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Luckiness definitions

Based on a function from samples and hypotheses:

L : X m × H → R+,

which measures the luckiness of a particular hypothesis
with respect to the training examples.
The level of luckiness is measured by seeing the number
of functions that are luckier:

`(x,h) = |{b ∈ {0,1}m : ∃g ∈ H,g(x) = b,L(x,g) ≥ L(x,h)}|.
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Example

Motivating example was the case of large margin
classifiers: luckiness measured margin on the sample
Note that hyperplanes as classifiers cannot be ranked by
margin until sample is seen
Can overcome this difficulty if we consider real valued
functions, require outputs to be ±1 and measure
complexity by the norm of the weight vector
This obscures the role of luckiness to capture alignment of
hypotheses with the data generating distribution: eg
density of distribution close to hyperplane
Similar to idea of compatibility of Blum and Balcan (2005)
Related to the local PAC-Bayes analysis of Catoni
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Defining priors from data distributions

Can use part of the data to learn the prior: eg train svm on
half the data and centre the prior gaussian on this weight
vector (Emilio will give results for this)
Can use some expectation over the true distribution to
define the centre of the prior distribution such as

w = E(x,y)∼D[yφ(x)]

or more sophisticated:

w = ES∼Dm0 [wSVM(S)]

with m0 << m
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Defining priors from data distributions

In the latter cases use empirical versions for actual prior
bound the difference between this and true (data
distribution) prior
use this to upper bound KL between true prior and posterior
complexity term typically decays with increasing sample
size
Shiliang will present theory and Emilio empirical results

Can also define prior based on true risk (or expectation
over SVM weight vectors on samples of training set size m

Even tighter bounds presented by Guy with extensions to
manifold learning
Closer to Catoni’s approach
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Maximum entropy learning

consider function class for X is a subset of the `∞ unit ball

F =

{
fw : x ∈ X 7→ sgn

(
N∑

i=1

wixi

)
: ‖w‖1 ≤ 1

}
,

want posterior distribution Q(w) such that can bound

P(x ,y)∼D(fw (x) 6= y) ≤ 2eQ(w)(= 2QD(w)) = 2E(x ,y)∼D,q∼Q(w) [I [q(x) 6= y ]] .

Given a training sample S = {(x1, y1), . . . , (xm, ym)}, we
similarly define

êQ(w)(= Q̂S(w)) =
1
m

m∑
i=1

Eq∼Q(w) [I [q(x i) 6= yi ]] .
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Posterior distribution Q(w)

Classifier q involves random weight vector W ∈ RN plus
random threshold Θ

qW ,Θ(x) = sgn (〈W ,x〉 −Θ) .

The distribution Q(w) of W will be discrete with

W = sgn(wi)ei ; with probability |wi |, i = 1, . . . ,N,

where ei is the unit vector. The distribution of Θ is uniform
on the interval [−1,1].
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Error expression

Proposition

With the above definitions, we have for w satisfying ‖w‖1 = 1,
that for any (x , y) ∈ X × {−1,+1},

Pq∼Q(w)(q(x) 6= y) = 0.5(1− y〈w ,x〉).
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Error expression proof

Proof.

Pq∼Q(w)(q(x) 6= y) =
N∑

i=1

|wi |PΘ (sgn (sgn(wi)〈ei ,x〉 −Θ) 6= y)

=
N∑

i=1

|wi |PΘ (sgn (sgn(wi)xi −Θ) 6= y)

= 0.5
N∑

i=1

|wi |(1− ysgn(wi)xi)

= 0.5(1− y〈w ,x〉),
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Generalisation error

Corollary

P(x ,y)∼D (fw (x) 6= y) ≤ 2eQ(w).

Proof.

Pq∼Q(w)(q(x) 6= y) ≥ 0.5
⇔

fw (x) 6= y .
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Base result

Theorem
With probability at least 1− δ over the draw of training sets of
size m

KL(êQ(w)‖eQ(w)) ≤
∑N

i=1 |wi | ln |wi |+ ln(2N) + ln((m + 1)/δ)

m

Proof.
Use prior P uniform on unit vectors ±ei .
Posterior described above so KL(P‖Q(w)) equals
ln(2N)− entropy of w .
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Interpretation

Suggests maximising the entropy as a means of
minimising the bound.
Problem that empirical error êQ(w) is too large:

êQ(w) =
m∑

i=1

0.5(1− yi〈w ,x i〉)

Function of margin – but just linear function.
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Boosting the bound

Trick to boost the power of the bound is to take T
independent samples of the distribution Q(w) and vote for
the classification:

qW ,Θ(x) = sgn

(
T∑

i=1

sgn
(
〈W t ,x〉 −Θt)) ,

Now empirical error becomes

êQ(w) =
0.5T

m

m∑
i=1

bT/2c∑
t=0

(
T
t

)
(1 + yi〈w ,x i〉)t (1− yi〈w ,x i〉)T−t ,

giving sigmoid like loss as function of the margin.
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Full result

Theorem
With probability at least 1− δ over the draw of training sets of
size m

P(x ,y)∼D (fw (x) 6= y) ≤

2KL−1

(
êQT (w),

T
∑N

i=1 |wi | ln(|wi |) + T ln(2N) + ln((m + 1)/δ)

m

)
,

Note penalty factor of T applied to KL

Behaves like the (inverse) margin in usual bounds
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Algorithmics

Bound motivates the optimisation:

min
w ,ρ,ξ

N∑
j=1

|wj | ln |wj | − Cρ+ D
m∑

i=1

ξi

subject to: yi〈w ,x i〉 ≥ ρ− ξi ,1 ≤ i ≤ m,
‖w‖1 ≤ 1, ξi ≥ 0,1 ≤ i ≤ m.

This follows the SVM route of approximating the sigmoid
like loss by the (convex) hinge loss
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Dual optimisation

max
α

L = −
N∑

j=1

exp

(∣∣∣∣∣
m∑

i=1

αiyixij

∣∣∣∣∣− 1− λ

)
− λ

subject to:
m∑

i=1

αi = C 0 ≤ αi ≤ D,1 ≤ i ≤ m.

Similar to SVM but with exponential function
Surprisingly also gives dual sparsity
Coordinate wise descent works very well (cf SMO
algorithm)
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Results

Bound and test errors:

Data Bound Error SVM error
Ionosphere 0.63 0.28 0.24

Votes 0.78 0.35 0.35
Glass 0.69 0.46 0.47

Haberman 0.64 0.25 0.26
Credit 0.60 0.25 0.28
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Gaussian Process Regression

GP is distribution over real valued functions that is
multivariate Gaussian when restricted to any finite subset
of inputs
Characterised by a kernel that specifies the covariance
function when marginalising on any finite subset
If have finite set of input/output observations generated
with additive Gaussian noise on the outputs, posterior is
also Gaussian process
KL divergence between prior and posterior can be
computed as (K = RR′ is a Cholesky decomposition of K ):

2KL(Q‖P) = log det
(

I +
1
σ2 K

)
−tr
((

σ2I + K
)−1

K
)

+
∥∥∥R(K + σ2I)−1y

∥∥∥2
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Applying PAC-Bayes theorem

Suggests can use the PB theorem if can create
appropriate classifiers indexed by real value functions
Consider for some ε > 0 classifiers:

hεf (x , y) =

{
1; if |y − f (x)| ≤ ε;
0; otherwise.

Can compute expected value of hεf under posterior
function:

Ef∼Q [hεf (x , y)] =
1
2

erf

(
y + ε−m(x)√

2v(x)

)
− 1

2
erf

(
y − ε−m(x)√

2v(x)

)
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GP Result

Furthermore can lower bound expected value of point
(x , y) in the posterior distribution by

2εN (y |m(x), v(x)) ≥ Ef∼Q [hεf (x , y)]− sup
τ∈[ε,ε]

ε2

2
2

v(x)
√

2eπ
.

enabling an application of the PB Theorem to give:

E
[
N (y |m(x), v(x)) +

ε

2v(x)
√

2eπ

]
≥ 1

2ε
KL−1

(
E(ε),

D + ln((m + 1)/δ)

m

)
where E(ε) is the empirical average of Ef∼Q

[
hεf (x , y)

]
and

D is the KL between prior and posterior.
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GP Experimental Results

The robot arm problem (R), 150 training points and 51 test
points.
The Boston housing problem (H), 455 training points and
51 test points.
The forest fire problem (F), 450 training points 67 test
points.

Dat σ ê KL−1 etest KL−1 varGP etest

R 0.0494 0.8903 0.4782 0.8419
H 0.1924 0.8699 0.4645 0.7155 0.8401 0.9416
F 1.0129 0.5694 0.4557 0.5533
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GP Experimental Results

We can also plot the test accuracy and bound as a function
of ε:

Figure: Gaussian noise: Plot of E(x,y)∼D[1− α(x)] against ε with for
varying noise level η.

(a) η = 1 (b) η = 3 (c) η = 5
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With Laplace noise:

Figure: Laplace noise: Plot of E(x,y)∼D[1− α(x)] against ε with for
varying η.

(a) η = 1 (b) η = 3 (c) η = 5
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GP Experimental Results

Robot arm problem and Boston Housing:

Figure: Confidence levels for Robot arm problem

(a) Robot arm (b) Boston housing
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Stochastic Differential Equation Models

Consider modelling a time varying process with a
(non-linear) stochastic differential equation:

dx = f(x, t)dt +
√
Σ dW

f(x, t) is a non-linear drift term and dW is a Wiener process
This is the limit of the discrete time equation:

∆xk ≡ xk+1 − xk = f(xk )∆t +
√

∆t Σ εk .

where εk is zero mean, unit variance Gaussian noise.
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Variational approximation

We use the Bayesian approach to data modelling with a
noise model given by:

p(yn|x(tn)) = N (yn|Hx(tn),R),

We consider a variational approximation of the posterior
using a time-varying linear SDE:

dx = fL(x, t)dt +
√
Σ dW,

where
fL(x, t) = −A(t)x + b(t).
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Girsanov change of measure

Measure for the drift f denoted by P and the one for drift fL
by Q.
The KL divergence in the infinite dimensional setting is
given by Radon-Nikodym derivative of Q with respect to P:

KL[Q‖P] =
∫

dQ ln dQ
dP = EQ ln dQ

dP ,

which can be computed as

dQ
dP

= exp
{
−
∫ tf

t0
(f− fL)>Σ−1/2 dŴt + 1

2

∫ tf
t0

(f− fL)>Σ−1(f− fL) dt
}
,

where Ŵ is a Wiener process with respect to Q.

John Shawe-Taylor University College London PAC-Bayes Analysis: Links to Luckiness and Applications



Luckiness
Maximum entropy classification

GPs and SDEs

Gaussian Process regression
Variational approximation
Generalisation

Girsanov change of measure

Measure for the drift f denoted by P and the one for drift fL
by Q.
The KL divergence in the infinite dimensional setting is
given by Radon-Nikodym derivative of Q with respect to P:

KL[Q‖P] =
∫

dQ ln dQ
dP = EQ ln dQ

dP ,

which can be computed as

dQ
dP

= exp
{
−
∫ tf

t0
(f− fL)>Σ−1/2 dŴt + 1
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KL divergence

Hence, KL divergence is

KL[Q‖P] = 1
2

∫ tf
t0

〈
(f(x(t), t)− fL(x(t), t))>Σ−1(f(x(t), t)− fL(x(t), t))

〉
qt

dt ,

where 〈 · 〉qt
denotes the expectation with respect to the

marginal density at time t of the measure Q.
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Variational approximation

As approximating SDE is linear, marginal distribution qt is
Gaussian

qt (x) = N (x|m(t),S(t)).

with the mean m(t) and covariance S(t) described by
ordinary differential equations (ODEs):

dm
dt

= −Am + b,

dS
dt

= −AS− SAT + Σ.
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Algorithmics

Using Lagrangian methods can derive algorithm that finds
the variational approximation by minimising the KL
divergence between posterior and approximating
distribution.
But KL also appears in the PAC-Bayes bound – is it
possible to define appropriate loss over paths ω that
captures the properties of interest?
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Error estimation

For ω : [0,T ] −→ RD defining a trajectory ω(t) ∈ RD, we
define the classifier hω by

hω(y, t) =

{
1; if ‖y− Hω(t)‖ ≤ ε;
0; otherwise.

where the actual observations are linear functions of the
state variable given by the operator H.
Prior and posterior distribution over functions are inherited
from distributions P and Q over paths ω.
Hence, P = psde and Q = q defined by linear
approximating sde.
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Generalisation analysis

For the PAC-Bayes analysis we must compute: KL(Q‖P),
eQ, êQ. We have as above

KL(Q‖P) =

∫
dq ln

dq
dpsde

.

If we now consider a fixed sample (y, t) we can estimate

Eω∼Q [hω(y, t)] =

∫
I [‖Hx− y‖ ≤ ε] dqt (x),

For sufficiently small values of ε we can approximate by

≈ Vdε
d

(2π|HS(t)HT |)d/2 exp
(
−(y− Hm(t))T (HS(t)HT )−1(y− Hm(t))

)
,

where Vd is the volume of a unit ball in Rd .
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Error estimates

Note that eQ is simply

eQ = E(y,t)∼µEω∼Q [hω(y, t)] ∝
∫
N (y|Hm(t),HS(t)HT )dµ(y, t),

while êQ is the empirical average of this quantity.
A tension arises in setting ε – if large approximation
inaccurate.
If eQ and êQ both small, the bound implied by the
KL(eQ‖êQ) ≤ C becomes weak.
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Refining the distributions

Overcome this weakness by taking K -fold product
distributions and defining h(ω1,...,ωK ) as

h(ω1,...,ωK )(y, t) =

{
1; if there exists 1 ≤ i ≤ K such that‖y− Hωi(t)‖ ≤ ε;
0; otherwise.

We now have

E(ω1,...,ωK )∼QK

[
h(ω1,...,ωK )(y, t)

]
≈ 1−

(
1−

∫
I [‖Hx− y‖ ≤ ε] dqt (x)

)K

≈ KVdε
dN (y|Hm(t),HS(t)HT ),
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Final result

Putting all together gives final bound:

E(y,t)∼µ

[
N (y|Hm(t),HS(t)HT )

]
≥

1
VdεdK

KL−1
(

KVdε
d Ê
[
N (y|Hm(t),HS(t)HT )

]
,

K
∫ T

0 Esde(t)dt + ln((m + 1)/δ)

m

)
.

where

Esde(t) = 1
2

〈
(f(x)− fL(x, t))TΣ−1(f(x)− fL(x, t))

〉
qt
,
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Small scale experiment

We applied the analysis to the results of performing a
variational Bayesian approximation to the Lorentz attractor
in three dimension. The quality of the fit with 49 examples
was good.
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Small scale experiment

chose Vdε
d to optimise the bound – fairly small ball

implying that our approximation should be reasonable.
compared the bound with the left hand side estimated on a
random draw of 99 test points. The corresponding values
are

m dt êQ A eQ KL−1(·, ·)/V
49 0.005 0.137 3.536 0.128 0.004
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Conclusions

Links between luckiness and choosing the prior based on
the data distribution
Applications to maximum entropy classification
Also consider lower bounding the accuracy of a posterior
distribution for Gaussian processes (GP)
Applied the theory to bound the performance of
estimations made using approximate Bayesian inference
for dynamical systems:

Prior determined by a non-linear stochastic differential
equation (SDE)
Variational approximation results in posterior given by an
approximating linear SDE – hence Gaussian process
posterior.
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