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Overview

PAC-Bayes prior informed by data-generating distribution
(Catoni’s “localization”)

Investigate localization in a variety of methodologies:
Gibbs-Boltzmann (original setting)

Sharp risk analysis
Investigate (controlling) function class complexity
Encode assumptions about interaction between classifiers
and data geometry

Gaussian Processes (new setting)
Practical
Sharp risk analysis

Significant reduction in KL divergence



Preliminaries- Typical PAC-Bayes Analysis

Distribution D over X × Y
Sample S ∼ Dm

Class H of hypotheses h : X → Y
prior P, posterior Q over H
Recall PAC-Bayes bound

Theorem (Seeger’s bound)
For any D, any set H of classifiers, any distribution P on H, for
all Q on H and any δ ∈ (0,1], with probability at least 1− δ

kl(r̂iskS(GQ), risk(GQ)) ≤ 1
m

(
KL(Q||P) + ln

ξ(m)

δ

)
where ξ(m) = O(

√
m)

Dominant quantity is KL divergence - can be large...



Localization - Motivation

Typically...
P not informed by data-generating distribution

Prior weight assigned to high risk classifiers
If Q “good” then D(Q||P) large

Choice of Q constrained by need to minimize divergence
Localization...

Key observation: P can be informed by D
e.g. high prior mass only to classifiers with low true risk

p(h) =
1
Z ′

e−γrisk(h)

P unknown
Choose Q such that KL(Q||P) estimated



Localization 2 - Our interpretation

We consider exponential families

p(h) :=
1
Z ′

e−Fp(h) q(h) :=
1
Z

e−F̂q(h)

To obtain risk analysis we just need to bound KL(Q||P)

Lemma

KL(Q||P) ≤ (IEh∼Q − IEh∼P)[Fp(h)− F̂q(h)]

Choose F̂q to estimate Fp from the sample S
KL(Q||P) ≤ suph∈H |Fp(h)− F̂q(h)|
Lemma is “recursive”
Establish convergence: KL decays with the sample



Stochastic ERM 1 - Risk Bound

P and Q are Gibbs-Boltzmann distributions

p(h) :=
1
Z ′

e−γrisk(h) q(h) :=
1
Z

e−γ r̂iskS(h)

We must bound (IEh∼Q − IEh∼P)[γrisk(h)− γ r̂iskS(h)]

Lemma
With probability at least 1− δ,

KL(Q||P) ≤ γ√
m

√
ln

2ξ(m)

δ
+

γ2

4m
.

Theorem (Risk Bound for stochastic ERM)

With probability at least 1− δ,

kl(r̂iskS(GQ), risk(GQ)) ≤ 1
m

(
γ√
m

√
ln

4ξ(m)

δ
+
γ2

4m
+ ln

2ξ(m)

δ

)



Stochastic ERM 2 - Complexity

Where is the dependence on function class complexity?
Captured by γ: “inverse temperature” controls variance

p(h) :=
1
Z ′

e−γrisk(h) q(h) :=
1
Z

e−γ r̂iskS(h)

If H is rich γ must be large to control IEh∼Q[r̂iskS(h)]

New notion of complexity?



Regularized Stochastic ERM

Add a regularization terms to control capacity

p(h) :=
1
Z ′

e−γrisk(h)+ηFp(h) q(h) :=
1
Z

e−γ r̂iskS(h)+ηFq(h)

e.g. RKHS regularization Fp(h) = Fq(h) = ||h||2H.
When Fp = Fq we obtain same (unregularized) bound

Theorem (Risk Bound for Regularized Stochastic ERM)
With probability at least 1− δ,

kl(r̂iskS(GQ), risk(GQ)) ≤ 1
m

(
γ√
m

√
ln

4ξ(m)

δ
+
γ2

4m
+ ln

2ξ(m)

δ

)

But this should enable smaller γ



Regularization in Intrinsic Geometry of Data

Regularize w.r.t. interaction between hypotheses and
geometry of data-generating distribution
Data has its own intrinsic geometry

49

51

A

B

e.g. intrinsic and extrinsic metrics can be very different
Working assumption intrinsic geometry more suitable
Correct setting for notions of function class complexity



Capturing Intrinsic Geometry of Data
Intrinsic geometry learnt from random samples
Given sample S of n points, form G = (V, E) on S

49

51

Define “smoothness” of h on G

ÛS(h) :=
1

n(n − 1)

∑
ij

(h(Xi)− h(Xj))
2W (Xi ,Xj)

Converges to smoothness w.r.t. data distribution (Hein et
al.)
Captures intuitions about how good classifiers interact with
“true” structure of data
Not possible without empirical geometry



Regularization in Intrinsic Geometry of Data

Given S = {(X1,Y1), ...(Xm,Ym)} ∪ {Xm+1, ...Xn}

p(h) :=
1
Z ′

e−γrisk(h)+ηU(h) q(h) :=
1
Z

e−γ r̂iskS(h)+ηÛS(h)

ÛS(h) := 1
n(n−1)

∑
ij(h(Xi)− h(Xj))

2W (Xi ,Xj),
“smoothness” on G
U(h) := IES [ÛS(h)]

To bound KL(Q||P) we must bound
(IEh∼Q − IEh∼P)[U(h)− ÛS(h)]

ÛS(h) is a U-statistic of order 2
We need PAC-Bayes concentration of U-process...



PAC-Bayes U-process concentration

US(h) := 1
n(n−1)

∑
i 6=j fh(Xi ,Xj)

Theorem (PAC-Bayes concentration for U-processes)
For all t , with probability at least 1− δ

IEh∼Q[ÛS(h)− U(h)] ≤ 1
t

(
KL(Q||P) +

t2(b − a)2

2n
+ ln

(
1
δ

))
where a ≤ fh(X ,X ′) ≤ b

Proof.
Germain et. al’s general recipe for PAC-Bayes bounds
Hoeffding’s decomposition into martingales
Hoeffding’s lemma recursively (as in Azuma/McDiarmid)



Bound for Intrinsic Regularization

Putting everything together we obtain a bound for the case,

p(h) :=
1
Z ′

e−γrisk(h)+ηU(h) q(h) :=
1
Z

e−γ r̂iskS(h)+ηÛS(h)

Theorem (Risk Bound for Intrinsic Regularization)

For η <
√

n, with probability at least 1− δ

kl(r̂iskS(GQ), risk(GQ)) ≤ 1
m

(
A2 + B + A

√
2B + A2 + ln

ξ(m)

δ

)
A :=

γ
√

n
2
√

m(
√

n − η)

B :=

√
n√

n − η

(
γ

√
2
m

ln
4ξ(m)

δ
+

2η√
n

(
32b4w2 + ln

4
δ

))

Controlling function class complexity in this way is unusual
Flexibility of PAC-Bayes and localization



Gaussian Process Prediction

Extend localization to Gaussian processes
Mercer kernel K : X × X → IR
RKHS H := span{K (x , ·) : x ∈ X}
h(x) := 〈h,K (x , ·)〉H

p(h) :=
1
Z ′

e−
γ
2 ||h−µ||

2
H q(h) :=

1
Z

e−
γ
2 ||h−µS ||

2
H

where

µS := argmin
h∈H

{r̂isk`S(h) + λ||h||2H} µ := IES [µS ].

` : Y × Y convex, α-Lipschitz
GQ equivalent to Gaussian process {Gx}x∈X on X with

IE[Gx ] = µS(x)

IE[(Gx − IE[Gx ])(Gx ′ − IE[Gx ′ ])] =
1
γ

K (x ,x ′)



Gaussian Process Prediction 2 - Bounding the KL
As usual to establish risk bound we bound KL(Q||P)

Lemma

KL(Q||P) = γ
2 ||µS − µ||

2
H

Lemma

IPS

(
||µS − µ||H ≤ 2ακ

λ

√
1
m ln 4

δ

)
≥ 1− δ

where κ := supx∈X
√

K (x ,x)

Proof.
Via bounded differences: consider

S := {(X1,Y1), ...(Xm,Ym)}
S(i) := {(X1,Y1), ...(Xi−1,Yi−1), (X ′i ,Y

′
i ), (Xi+1,Yi+1), ...(Xm,Ym)}

By stability argument: ||µS(i) − µS ||H ≤ ακ
λm then version of

Azuma’s inequality for Hilbert space-valued martingales



Gaussian Process Prediction 3 - Risk bound

recall

p(h) :=
1
Z ′

e−
γ
2 ||h−µ||

2
H q(h) :=

1
Z

e−
γ
2 ||h−µS ||

2
H

where

µS := argmin
h∈H

{r̂isk`S(h) + λ||h||2H} µ := IES [µS ].

Risk bound by putting all together

Theorem (Risk bound for Gaussian process prediction)

If `(·, ·) is α-Lipschitz, and H is separable then with probability
at least 1− δ over the draw of S

kl(r̂iskS(GQ), risk(GQ)) ≤ 1
m

(
γα2κ2

λ2m
log

8
δ

+ ln
2ξ(m)

δ

)



Conclusions

Developed seemingly sharp risk analysis for Localization
with Boltzmann prior/posterior
Considered function class complexity and regularization
Regularized w.r.t. interaction between hypotheses and
data structure
Extended the ideas to Gaussian Processes


