}} \zeta_{Q}(M_{Q}(\mathbf{x}, y)) \\ \widehat{\zeta_{Q}} & \stackrel{\text{def}}{=} \quad \frac{1}{m} \sum_{i=1}^{m} \zeta_{Q}(M_{Q}(\mathbf{x}_{i}, y_{i})) \\ c_{a} & \stackrel{\text{def}}{=} \quad \zeta(1) \\ \overline{k} & = \quad \zeta'(1) \end{split}$$

Catoni's bound become :

Theorem 3.2. For any D, any H, any P of support H, any $\delta \in (0, 1]$, any positive real number C', any loss function $\zeta_Q(\mathbf{x}, y)$ defined above, we have

$$\Pr_{S\sim D^m} \bigg(\forall Q \text{ on } \mathcal{H} \colon \zeta_Q \leq \ g(c_a, C') + \frac{C'}{1 - e^{-C'}} \bigg[\widehat{\zeta_Q} + \frac{2c_a}{mC'} \Big[\overline{k} \cdot \operatorname{KL}(Q \| P) + \ln \frac{1}{\delta} \Big] \bigg] \bigg) \\ \geq 1 - \delta \,,$$

where $g(c_a, C') \stackrel{\text{def}}{=} 1 - c_a + \frac{C'}{1 - e^{-C'}} \cdot (c_a - 1).$

◆□ > ◆□ > ◆□ > ◆□ > ・

Answer # 2 (cont)

The trick !

$$\zeta_Q(M_Q(\mathbf{x}, y)) = c_a \left[M_{\overline{Q}}(\mathbf{x}, y) \right] ,$$

where $c_a \stackrel{\text{\tiny def}}{=} \sum_{k=0}^{\infty} a_k$ and where

$$R_{\{(\mathbf{x},y)\}}\left(G_{\overline{Q}}\right) \stackrel{\text{def}}{=} \frac{1}{c_a} \sum_{k=1}^{\infty} |a_k| \underset{h_1 \sim Q}{\mathsf{E}} \dots \underset{h_k \sim Q}{\mathsf{E}} I\left((-y)^k h_1(\mathbf{x}) \dots h_k(\mathbf{x}) = -\operatorname{sgn}(a_k)\right)$$

 Since R_{{(x,y)}(G_Q)</sub> is the expectation of boolean random variable, the Catoni's bound holds if we replace (P, Q) by (P, Q)

	Specialization to Linear classifiers
The mathematics of the PAC-Bayes Theory	Majority votes of weak classifiers
PAC-Bayes bounds and algorithms	Answer # 1: go back to linear classifier specialization
	Answer $#$ 2: PAC-Bayes on a general loss function

Answer # 2 (cont)

The trick !

$$\zeta_Q(M_Q(\mathbf{x}, y)) = c_a \left[M_{\overline{Q}}(\mathbf{x}, y) \right] ,$$

where $c_a \stackrel{\text{def}}{=} \sum_{k=0}^{\infty} a_k$ and where

$$R_{\{(\mathbf{x},y)\}}(G_{\overline{Q}}) \stackrel{\text{def}}{=} \frac{1}{c_a} \sum_{k=1}^{\infty} |a_k|_{h_1 \sim Q} \dots \underset{h_k \sim Q}{\mathbf{E}} I\left((-y)^k h_1(\mathbf{x}) \dots h_k(\mathbf{x}) = -\operatorname{sgn}(a_k)\right)$$

 Since R_{{(x,y)}}(G_Q) is the expectation of boolean random variable, the Catoni's bound holds if we replace (P, Q) by (P, Q)

・ロン ・回と ・ヨン・

	Specialization to Linear classifiers
The mathematics of the PAC-Bayes Theory	Majority votes of weak classifiers
PAC-Bayes bounds and algorithms	Answer $\# 1$: go back to linear classifier specialization
	Answer $#$ 2: PAC-Bayes on a general loss function

Answer # 2 (cont)

The trick !

$$\zeta_Q(M_Q(\mathbf{x}, y)) = c_a \left[M_{\overline{Q}}(\mathbf{x}, y) \right] ,$$

where $c_a \stackrel{\text{def}}{=} \sum_{k=0}^{\infty} a_k$ and where

$$R_{\{(\mathbf{x},y)\}}(G_{\overline{Q}}) \stackrel{\text{def}}{=} \frac{1}{c_a} \sum_{k=1}^{\infty} |a_k|_{h_1 \sim Q} \dots \underset{h_k \sim Q}{\mathsf{E}} I\left((-y)^k h_1(\mathbf{x}) \dots h_k(\mathbf{x}) = -\operatorname{sgn}(a_k) \right).$$

 Since R_{{(x,y)}</sub>(G_Q) is the expectation of boolean random variable, the Catoni's bound holds if we replace (P, Q) by (P, Q)

・ロン ・回と ・ヨン ・ヨン

・ロン ・四 と ・ ヨ と ・ ヨ と

Minimizing Catoni's bound for a general loss

Minimizing this version of the Catoni's bound is equivalent to finding Q that minimizes

$$f(Q) \stackrel{\text{\tiny def}}{=} C \sum_{i=1}^{m} \zeta_Q(\mathbf{x}_i, y_i) + \mathrm{KL}(Q \| P),$$

here: $C \stackrel{\mbox{\tiny def}}{=} C'/(2c_a\overline{k})$.

イロト イヨト イヨト イヨト

Minimizing Catoni's bound for a general loss

 To compare the proposed learning algorithms with AdaBoost, we will consider, for ζ_Q(x, y), the *exponential loss* given by

$$\exp\left(-rac{1}{\gamma} y \sum_{h \in \mathcal{H}} Q(h)h(\mathbf{x})
ight) = \exp\left(rac{1}{\gamma} \left[M_Q(\mathbf{x}, y)
ight]
ight).$$

• Because of its simplicity, let us also consider, for $\zeta_Q(\mathbf{x}, y)$, the *quadratic loss* given by

$$\left(\frac{1}{\gamma} y \sum_{h \in \mathcal{H}} Q(h)h(\mathbf{x}) - 1\right)^2 = \left(\frac{1}{\gamma} M_Q(\mathbf{x}, y) - 1\right)^2$$

イロト イヨト イヨト イヨト

Minimizing Catoni's bound for a general loss

 To compare the proposed learning algorithms with AdaBoost, we will consider, for ζ_Q(x, y), the *exponential loss* given by

$$\exp\left(-rac{1}{\gamma} \ y \sum_{h \in \mathcal{H}} Q(h)h(\mathbf{x})
ight) \,=\, \exp\left(rac{1}{\gamma} \left[M_Q(\mathbf{x},y)
ight]
ight).$$

• Because of its simplicity, let us also consider, for $\zeta_Q(\mathbf{x}, y)$, the *quadratic loss* given by

$$\left(\frac{1}{\gamma} y \sum_{h \in \mathcal{H}} Q(h)h(\mathbf{x}) - 1\right)^2 = \left(\frac{1}{\gamma} M_Q(\mathbf{x}, y) - 1\right)^2.$$

・ロン ・回と ・ヨン・

Empirical results (Nips[09])

Da	(1) AdB	(2)	RR	(3)	KL	-EL	(4) KL-QL					
Name	S	T	a	R_T	R_T	C	R_T	C	γ	R_T	C	γ
BreastCancer	343	340	9	0.053	0.050	10	0.047	0.1	0.1	0.047	0.02	0.4
Liver	170	175	6	0.320	0.309	5	0.360	0.5	0.02	0.286	0.02	0.3
Credit-A	353	300	15	0.170	0.157	2	0.227	0.1	0.2	0.183	0.02	0.05
Glass	107	107	9	0.178	0.206	5	0.187	500	0.01	0.196	0.02	0.01
Haberman	144	150	3	0.260	0.273	100	0.253	500	0.2	0.260	0.02	0.5
Heart	150	147	13	0.252	0.197	1	0.211	0.2	0.1	0.177	0.05	0.2
Ionosphere	176	175	34	0.120	0.131	0.05	0.120	20	0.0001	0.097	0.2	0.1
Letter:AB	500	1055	16	0.010	0.004	0.5	0.006	0.1	0.02	0.006	1000	0.1
Letter:DO	500	1058	16	0.036	0.026	0.05	0.019	500	0.01	0.020	0.02	0.05
Letter:OQ	500	1036	16	0.038	0.045	0.5	0.043	10	0.0001	0.047	0.1	0.05
MNIST:0vs8	500	1916	784	0.008	0.015	0.05	0.006	500	0.001	0.015	0.2	0.02
MNIST:1vs7	500	1922	784	0.013	0.012	1	0.014	500	0.02	0.014	1000	0.1
MNIST:1vs8	500	1936	784	0.025	0.024	0.2	0.016	0.2	0.001	0.031	1	0.02
MNIST:2vs3	500	1905	784	0.047	0.033	0.2	0.035	500	0.0001	0.029	0.02	0.05
Mushroom	4062	4062	22	0.000	0.001	0.5	0.000	10	0.001	0.000	1000	0.02
Ringnorm	3700	3700	20	0.043	0.037	0.05	0.025	500	0.01	0.039	0.05	0.05
Sonar	104	104	60	0.231	0.192	0.05	0.135	500	0.05	0.115	1000	0.1
Usvotes	235	200	16	0.055	0.060	2	0.060	0.5	0.1	0.055	1000	0.05
Waveform	4000	4000	21	0.085	0.079	0.02	0.080	0.2	0.05	0.080	0.02	0.05
Wdbc	285	284	30	0.049	0.049	0.2	0.039	500	0.02	0.046	1000	0.1

(a)

From KL(Q||P) to ℓ_2 regularization

We can recover ℓ_2 regularization if we upper-bound $\mathrm{KL}(Q\|P)$ by a quadratic function. Indeed, if we use

$$q \ln q + \left(\frac{1}{n} - q\right) \ln \left(\frac{1}{n} - q\right) \leq \frac{1}{n} \ln \frac{1}{2n} + 4n \left(q - \frac{1}{2n}\right)^2 \quad \forall q \in [0, 1/n],$$

Moreover, if we suppose we have

•
$$\mathcal{H} = \{h_1, ..., h_{2n}\}$$
 with $h_{i+n} = -h_i$

- a uniform prior $(P(h_i)=1/(2n))$
- a posterior distribution Q aligned on the prior P. $Q(h_i)+Q(h_{i+n})=1/n$)
- and defined: $w_j \stackrel{\text{def}}{=} Q(h_j) Q(h_{j+n})$

Then,

$$\begin{aligned} \operatorname{KL}(Q \| P) &= \operatorname{ln}(2n) + \sum_{i=1}^{n} \left[Q_i \ln Q_i + \left(\frac{1}{n} - Q_i \right) \ln \left(\frac{1}{n} - Q_i \right) \right] \\ &\leq 4n \sum_{i=1}^{n} \left(Q_i - \frac{1}{2n} \right)^2 \end{aligned}$$

・ロト ・回ト ・ヨト ・ヨト

From KL(Q||P) to ℓ_2 regularization

We can recover ℓ_2 regularization if we upper-bound $\mathrm{KL}(Q\|P)$ by a quadratic function. Indeed, if we use

$$q \ln q + \left(\frac{1}{n} - q\right) \ln \left(\frac{1}{n} - q\right) \leq \frac{1}{n} \ln \frac{1}{2n} + 4n \left(q - \frac{1}{2n}\right)^2 \quad \forall q \in [0, 1/n],$$

Moreover, if we suppose we have

•
$$\mathcal{H} = \{h_1, ..., h_{2n}\}$$
 with $h_{i+n} = -h_i$

- a uniform prior $(P(h_i)=1/(2n))$
- a posterior distribution Q aligned on the prior P. ($Q(h_i)+Q(h_{i+n})=1/n$)

• and defined:
$$w_j \stackrel{\text{def}}{=} Q(h_j) - Q(h_{j+n})$$

Then,

 $\begin{aligned} \operatorname{KL}(Q \| P) &= \ln(2n) + \sum_{i=1}^{n} \left[Q_i \ln Q_i + \left(\frac{1}{n} - Q_i \right) \ln \left(\frac{1}{n} - Q_i \right) \right] \\ &\leq 4n \sum_{i=1}^{n} \left(Q_i - \frac{1}{2n} \right)^2 \end{aligned}$

From KL(Q||P) to ℓ_2 regularization

We can recover ℓ_2 regularization if we upper-bound $\mathrm{KL}(Q\|P)$ by a quadratic function. Indeed, if we use

$$q \ln q + \left(\frac{1}{n} - q\right) \ln \left(\frac{1}{n} - q\right) \leq \frac{1}{n} \ln \frac{1}{2n} + 4n \left(q - \frac{1}{2n}\right)^2 \quad \forall q \in [0, 1/n],$$

Moreover, if we suppose we have

•
$$\mathcal{H} = \{h_1, ..., h_{2n}\}$$
 with $h_{i+n} = -h_i$

- a uniform prior $(P(h_i)=1/(2n))$
- a posterior distribution Q aligned on the prior P. ($Q(h_i)+Q(h_{i+n})=1/n$)

• and defined:
$$w_j \stackrel{\text{def}}{=} Q(h_j) - Q(h_{j+n})$$

Then,

$$\begin{aligned} \operatorname{KL}(Q \| P) &= \ln(2n) + \sum_{i=1}^{n} \left[Q_i \ln Q_i + \left(\frac{1}{n} - Q_i \right) \ln \left(\frac{1}{n} - Q_i \right) \right] \\ &\leq 4n \sum_{i=1}^{n} \left(Q_i - \frac{1}{2n} \right)^2 \\ &= n \sum_{i=1}^{n} w_i^2 \,. \end{aligned}$$

The mathematics of the PAC-Bayes Theory PAC-Bayes bounds and algorithms Specialization to Linear classifiers Majority votes of weak classifiers Answer # 1: go back to linear classifier specialization Answer # 2: PAC-Bayes on a general loss function

PAC-Bayes vs Boosting and Ridge regression (cont)

With this approximation, the objective function to minimize becomes

$$f_{\ell_2}(\mathbf{w}) = C'' \sum_{i=1}^m \zeta\left(rac{1}{\gamma} y_i \mathbf{w} \cdot \mathbf{h}(\mathbf{x}_i)
ight) + \|\mathbf{w}\|_2^2,$$

subject to the ℓ_∞ constraint $|w_j| \le 1/n \;\; \forall j \in \{1,\ldots,n\}.$

- Here ||w||₂ denotes the Euclidean norm of w and ζ(x) = (x − 1)² for the quadratic loss and e^{-x} for the exponential loss.
- If, instead, we minimize f_{ℓ_2} for $\mathbf{v} \stackrel{\text{def}}{=} \mathbf{w}/\gamma$ and remove the ℓ_{∞} constraint, we recover *exactly*
 - ridge regression for the quadratic loss case !
 - ℓ_2 -regularized boosting for the exponential loss case !!

Specialization to Linear classifiers Majority votes of weak classifiers Answer # 1: go back to linear classifier specialization Answer # 2: PAC-Bayes on a general loss function

PAC-Bayes vs Boosting and Ridge regression (cont)

With this approximation, the objective function to minimize becomes

$$f_{\ell_2}(\mathbf{w}) = C'' \sum_{i=1}^m \zeta\left(rac{1}{\gamma} y_i \mathbf{w} \cdot \mathbf{h}(\mathbf{x}_i)
ight) + \|\mathbf{w}\|_2^2,$$

subject to the ℓ_∞ constraint $|w_j| \le 1/n \;\; \forall j \in \{1, \ldots, n\}.$

- Here ||w||₂ denotes the Euclidean norm of w and ζ(x) = (x − 1)² for the quadratic loss and e^{-x} for the exponential loss.
- If, instead, we minimize f_{ℓ_2} for $\mathbf{v} \stackrel{\text{def}}{=} \mathbf{w}/\gamma$ and remove the ℓ_{∞} constraint, we recover *exactly*
 - ridge regression for the quadratic loss case
 - ℓ_2 -regularized boosting for the exponential loss case !!

Specialization to Linear classifiers Majority votes of weak classifiers Answer # 1: go back to linear classifier specialization Answer # 2: PAC-Bayes on a general loss function

PAC-Bayes vs Boosting and Ridge regression (cont)

With this approximation, the objective function to minimize becomes

$$f_{\ell_2}(\mathbf{w}) = C'' \sum_{i=1}^m \zeta\left(rac{1}{\gamma} y_i \mathbf{w} \cdot \mathbf{h}(\mathbf{x}_i)
ight) + \|\mathbf{w}\|_2^2,$$

subject to the ℓ_∞ constraint $|w_j| \le 1/n \;\; \forall j \in \{1, \ldots, n\}.$

- Here ||w||₂ denotes the Euclidean norm of w and ζ(x) = (x − 1)² for the quadratic loss and e^{-x} for the exponential loss.
- If, instead, we minimize f_{ℓ_2} for $\mathbf{v} \stackrel{\text{def}}{=} \mathbf{w}/\gamma$ and remove the ℓ_{∞} constraint, we recover *exactly*
 - ridge regression for the quadratic loss case
 - l₂-regularized boosting for the exponential loss case !!

Specialization to Linear classifiers Majority votes of weak classifiers Answer # 1: go back to linear classifier specialization Answer # 2: PAC-Bayes on a general loss function

PAC-Bayes vs Boosting and Ridge regression (cont)

• With this approximation, the objective function to minimize becomes $m = \sqrt{1}$

$$f_{\ell_2}(\mathbf{w}) = C'' \sum_{i=1}^m \zeta\left(rac{1}{\gamma} y_i \mathbf{w} \cdot \mathbf{h}(\mathbf{x}_i)
ight) + \|\mathbf{w}\|_2^2,$$

subject to the ℓ_∞ constraint $|w_j| \le 1/n \;\; \forall j \in \{1,\ldots,n\}.$

- Here ||w||₂ denotes the Euclidean norm of w and ζ(x) = (x − 1)² for the quadratic loss and e^{-x} for the exponential loss.
- If, instead, we minimize f_{ℓ_2} for $\mathbf{v} \stackrel{\text{def}}{=} \mathbf{w}/\gamma$ and remove the ℓ_{∞} constraint, we recover *exactly*
 - ridge regression for the quadratic loss case !
 - ℓ_2 -regularized boosting for the exponential loss case !!

Specialization to Linear classifiers Majority votes of weak classifiers Answer # 1: go back to linear classifier specialization Answer # 2: PAC-Bayes on a general loss function

PAC-Bayes vs Boosting and Ridge regression (cont)

With this approximation, the objective function to minimize becomes

$$f_{\ell_2}(\mathbf{w}) = C'' \sum_{i=1}^m \zeta\left(rac{1}{\gamma} y_i \mathbf{w} \cdot \mathbf{h}(\mathbf{x}_i)
ight) + \|\mathbf{w}\|_2^2,$$

subject to the ℓ_∞ constraint $|w_j| \leq 1/n \;\; \forall j \in \{1,\ldots,n\}.$

- Here ||w||₂ denotes the Euclidean norm of w and ζ(x) = (x − 1)² for the quadratic loss and e^{-x} for the exponential loss.
- If, instead, we minimize f_{ℓ_2} for $\mathbf{v} \stackrel{\text{def}}{=} \mathbf{w}/\gamma$ and remove the ℓ_{∞} constraint, we recover *exactly*
 - ridge regression for the quadratic loss case !
 - $\ell_2\text{-regularized boosting for the exponential loss case <math display="inline">!!$

Specialization to Linear classifiers Majority votes of weak classifiers Answer # 1: go back to linear classifier specialization Answer # 2: PAC-Bayes on a general loss function

・ロン ・回と ・ヨン・

Answer#2 and kernel methods

- Note that in contrast with the approach Answer#1, the approach (Answer#2) can not, as it is presently stated, construct kernel based algorithm.
- For that we need to extend the PAC-Bayes theorem to the sample compression setting (see presentation of Pascal Germain).

Specialization to Linear classifiers Majority votes of weak classifiers Answer # 1: go back to linear classifier specialization Answer # 2: PAC-Bayes on a general loss function

イロト イヨト イヨト イヨト

Answer#2 and kernel methods

- Note that in contrast with the approach Answer#1, the approach (Answer#2) can not, as it is presently stated, construct kernel based algorithm.
- For that we need to extend the PAC-Bayes theorem to the sample compression setting (see presentation of Pascal Germain).

イロト イヨト イヨト イヨト

- Theorem 1, being relatively simple, represent a good starting point for an introduction to PAC-Bayes theory
- Again because of its simplicity, it represents an interesting tool for developping new PAC-Bayes bounds (not necessary in binary classification under the iid assumption).
- Up to some convex relaxation PAC-Bayes rediscovers existing algorithms,
 - this is nice
 - and should be interesting for other paradigms than iid supervised learning, where our knowledge is not as "extended"

イロト イヨト イヨト イヨト

- Theorem 1, being relatively simple, represent a good starting point for an introduction to PAC-Bayes theory
- Again because of its simplicity, it represents an interesting tool for developping new PAC-Bayes bounds (not necessary in binary classification under the iid assumption).
- Up to some convex relaxation PAC-Bayes rediscovers existing algorithms,
 - this is nice
 - and should be interesting for other paradigms than iid
 - supervised learning, where our knowledge is not as "extended".

イロン 不同と 不同と 不同と

- Theorem 1, being relatively simple, represent a good starting point for an introduction to PAC-Bayes theory
- Again because of its simplicity, it represents an interesting tool for developping new PAC-Bayes bounds (not necessary in binary classification under the iid assumption).
- Up to some convex relaxation PAC-Bayes rediscovers existing algorithms,
 - this is nice
 - and should be interesting for other paradigms than iid supervised learning, where our knowledge is not as "extended".

イロト イヨト イヨト イヨト

- Theorem 1, being relatively simple, represent a good starting point for an introduction to PAC-Bayes theory
- Again because of its simplicity, it represents an interesting tool for developping new PAC-Bayes bounds (not necessary in binary classification under the iid assumption).
- Up to some convex relaxation PAC-Bayes rediscovers existing algorithms,
 - this is nice
 - and should be interesting for other paradigms than iid supervised learning, where our knowledge is not as "extended".

イロト イヨト イヨト イヨト

- Theorem 1, being relatively simple, represent a good starting point for an introduction to PAC-Bayes theory
- Again because of its simplicity, it represents an interesting tool for developping new PAC-Bayes bounds (not necessary in binary classification under the iid assumption).
- Up to some convex relaxation PAC-Bayes rediscovers existing algorithms,
 - this is nice
 - and should be interesting for other paradigms than iid supervised learning, where our knowledge is not as "extended".

イロト イヨト イヨト イヨト

- Minimizing PAC-Bayes bounds seems to produce performing algorithms !!!
- but these algorithms nevertheless need to have some parameter to be tune via cross-validation in order to perform as well as the state of the art
 - Why this is so ?
 - Possibly because the loss of those bounds are only based on the margin
 - The U-statistic involved here is therefore of order one,
 - what if we consider higher order ?
 - Note: PAC-Bayes bound of U-statistic of high orders will be in
 - a non iid setting

・ロン ・回と ・ヨン・

- Minimizing PAC-Bayes bounds seems to produce performing algorithms !!!
- but these algorithms nevertheless need to have some parameter to be tune via cross-validation in order to perform as well as the state of the art
 - Why this is so ?
 - Possibly because the loss of those bounds are only based on the margin
 - The U-statistic involved here is therefore of order one,
 - what if we consider higher order ?
 - Note: PAC-Bayes bound of U-statistic of high orders will be in
 - a non iid setting

・ロン ・回と ・ヨン・

- Minimizing PAC-Bayes bounds seems to produce performing algorithms !!!
- but these algorithms nevertheless need to have some parameter to be tune via cross-validation in order to perform as well as the state of the art
 - Why this is so ?
 - Possibly because the loss of those bounds are only based on the margin
 - The U-statistic involved here is therefore of order one,
 - what if we consider higher order ?
 - Note: PAC-Bayes bound of U-statistic of high orders will be in a non iid setting

・ロン ・回と ・ヨン ・ヨン

- Minimizing PAC-Bayes bounds seems to produce performing algorithms !!!
- but these algorithms nevertheless need to have some parameter to be tune via cross-validation in order to perform as well as the state of the art
 - Why this is so ?
 - Possibly because the loss of those bounds are only based on the margin
 - The U-statistic involved here is therefore of order one,
 - what if we consider higher order ?
 - Note: PAC-Bayes bound of U-statistic of high orders will be in a non iid setting

イロト イヨト イヨト イヨト

- Minimizing PAC-Bayes bounds seems to produce performing algorithms !!!
- but these algorithms nevertheless need to have some parameter to be tune via cross-validation in order to perform as well as the state of the art
 - Why this is so ?
 - Possibly because the loss of those bounds are only based on the margin
 - The U-statistic involved here is therefore of order one,
 - what if we consider higher order ?
 - Note: PAC-Bayes bound of U-statistic of high orders will be in a non iid setting

イロト イヨト イヨト イヨト

- Minimizing PAC-Bayes bounds seems to produce performing algorithms !!!
- but these algorithms nevertheless need to have some parameter to be tune via cross-validation in order to perform as well as the state of the art
 - Why this is so ?
 - Possibly because the loss of those bounds are only based on the margin
 - The U-statistic involved here is therefore of order one,
 - what if we consider higher order ?
 - Note: PAC-Bayes bound of U-statistic of high orders will be in a non iid setting

イロト イヨト イヨト イヨト

- Minimizing PAC-Bayes bounds seems to produce performing algorithms !!!
- but these algorithms nevertheless need to have some parameter to be tune via cross-validation in order to perform as well as the state of the art
 - Why this is so ?
 - Possibly because the loss of those bounds are only based on the margin
 - The U-statistic involved here is therefore of order one,
 - what if we consider higher order ?
 - Note: PAC-Bayes bound of U-statistic of high orders will be in a non iid setting

The mathematics of the PAC-Bayes Theory PAC-Bayes bounds and algorithms Specialization to Linear classifiers Answer # 1: go back to linear classifier specialization Answer # 2: PAC-Bayes on a general loss function

QUESTIONS ?

François Laviolette PAC-Bayes theory in supervised Learning

・ロン ・回と ・ヨン・

æ