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@ Luckiness
@ Definitions
@ Priors from data distributions

© Maximum entropy classification
@ Generalisation
@ Optimisation

© GPs and SDEs
@ Gaussian Process regression
@ Variational approximation
@ Generalisation

John Shawe-Taylor University College London PAC-Bayes Analysis: Links to Luckiness and Applications



Luckiness Definitions

Priors from data distributions

Luckiness definitions

@ Based on a function from samples and hypotheses:
L:X™x H-—RT,

which measures the luckiness of a particular hypothesis
with respect to the training examples.
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Luckiness Definitions

Priors from data distributions

Luckiness definitions

@ Based on a function from samples and hypotheses:
L:X™x H-—RT,

which measures the luckiness of a particular hypothesis
with respect to the training examples.

@ The level of luckiness is measured by seeing the number
of functions that are luckier:

Ux,h) = |{b € {0,1}™: 3g € H,g(x) = b, L(x,g) > L(x, h)}|.
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Luckiness Definitions

Priors from data distributions

Example

@ Motivating example was the case of large margin
classifiers: luckiness measured margin on the sample
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Luckiness Definitions

Priors from data distributions

Example

@ Motivating example was the case of large margin
classifiers: luckiness measured margin on the sample

@ Note that hyperplanes as classifiers cannot be ranked by
margin until sample is seen
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Luckiness Definitions

Priors from data distributions

Example

@ Motivating example was the case of large margin
classifiers: luckiness measured margin on the sample

@ Note that hyperplanes as classifiers cannot be ranked by
margin until sample is seen

@ Can overcome this difficulty if we consider real valued
functions, require outputs to be +1 and measure
complexity by the norm of the weight vector
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Luckiness Definitions

Priors from data distributions

Example

@ Motivating example was the case of large margin
classifiers: luckiness measured margin on the sample

@ Note that hyperplanes as classifiers cannot be ranked by
margin until sample is seen

@ Can overcome this difficulty if we consider real valued
functions, require outputs to be +1 and measure
complexity by the norm of the weight vector

@ This obscures the role of luckiness to capture alignment of

hypotheses with the data generating distribution: eg
density of distribution close to hyperplane
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Luckiness Definitions

Priors from data distributions

Example

@ Motivating example was the case of large margin
classifiers: luckiness measured margin on the sample

@ Note that hyperplanes as classifiers cannot be ranked by
margin until sample is seen

@ Can overcome this difficulty if we consider real valued
functions, require outputs to be +1 and measure
complexity by the norm of the weight vector

@ This obscures the role of luckiness to capture alignment of
hypotheses with the data generating distribution: eg
density of distribution close to hyperplane

@ Similar to idea of compatibility of Blum and Balcan (2005)
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Luckiness Definitions

Priors from data distributions

Example

@ Motivating example was the case of large margin
classifiers: luckiness measured margin on the sample

@ Note that hyperplanes as classifiers cannot be ranked by
margin until sample is seen

@ Can overcome this difficulty if we consider real valued
functions, require outputs to be +1 and measure
complexity by the norm of the weight vector

@ This obscures the role of luckiness to capture alignment of
hypotheses with the data generating distribution: eg
density of distribution close to hyperplane

@ Similar to idea of compatibility of Blum and Balcan (2005)
@ Related to the local PAC-Bayes analysis of Catoni
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Luckiness Definitions

Priors from data distributions

Defining priors from data distributions

@ Can use part of the data to learn the prior: eg train svm on
half the data and centre the prior gaussian on this weight
vector (Emilio will give results for this)
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Luckiness Definitions

Priors from data distributions

Defining priors from data distributions

@ Can use part of the data to learn the prior: eg train svm on
half the data and centre the prior gaussian on this weight
vector (Emilio will give results for this)

@ Can use some expectation over the true distribution to
define the centre of the prior distribution such as

W = E(x,y)ND[y¢(x)]
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Luckiness Definitions

Priors from data distributions

Defining priors from data distributions

@ Can use part of the data to learn the prior: eg train svm on
half the data and centre the prior gaussian on this weight
vector (Emilio will give results for this)

@ Can use some expectation over the true distribution to
define the centre of the prior distribution such as

W= E(x,y)ND[y¢(x)]

@ or more sophisticated:
W = Eg pm [Wsvm(S)]

with mg << m

John Shawe-Taylor University College London PAC-Bayes Analysis: Links to Luckiness and Applications



Luckiness Definitions

Priors from data distributions

Defining priors from data distributions

@ In the latter cases use empirical versions for actual prior
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Luckiness Definitions

Priors from data distributions

Defining priors from data distributions

@ In the latter cases use empirical versions for actual prior

e bound the difference between this and true (data
distribution) prior
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Luckiness Definitions

Priors from data distributions

Defining priors from data distributions

@ In the latter cases use empirical versions for actual prior
e bound the difference between this and true (data
distribution) prior
o use this to upper bound KL between true prior and posterior
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Luckiness Definitions

Priors from data distributions

Defining priors from data distributions

@ In the latter cases use empirical versions for actual prior
e bound the difference between this and true (data
distribution) prior
o use this to upper bound KL between true prior and posterior
e complexity term typically decays with increasing sample
size
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Luckiness Definitions

Priors from data distributions

Defining priors from data distributions

@ In the latter cases use empirical versions for actual prior
e bound the difference between this and true (data
distribution) prior
o use this to upper bound KL between true prior and posterior
e complexity term typically decays with increasing sample
size
e Shiliang will present theory and Emilio empirical results
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Luckiness Definitions

Priors from data distributions

Defining priors from data distributions

@ In the latter cases use empirical versions for actual prior

e bound the difference between this and true (data
distribution) prior
o use this to upper bound KL between true prior and posterior
e complexity term typically decays with increasing sample
size
e Shiliang will present theory and Emilio empirical results
@ Can also define prior based on true risk (or expectation
over SVM weight vectors on samples of training set size m
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Luckiness Definitions

Priors from data distributions

Defining priors from data distributions

@ In the latter cases use empirical versions for actual prior

e bound the difference between this and true (data
distribution) prior
o use this to upper bound KL between true prior and posterior
e complexity term typically decays with increasing sample
size
e Shiliang will present theory and Emilio empirical results
@ Can also define prior based on true risk (or expectation
over SVM weight vectors on samples of training set size m

e Even tighter bounds presented by Guy with extensions to
manifold learning
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Luckiness Definitions

Priors from data distributions

Defining priors from data distributions

@ In the latter cases use empirical versions for actual prior

e bound the difference between this and true (data
distribution) prior
o use this to upper bound KL between true prior and posterior
e complexity term typically decays with increasing sample
size
e Shiliang will present theory and Emilio empirical results
@ Can also define prior based on true risk (or expectation
over SVM weight vectors on samples of training set size m
e Even tighter bounds presented by Guy with extensions to
manifold learning
e Closer to Catoni’s approach
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Generalisation

imum entr: lassification TTeatl
Maximum entropy classificatio Optimisation

Maximum entropy learning

@ consider function class for X is a subset of the /-, unit ball

N
F=<fy: XX+ sgn ZW/'X; Hlwlly <15,

i=1
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Generalisation

imum entr: lassification TTeatl
Maximum entropy classificatio Optimisation

Maximum entropy learning

@ consider function class for X is a subset of the /-, unit ball
N
F = {fW:XEXHsgn (ZW,‘X,‘) : HW||1 < 1},
=1

@ want posterior distribution Q(w) such that can bound

Pixy)~p(fw(X) # y) < 2eqw)(= 2Qp(W)) = 2E(xy)~p g~aw) [ [a(X) # ¥]]
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Generalisation

imum entr: lassification TTeatl
Maximum entropy classificatio Optimisation

Maximum entropy learning

@ consider function class for X’ is a subset of the /., unit ball
N
F = {fW:XEXHsgn (ZW,‘X,‘) : HW||1 < 1},
i=1
@ want posterior distribution Q(w) such that can bound
Pixy)~o(fw(X) # y) < 2equw)(= 2Qp(W)) = 2E(x )1 g~aw) [/ [a(X) # Y]]

@ Given atraining sample S = {(x1, y1),...,(Xm,¥m)}, we
similarly define

~

équw)(= Qs(w)) = %ZEqwa(w) [I1a(xi) # yill -
i
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Generalisation

imum entr: lassification TTeatl
Maximum entropy classificatio Optimisation

Posterior distribution

@ Classifier g involves random weight vector W < RN plus
random threshold ©

qw.o(Xx) =sgn((W,x) — O).
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Generalisation

imum entr: lassification TTeatl
Maximum entropy classificatio Optimisation

Posterior distribution

@ Classifier g involves random weight vector W < RN plus
random threshold ©

qw.e(X) = sgn ((W, x) — ©).
@ The distribution Q(w) of W will be discrete with
W = sgn(w;)e;; with probability |w;|,i=1,... N,

where e; is the unit vector. The distribution of © is uniform
on the interval [-1,1].
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Generalisation

Ximum entr lassification
Ma: um entropy classificatio Optimisation

Error expression

Proposition

With the above definitions, we have for w satisfying ||w|1 =1,
that for any (x,y) € X x {—1,+1},

Poaw)(aq(x) # y) = 0.5(1 — y(w, x)).
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Generalisation

i lassificati R
Maximum entropy classification Optimisation

Error expression proof

N
Pa~aw)(@(X) #y) = ) |wilPe (sgn (sen(wi)(e;, x) — ©) #y
i—
N
= Z |wi| Po (sgn (sgn(w;)x; — ©) # y)
S N
= 05 |wi|(1 — ysgn(w;)x)
P

= 0.5(1 — y(w, x)),
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Generalisation

Maximum entropy classification Optimisation

Generalisation error

Px.y)~p (fw(X) # y) < 2€0(w)-

0.5

Po~aw)(a(x) # y)

g

fw(X)
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Generalisation

i lassificati R
Maximum entropy classification Optimisation

Base result

With probability at least 1 — § over the draw of training sets of
sizem

N
2 ~ A wil In|wi| 4 In(2N) 4+ In((m + 1) /6
KL(eO(w)Heo(w))Sz’—” il |w r(n ) + In(( )/%)

[]
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Generalisation

i lassificati R
Maximum entropy classification Optimisation

Base result

With probability at least 1 — § over the draw of training sets of
sizem

N
2 ~ A wil In|wi| 4 In(2N) 4+ In((m + 1) /6
KL(eO(w)Heo(w))Sz’—” il |w r(n ) + In(( )/%)

@ Use prior P uniform on unit vectors +e;.
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Generalisation

i lassificati R
Maximum entropy classification Optimisation

Base result

With probability at least 1 — § over the draw of training sets of
sizem

N
2 ~ A wil In|wi| 4 In(2N) 4+ In((m + 1) /6
KL(eO(w)Heo(w))Sz’—” il |w r(n ) + In(( )/%)

@ Use prior P uniform on unit vectors +e;.

@ Posterior described above so KL(P|Q(w)) equals
In(2N)— entropy of w.
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Generalisation

imum entr: lassification TTeatl
Maximum entropy classificatio Optimisation

Interpretation

@ Suggests maximising the entropy as a means of
minimising the bound.
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Generalisation

imum entr: lassification TTeatl
Maximum entropy classificatio Optimisation

Interpretation

@ Suggests maximising the entropy as a means of
minimising the bound.

@ Problem that empirical error &gy is too large:

m
o) = »_0.5(1 — yi(w, x;))
e
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Generalisation

imum entr: lassification TTeatl
Maximum entropy classificatio Optimisation

Interpretation

@ Suggests maximising the entropy as a means of
minimising the bound.

@ Problem that empirical error &gy is too large:

m
o) = »_0.5(1 — yi(w, x;))
e

@ Function of margin — but just linear function.
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Generalisation

imum entr: lassification TTeatl
Maximum entropy classificatio Optimisation

Boosting the bound

@ Trick to boost the power of the bound is to take T
independent samples of the distribution Q(w) and vote for
the classification:

;
qw.e(X) =sgn (Z sgn ((W', x) — @t)) ’

i=1
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Generalisation

imum entr: lassification TTeatl
Maximum entropy classificatio Optimisation

Boosting the bound

@ Trick to boost the power of the bound is to take T
independent samples of the distribution Q(w) and vote for
the classification:

.
qw.,e(X) = sgn (Z sgn (W', x) — @t)> ,
i=1
@ Now empirical error becomes

m |_T/2

)
n=">3 3 ( ) +yi(w, i)' (1 = yi(w, x;)) "

i=1 t=0

giving sigmoid like loss as function of the margin.

John Shawe-Taylor University College London PAC-Bayes Analysis: Links to Luckiness and Applications



Generalisation

Maximum entropy classification Optimisation

Full result

Theorem

With probability at least 1 — § over the draw of training sets of
sizem

Pix.y)~p (fw(X) # y) <
A_— (éor(w), TSN (wlIn(lw;]) + TIn(2N) + In((m + 1)/6)

m )
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Generalisation

Maximum entropy classification Optimisation

Full result

Theorem

With probability at least 1 — § over the draw of training sets of
sizem

Pix.y)~p (fw(X) # y) <

—_— TSN (wi In(|w;]) + TIn@2N) + In((m + 1)/6)
Q" (w) m ’

@ Note penalty factor of T applied to KL
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Generalisation

Maximum entropy classification Optimisation

Full result

Theorem

With probability at least 1 — § over the draw of training sets of
sizem

Pix.y)~p (fw(X) # y) <

—_— TSN (wi In(|w;]) + TIn@2N) + In((m + 1)/6)
Q" (w) m ’

@ Note penalty factor of T applied to KL
@ Behaves like the (inverse) margin in usual bounds
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Generalisation

Maximum entropy classification Optimisation

Algorithmics

@ Bound motivates the optimisation:
N m

min > wlin|w| = Cp+D} ¢
" j=1 i=1

subject to: yilw, x;) > p—¢&i,1 <i<m,
[wli <1,6>0,1<i<m
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Generalisation

Maximum entropy classification Optimisation

Algorithmics

@ Bound motivates the optimisation:

w7 b .
p.€ r

subject to: yilw, x;) > p—¢&i,1 <i<m,
[wli <1,6>0,1<i<m

N m
min > |wlinjwj| - Cp+ D ¢
j=1

@ This follows the SVM route of approximating the sigmoid
like loss by the (convex) hinge loss
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Generalisation

Maximum entropy classification Optimisation

Dual optimisation

N m
max /_:—Zexp Za/y/X/j —1-XA]=A
j=1 P

m
subjectto: Y ;=C 0<a;<D1<i<m.
i—1
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Generalisation

Maximum entropy classification Optimisation

Dual optimisation

N m
max /_:—Zexp Za/y/X/j —1-XA]=A
j=1 i=1

m
subjectto: Y ;=C 0<a;<D1<i<m.
i—1

@ Similar to SVM but with exponential function
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Generalisation

Maximum entropy classification Optimisation

Dual optimisation

N m
max /_:—Zexp Za/y/X/j —1-XA]=A
j=1 i=1

m
subjectto: Y ;=C 0<a;<D1<i<m.
i—1

@ Similar to SVM but with exponential function
@ Surprisingly also gives dual sparsity
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Generalisation

Maximum entropy classification Optimisation

Dual optimisation

N m
max /_:—Zexp Za/y/X/j —1-XA]=A
j=1 i=1

m
subjectto: Y ;=C 0<a;<D1<i<m.
i—1

@ Similar to SVM but with exponential function

@ Surprisingly also gives dual sparsity

@ Coordinate wise descent works very well (cf SMO
algorithm)
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Generalisation

Maximum entropy classification Optimisation

Results: effect of varying

Bound on lonosphere
115 T T T

1.05- ~

Bound value

0.95- ~

0.9 L L L L
0 5 10 15 20 25 30 35 40

Value of T

PAC-Bayes Analysi



Generalisation

Maximum entropy classification Optimisation

Results

Bound and test errors:

Data Bound | Error | SVM error
lonosphere | 0.63 | 0.28 0.24
Votes 0.78 | 0.35 0.35
Glass 0.69 | 0.46 0.47
Haberman | 0.64 | 0.25 0.26
Credit 0.60 | 0.25 0.28
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Gaussian Process regression
Variational approximation
GPs and SDEs Generalisation

Gaussian Process Regression

@ GP is distribution over real valued functions that is
multivariate Gaussian when restricted to any finite subset
of inputs
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Gaussian Process regression
Variational approximation
GPs and SDEs Generalisation

Gaussian Process Regression

@ GP is distribution over real valued functions that is
multivariate Gaussian when restricted to any finite subset
of inputs

@ Characterised by a kernel that specifies the covariance
function when marginalising on any finite subset
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Gaussian Process regression
Variational approximation
GPs and SDEs Generalisation

Gaussian Process Regression

@ GP is distribution over real valued functions that is
multivariate Gaussian when restricted to any finite subset
of inputs

@ Characterised by a kernel that specifies the covariance
function when marginalising on any finite subset

@ If have finite set of input/output observations generated
with additive Gaussian noise on the outputs, posterior is
also Gaussian process
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Gaussian Process regression
Variational approximation
GPs and SDEs Generalisation

Gaussian Process Regression

@ GP is distribution over real valued functions that is
multivariate Gaussian when restricted to any finite subset
of inputs

@ Characterised by a kernel that specifies the covariance
function when marginalising on any finite subset

@ If have finite set of input/output observations generated
with additive Gaussian noise on the outputs, posterior is
also Gaussian process

@ KL divergence between prior and posterior can be
computed as (K = RR’ is a Cholesky decomposition of K):

2KL(Q||P) = log det </ . 012K> e <<02,+ k) K)+”R(K .
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Gaussian Process regression
Variational approximation
GPs and SDEs Generalisation

Applying PAC-Bayes theorem

@ Suggests can use the PB theorem if can create
appropriate classifiers indexed by real value functions
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Gaussian Process regression
Variational approximation
GPs and SDEs Generalisation

Applying PAC-Bayes theorem

@ Suggests can use the PB theorem if can create
appropriate classifiers indexed by real value functions

@ Consider for some ¢ > 0 classifiers:

1, ifly—f(x)| <e
0; otherwise.

pitxn = {
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Gaussian Process regression
Variational approximation
GPs and SDEs Generalisation

Applying PAC-Bayes theorem

@ Suggests can use the PB theorem if can create
appropriate classifiers indexed by real value functions

@ Consider for some ¢ > 0 classifiers:

¢ _ [ ity —fx)[ <e
hi(x.y) = { 0; otherwise.
@ Can compute expected value of hi under posterior
function:
. 1 +e—m(x 1 —e—m(x
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Gaussian Process regression
Variational approximation
GPs and SDEs Generalisation

GP Result

@ Furthermore can lower bound expected value of point
(x,y) in the posterior distribution by

€2 2
2 > Eroq[hs(x, — BN
N0, v(0) = Ereolix ) - sp 5B

enabling an application of the PB Theorem to give:

D+ In((m+1)/6)
e

€ 1 _q
E /\/(y\m(x),v(x))JrW] > ZKL <E(e)

where E(e) is the empirical average of E;.q [h(x, y)] and
D is the KL between prior and posterior.
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Gaussian Process regression
Variational approximation
GPs and SDEs Generalisation

GP Experimental Results

@ The robot arm problem (R), 150 training points and 51 test
points.

@ The Boston housing problem (H), 455 training points and
51 test points.

@ The forest fire problem (F), 450 training points 67 test

points.

Dat o e KL71 Ctest KL71 varGP Ctest
R | 0.0494 | 0.8903 | 0.4782 | 0.8419

H | 0.1924 | 0.8699 | 0.4645 | 0.7155 | 0.8401 0.9416
F 1.0129 | 0.5694 | 0.4557 | 0.5533
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Gaussian Process regression
Variational approximation
GPs and SDEs Generalisation

GP Experimental Results

@ We can also plot the test accuracy and bound as a function
of e:

Figure: Gaussian noise: Plot of E(y ,).p[1 — a(X)] against e with for
varying noise level 7.
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Gaussian Process regression
Variational approximation
GPs and SDEs Generalisation

GP Experimental Results

@ With Laplace noise:

Figure: Laplace noise: Plot of E(y ,y.p[1 — a(X)] against ¢ with for

varying n.
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Gaussian Process regression
Variational approximation
GPs and SDEs Generalisation

GP Experimental Results

@ Robot arm problem and Boston Housing:

Figure: Confidence levels for Robot arm problem
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(a) Robot arm (b) Boston housing
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Gaussian Process regression
Variational approximation
GPs and SDEs Generalisation

Stochastic Differential Equation Models

@ Consider modelling a time varying process with a
(non-linear) stochastic differential equation:

dx = f(x, t)dt + VE dW
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Gaussian Process regression
Variational approximation
GPs and SDEs Generalisation

Stochastic Differential Equation Models

@ Consider modelling a time varying process with a
(non-linear) stochastic differential equation:

dx = f(x, t)dt + VE dW

o f(x,t) is a non-linear drift term and dW is a Wiener process
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Gaussian Process regression
Variational approximation
GPs and SDEs Generalisation

Stochastic Differential Equation Models

@ Consider modelling a time varying process with a
(non-linear) stochastic differential equation:

dx = f(x, t)dt + VE dW

o f(x,t) is a non-linear drift term and dW is a Wiener process
@ This is the limit of the discrete time equation:

AXy = Xga1 — Xk = f(Xg) At + VAL X € .

where €, is zero mean, unit variance Gaussian noise.
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Gaussian Process regression
Variational approximation
GPs and SDEs Generalisation

Variational approximation

@ We use the Bayesian approach to data modelling with a
noise model given by:

P(YnlX(tn)) = N(yn[HX(tn), R),
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Gaussian Process regression
Variational approximation
GPs and SDEs Generalisation

Variational approximation

@ We use the Bayesian approach to data modelling with a
noise model given by:

P(YnlX(tn)) = N(yn[HX(tn), R),

@ We consider a variational approximation of the posterior
using a time-varying linear SDE:

dx = f.(x, t)dt + VE dW,

where
fL(x,t) = —A(H)x + b(t).
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Gaussian Process regression
Variational approximation
GPs and SDEs Generalisation

Girsanov change of measure

@ Measure for the drift f denoted by P and the one for drift f,
by Q.
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Gaussian Process regression
Variational approximation
GPs and SDEs Generalisation

Girsanov change of measure

@ Measure for the drift f denoted by P and the one for drift f,
by Q.
@ The KL divergence in the infinite dimensional setting is
given by Radon-Nikodym derivative of Q with respect to P:
KL[Q||P] = [dQIn 94 P = = Eqln 9Q @
which can be computed as

dQ t _ TA7 t -1
= :exp{— JE— )T V2 W+ L [ ) TE (- 1) dr},

where W is a Wiener process with respect to Q.
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KL divergence

@ Hence, KL divergence is

KLIQIP) = {(FOx(0) ) = u(x(1), 0) 5" (Hx(0). 1) — £u(x(0). 1))

where ( - ), denotes the expectation with respect to the
marginal density at time ¢ of the measure Q.
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Variational approximation

@ As approximating SDE is linear, marginal distribution q; is
Gaussian
qi(x) = N(x|m(t), $(1)).
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Variational approximation

@ As approximating SDE is linear, marginal distribution q; is
Gaussian
qi(x) = N(x|m(t), $(1)).

@ with the mean m(t) and covariance S(t) described by
ordinary differential equations (ODEs):

dm

o~ Am+b

as .
e —AS -SA' + 3.
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Algorithmics

@ Using Lagrangian methods can derive algorithm that finds
the variational approximation by minimising the KL
divergence between posterior and approximating
distribution.
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Algorithmics

@ Using Lagrangian methods can derive algorithm that finds
the variational approximation by minimising the KL
divergence between posterior and approximating
distribution.

@ But KL also appears in the PAC-Bayes bound —is it
possible to define appropriate loss over paths w that
captures the properties of interest?
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Error estimation

@ Forw : [0, T] — RP defining a trajectory w(t) € RP, we
define the classifier h,, by

1; if|ly—Hw(t)| <¢
0; otherwise.

y.t) = {

John Shawe-Taylor University College London PAC-Bayes Analysis: Links to Luckiness and Applications



Gaussian Process regression
Variational approximation
GPs and SDEs Generalisation

Error estimation

@ Forw : [0, T] — RP defining a trajectory w(t) € RP, we
define the classifier h,, by

1; iffly = Hw(t)[| <€
0; otherwise.

y.t) = {

@ where the actual observations are linear functions of the
state variable given by the operator H.
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Error estimation

@ Forw : [0, T] — RP defining a trajectory w(t) € RP, we
define the classifier h,, by

1; if|ly—Hw(t)| <¢
0; otherwise.

y.t) = {

@ where the actual observations are linear functions of the
state variable given by the operator H.

@ Prior and posterior distribution over functions are inherited
from distributions P and Q over paths w.
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Error estimation

@ Forw : [0, T] — RP defining a trajectory w(t) € RP, we
define the classifier h,, by

1; if|ly—Hw(t)| <¢
0; otherwise.

y.t) = {

@ where the actual observations are linear functions of the
state variable given by the operator H.

@ Prior and posterior distribution over functions are inherited
from distributions P and Q over paths w.

@ Hence, P = py. and Q = q defined by linear
approximating sde.
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Generalisation analysis

@ For the PAC-Bayes analysis we must compute: KL(Q|P),
eq, éq. We have as above

dq
dpsde .

KL(Q||P) = /dqln
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Generalisation analysis

@ For the PAC-Bayes analysis we must compute: KL(Q|P),
eq, éq. We have as above

dq
dpsde .
@ If we now consider a fixed sample (y, t) we can estimate

KL(Q||P) = /dqln

E.qlhu(y.t)] = / I[IHx — y]| < ] dgi(x).
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Generalisation analysis

@ For the PAC-Bayes analysis we must compute: KL(Q|P),
eq, éq. We have as above

dq
dpsde .
@ If we now consider a fixed sample (y, t) we can estimate

KL(Q||P) = /dqln

E.qlhu(y.t)] = / I[IHx — y]| < ] dgi(x).

@ For sufficiently small values of ¢ we can approximate by

Vyed

~ erns(nHT))e2 P (—(y — Hm(£))T(HS(HH)~" (y — Hm(1))) .

where V is the volume of a unit ball in R?.
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Error estimates

@ Note that eq is simply

60 = Ey-sBunahu(y. 0] x| A(y[Hm(t), HS(OHT)du(y. 1)

while éq is the empirical average of this quantity.
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Error estimates

@ Note that eq is simply

60 = Ey-sBunahu(y. 0] x| A(y[Hm(t), HS(OHT)du(y. 1)

while éq is the empirical average of this quantity.

@ A tension arises in setting ¢ — if large approximation
inaccurate.
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Error estimates

@ Note that eq is simply

60 = Ey-sBunahu(y. 0] x| A(y[Hm(t), HS(OHT)du(y. 1)

while éq is the empirical average of this quantity.

@ A tension arises in setting ¢ — if large approximation
inaccurate.

@ If eg and eg both small, the bound implied by the
KL(eq||éq) < C becomes weak.
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Refining the distributions

@ Overcome this weakness by taking K-fold product
distributions and defining A, ... ) as

h (y.1) = 1; if there exists 1 < i < K such that|ly — Hw;(t)|| < ¢
(@)W =90, otherwise.
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Refining the distributions

@ Overcome this weakness by taking K-fold product
distributions and defining A, ... ) as

h (y.1) = 1; if there exists 1 < i < K such that|ly — Hw;(t)|| < ¢
(@)W =90, otherwise.

@ We now have

K
Eu....co)m QK N w0 = 1 - (1 - / IIIHx —y|| < €] th(X)>
~ KVye9 N (y|Hm(t), HS(H)HT),
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Final result

@ Putting all together gives final bound:

Ey ty~p |V (yHM(2), HS(t)HT)} >

Vd: KL (KVaeB [N (yHm(1), HS(HHT)]
K [ Esael dt+|n((m+1)/5)>.
m
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Small scale experiment

@ We applied the analysis to the results of performing a
variational Bayesian approximation to the Lorentz attractor
in three dimension. The quality of the fit with 49 examples
was good.

-20 20
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Small scale experiment

@ chose Ve to optimise the bound — fairly small ball
implying that our approximation should be reasonable.
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Small scale experiment

@ chose Ve to optimise the bound — fairly small ball
implying that our approximation should be reasonable.
@ compared the bound with the left hand side estimated on a

random draw of 99 test points. The corresponding values
are

m | dt éo A eq | KL7'(-,-)/V
49 | 0.005 | 0.137 | 3.536 | 0.128 0.004
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Conclusions

@ Links between luckiness and choosing the prior based on
the data distribution
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Conclusions

@ Links between luckiness and choosing the prior based on
the data distribution

@ Applications to maximum entropy classification
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Conclusions

@ Links between luckiness and choosing the prior based on
the data distribution

@ Applications to maximum entropy classification

@ Also consider lower bounding the accuracy of a posterior
distribution for Gaussian processes (GP)
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Conclusions

@ Links between luckiness and choosing the prior based on
the data distribution

@ Applications to maximum entropy classification
@ Also consider lower bounding the accuracy of a posterior
distribution for Gaussian processes (GP)

@ Applied the theory to bound the performance of
estimations made using approximate Bayesian inference
for dynamical systems:
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Conclusions

@ Links between luckiness and choosing the prior based on
the data distribution

@ Applications to maximum entropy classification

@ Also consider lower bounding the accuracy of a posterior
distribution for Gaussian processes (GP)

@ Applied the theory to bound the performance of
estimations made using approximate Bayesian inference
for dynamical systems:

e Prior determined by a non-linear stochastic differential
equation (SDE)
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Conclusions

@ Links between luckiness and choosing the prior based on
the data distribution

@ Applications to maximum entropy classification

@ Also consider lower bounding the accuracy of a posterior
distribution for Gaussian processes (GP)

@ Applied the theory to bound the performance of
estimations made using approximate Bayesian inference
for dynamical systems:

e Prior determined by a non-linear stochastic differential
equation (SDE)

e Variational approximation results in posterior given by an
approximating linear SDE — hence Gaussian process
posterior.
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