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Overview

@ PAC-Bayes prior informed by data-generating distribution
(Catoni’s “localization”)

@ Investigate localization in a variety of methodologies:
@ Gibbs-Boltzmann (original setting)
e Sharp risk analysis
e Investigate (controlling) function class complexity
e Encode assumptions about interaction between classifiers
and data geometry
@ Gaussian Processes (new setting)

e Practical
e Sharp risk analysis

@ Significant reduction in KL divergence



Preliminaries- Typical PAC-Bayes Analysis

@ Distribution D over X x Y

@ Sample S ~ D™

@ Class H of hypotheses h : X — Y
@ prior P, posterior Q over H

@ Recall PAC-Bayes bound

Theorem (Seeger’s bound)

For any D, any set'H of classifiers, any distribution P on H, for
all Q on'H and any § € (0, 1], with probability at least1 — ¢

K(risks(Ga). risk(Ga)) < (KL(QHP) in f@)
where £(m) = O(v/m)

@ Dominant quantity is KL divergence - can be large...



Localization - Motivation

Typically...
@ P not informed by data-generating distribution

e Prior weight assigned to high risk classifiers
e If Q “good” then D(Q||P) large

@ Choice of Q constrained by need to minimize divergence
Localization...
@ Key observation: P can be informed by D
@ e.g. high prior mass only to classifiers with low true risk
p(h) _ %e ~risk(h)
@ P unknown
@ Choose Q such that KL(Q||P) estimated



Localization 2 - Our interpretation

@ We consider exponential families

p(h) = le—Fp(h) q(h) = %e—f?q(h)

@ To obtain risk analysis we just need to bound KL(Q||P)

KL(Q||P) < (Epwg— Enp)lFo(h) — Fg(h)]

@ Choose F, to estimate F, from the sample S

® KL(Q||P) < suppep |Fo(h) — Fy(h)|

@ Lemma is “recursive”

@ Establish convergence: KL decays with the sample



Stochastic ERM 1 - Risk Bound

@ P and Q are Gibbs-Boltzmann distributions

1 ' 1 =
— —~risk(h) .— _ a—risks(h)
p(h): 7€ q(h) : >€

@ We must bound (Ep.q — Ep,p)[yrisk(h) — ~risks(h)]

Lemma

With probability at least1 — 6,

v 2¢(m) | A
KL(@QIP) < —oyin =3 4 2o

Theorem (Risk Bound for stochastic ERM)

With probability at least1 — ¢,

(rlSkS(GQ) risk(Gg)) < (f\/im % 2 E;m))

—




Stochastic ERM 2 - Complexity

@ Where is the dependence on function class complexity?
@ Captured by v: “inverse temperature” controls variance

1 1
— —~risk(h) .— _ a—risks(h)
p(h): € q(h) : €
e If M is rich v must be large to control Ey,glrisks(h)]

@ New notion of complexity?



Regularized Stochastic ERM

@ Add a regularization terms to control capacity

Z/

@ e.g. RKHS regularization Fp(h) = F4(h) = ||h|[2,.
@ When F, = F4 we obtain same (unregularized) bound

U —risk(h)+nFp(h) h) = — g risks(h)+nFq(h)
p(h) = e q(h) = ze

Theorem (Risk Bound for Regularized Stochastic ERM)

With probability at least1 — ¢,

Kl(risks(Go), risk(Gq)) < ,1,,,(\% 455; )+ m in 2ggm))

@ But this should enable smaller



Regularization in Intrinsic Geometry of Data

@ Regularize w.r.t. interaction between hypotheses and
geometry of data-generating distribution

@ Data has its own intrinsic geometry

@ e.g. intrinsic and extrinsic metrics can be very different
@ Working assumption intrinsic geometry more suitable
@ Correct setting for notions of function class complexity



Capturing Intrinsic Geometry of Data

@ Intrinsic geometry learnt from random samples
@ Given sample S of npoints, form G = (V,£)on S

iy -

A

@ Define “smoothness” of hon G

~ 1

Us(h) = Loy 2 (h(X) = h(X))*W(Xi, X)

@ Converges to smoothness w.r.t. data distribution (Hein et
al.)

@ Captures intuitions about how good classifiers interact with
“true” structure of data

@ Not possible without empirical geometry



Regularization in Intrinsic Geometry of Data

@ Given S = {(X1, Y1), .(Xm, Ym)} U {Xims1, . Xn}

1 . 1 — ~
L gmisk(h)+nU(h) 1 grisks () tnUs(h)
p(h) = e q(h) := e

Z/
o Us(h) = srgy So4(h(X:) — h(X)2W(X;. X;),
“smoothness” on G
@ U(h) :=Es[Us(h)]
@ To bound KL(Q||P) we must bound
(Envq — Enwp)[U(h) — Us(h)]
e Us(h) is a U-statistic of order 2
@ We need PAC-Bayes concentration of U-process...



PAC-Bayes U-process concentration

© Us(h) := sy Xz n(Xi X))

Theorem (PAC-Bayes concentration for U-processes)
For all t, with probability at least1 — §

~ 2(h _ 9)2
En-olUs(h) - UM < ¢ (KL(@11P)+ “5- 2 4 (1))

where a < fy(X, X') < b

Germain et. al’'s general recipe for PAC-Bayes bounds
Hoeffding’s decomposition into martingales
Hoeffding’s lemma recursively (as in Azuma/McDiarmid) O




Bound for Intrinsic Regularization

@ Putting everything together we obtain a bound for the case,

1 4 1 S U
U —yrisk(h)+nU(h) 1 —risks(h)+nUs(h)
p(h) = e a(h) = e

Theorem (Risk Bound for Intrinsic Regularization)
Forn < +/n, with probability at least1 — ¢

ki(risks(Gq), risk(Gg)) < % <A2 +B+AV2B+ A2 +1n 5(5'77))

A VD
"~ 2ym(v/n—n)

_v/n 4¢(m) 4
B._ﬁ_n<7 Zn = +\f(32b4wz+|n5>>

@ Controlling function class complexity in this way is unusual
@ Flexibility of PAC-Bayes and localization




Gaussian Process Prediction

@ Extend localization to Gaussian processes
@ Mercerkernel K: X x X - R
°
°

RKHS H := span{K(x,-) : x € X'}
h(x) == {(h, K(x,))n

1 yae
p(h) = zre 2l q(h) =

o 3llh-nsli,

NI =

where

Hs = arfgmin{@é(h) +AABY 5= Eslus].
cH

¢:Y x Y convex, a-Lipschitz
Gg equivalent to Gaussian process {Gx}xex on X with

E[Gx] = ps(x)
E[(Gx — E[Gx])(Gx — E[Gx])] = lK(X, x)



Gaussian Process Prediction 2 - Bounding the KL

@ As usual to establish risk bound we bound KL(Q||P)

Lemma

KL(Q||P) = }llus — I3,
Ps <Hus — plln < 354/ LIn g‘) >1-6

where k= supycx v/ K(X, X)

Proof.
Via bounded differences: consider

S ={(X1, Y1), ..(Xm, Ym)}
SD = {(X1, Y1), .(Xi—1, Yie1), (X, Y1), (Xig1, Yie1)s - (Ximy Yim)

By stability argument: ||ugsi) — pslln < § then version of

Azuma’s inequality for Hilbert space-valued martingales ]




Gaussian Process Prediction 3 - Risk bound

@ recall

p(h) = %e_%‘lh_“”% q(h) := %e—%ﬂh—usﬂi

where

ps = argmin{@g(h) +AABY = Eslus].
cH

@ Risk bound by putting all together

Theorem (Risk bound for Gaussian process prediction)

If¢(-,-) is a-Lipschitz, and 'H is separable then with probability
at least 1 — 6 over the draw of S

o 1 (1022 8 2¢(m)
kl(risks(Gq), risk(Gg)) < - ( 2 log 5t In 5 )




Conclusions

@ Developed seemingly sharp risk analysis for Localization
with Boltzmann prior/posterior

@ Considered function class complexity and regularization

@ Regularized w.r.t. interaction between hypotheses and
data structure

@ Extended the ideas to Gaussian Processes



