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SVM
1
w” = argmin Z max (O, 1 — yinq)(%')) + 5)\Hw||2

For ||®(z)|| = 1 SVMlight default is equivalent to A = 1.

The default A = 1 “holds up” independent of n and independent of the
number of support vectors.

Why?



Bayesian Inference

1 1
h* = argmin » In + In
e

P(yi|xi; h) P(h)

Note that A = 1.




Failure of Square Root Bounds

err(w) < —ZI 1w <1]+O< 1:;||2>

n err(w) < ZI yiw' O(z;) < 1] + O (Vn ||w]])
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PAC-Bayesian Theorem

err(Q) < B(Q)

B(Q) = ar(Q) + var(Q)e(Q) + ¢(Q)

. 2(KL(Q,P)+In™H)
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Q)" ~ argmin Z Euw~q [ L(w, 2, y;)] + 2K L(Q, P)
Q i

This provides a rationalization of A = 1.



Lo Prior
[Langford, Shawe-Taylor 2002, McAllester 2003]

Prior Plw) = e 2~
, Mgl
Posterior Quw) = e 27

. n ; Ty T
err(Q) = %22:1 Lprobit (%sz()ll;)

Lprobit<z> — PuNN(O,l)[u > Z]
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L, Prior
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Prior Pw) = e 7
_wi=plly

Posterior Qu(w) = e K

. n ; Ty T;
err(Q)) =~ %Zz’zl Lprobit (gvﬁ®(1€)\\)2)
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Ly Prior

[Schapire, Freund,Bartlett, Lee 98] [Langford, Seeger, Meggiddo, 2001]

Prior P(w) N independent feature draws (uniform)
Posterior Q.(w) N independent feature draws from m
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The Hinge Loss Problem

For ||®(x)||2 = 1, is there an approximation guarantee between

w = argmin Z Lprobit(yin(I)(xi)) + ||w‘ ‘2

and

w* = argmin Z max (O, 1 — yinCP(CEz)) + HwH2



Structured Prediction with an L, Prior

Consider machine translation where x is an English sentence and vy is a
French sentence.
yw(x) — alghlax wT(D@ja y)
Y

Consider a loss function L(y, y,,(x)) such as the BLEU score.

1 _M
P(w) = > e 2
1 lw—pl?

Qu(w) = 26_ 207

QWA argmin ZEwNQN [L(yzyyw(ﬂfz))}‘F;HMH%

H i



Digression: Ignore Regularization

w* = argmin, Z L(yi, Yu(;))

Many authors work with the following convex relaxation — the so-called
structured hinge loss.

margin, () = wT(D(ﬂ?z'ayz‘) - wTCI)(;I;“Q)

L(?Jz’; yw<x2>> < L(%a yw@jl)) T margini(@/w(xi))

< max L(y;, §) — margin,(y)
J

= max(0, 1 — y;w! ®(x;)) fory € {—1,1}



Structured Hinge Generalizes Binary Hinge

Under Hamming loss, Grouping binary training data into bags and applying
structured hinge to each bag is equivalent to binary hinge on the original
data.

structured hinge: w* = argmin,, (Y, max, H(y;,y) —m(y) )+ %AHU}HQ

binary hinge: w* = argmin,, ZZ- MmaXye{ 1,1} Iy # vi] — mi(y) + %AHUJ‘ ‘2



Margin Bounds

— margin, (y) <H (y,y;)

nE@,y)Np[L(y,W»]<0<Z mac  Liyy) + w||2>

This involves both the Hamming distance (as a margin requirement) and
the loss function.



Perceptron-like Updates

For a training point (x,y) we consider:

multiclass perceptron: Aw x P(z,y) — P(z,7)

structured hinge subgradient: — Aw o< ®(z,y) — P(x, Yninge)

AN

§ = argmax w! ®(x,7)
Y

f&hinge — arg{nax ’LUT(D(ZE, ?3) + L(?J: ﬁ)
Y

The optimization problem defining ypinee is called loss adjusted inference.



Direct Loss Update
Joint work with Tamir Hazan and Joseph Keshet

For a training point (x,y) we consider:

direct loss:  Aw o« O(z,y;) — P(x,9)

AN

§ = argmax w! ®(x,7)
Y

AN

Yyr — algimax wT(I)<$7 @)) T €L<y7 Q)
y

Updates similar to the loss minimization appear in
[Liang, Bouchard-Coté, Klein, and Taskar, 2006] [Chiang, Knight, Wang,2009]



Direct Loss Theorem

If, for each u, we have p(®(x, u)|y = ) is a continuous density on R? then
we have the following.

_v E( ) [L<y ?;)] — lim E(%CU)“P [(D(QZ, QL> o (I)<'CE7 g)]
w T Y)~p ) -

e—0 €

§ = argmax w’ ®(x,7)
Y

gL — argmax qu)<$7 ﬁ) o EL(y7 Q)
Y



Proof Hint



A, () = O(x,u) — P(z,v)

ALy(y) = L(y,u) — L(y,v)



Approximate Inference and Hidden Information

Let P be any finite set.

e P might be the set of corners of a relaxation of the marginal polytope.

e P might be the set of pairs (y, h) where y is a label and h is a hidden
label.

For p € P we let ®(x, u) be a feature vector and L(y, 1) be a loss.

—V By~ (L(y, i(z))] = lim B y)~p P(z, fip(z,y)) — P(x, i(z))]

e—0 €

A AN

fi(z) = argmax w! ®(x, 1)
i

pr(z,y) = argmax w' O(x, 1) — eL(y, 1)
fi



Experiments (Joseph Keshet)
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A spoken utterance labeled with the sequence of phonemes /p; po ps ps/
and its corresponding sequence of start-times (s; so S3 S4).



Loss Functions
Two types of loss functions are used in this problem:

The 7-alignment loss
- 1
LT—ahgnment<§7 5/) _ H ‘{Z : ‘Sz o S;| > 7_}|
S

The T-1nsensitive loss

LT—insensitive<— —/> — — max {‘Sz . S;| — T O}



Results

TIMIT code test set (192 utterances):

7 <10ms 7 <20ms 7 <30ms 7 < 40ms

Keshet et al (2007) 79.7 92.1 96.2 98.1
Direct Loss Min 7-alignment loss 85.83 94.05 97.04 98.17
Direct Loss Min 7-insensitive loss 86.00 94.48 97.20 98.47

TIMIT the whole test-set (1344 utterances).

7 <10ms 7 <20ms 7 <30ms 7 < 40ms

Hosom (2009) 79.30 93.36 96.74 98.22
Keshet et al (2007) 80.0 92.3 96.4 98.2

Direct Loss Min 7-alignment loss 86.01 94.08 97.08 98.44
Direct Loss Min 7-insensitive loss 85.72 94.21 97.21 98.60




Differentiating the PAC-Bayes bound

Now differentiate the PAC-Bayes bound with respect to p under Lo regu-
larization.

_ Z V., (/ Qu<w)L(yi,?)(wnyi))dw>
D3 / Qu(w)(w — ) L{ys, §(w, ;) dw
— Z Euw~g, (w — ) Ly, (w, ;)]

— Z %EAwNp Aw (L(ys, g(w + Aw, z;)) — L(y;, y(w — Aw, ;)]

1=1



Summary

e PAC-Bayesian bounds predict A (the regularization paraeter).

e PAC-Bayesian bounds allow Lo, L1 and L regularization to be under-
stood in terms of prior probabilities.

e Hinge loss — both binary and structured — is a convex relaxation which
has no know approximation guarantee.

e [ixisting theories of structured learning confuse margin requirements
with loss functions.

e Direct loss optimiztion, or bound optimization, is an up and coming
approach to structured learning.



