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High-dimensional regression estimation

Regression model

We observe n independent pairs (X1, Y1), ..., (X5, Y,) in
X X R with
Vi = F(X) + W,

and E(W;) = 0, E(W?) < o2

Objective: to approximate f(.) by f5(.) = >°7_, 0;6;(.) where
(¢;(.))7=; is some dictionary of functions.

Problem: p > n.

Pierre Alquier PAC-Bayesian Bounds for Sparse Regression Estimation



Sparse regression estimation Setting of the problem
Short bibliography
Overview of the talk

Measures of the risk

Empirical norm: ||g|]2 = 2 37, g(X)?.
Empirical risk: r(6) =137 [Yi— BN =Y — K>3

Prevision risk: R(0) = E[r(0)].

Pierre Alquier PAC-Bayesian Bounds for Sparse Regression Estimation



Sparse regression estimation Setting of the problem
Short bibliography
Overview of the talk

Sparse regression estimation

Assumption: there is a py < n such that 30 € arg min R(.)
with at most py non-zero coordinates: "sparse" regression.

If these coordinates were known, we can build the LSE #° and
obtain, at least in the fixed design case

2

E [R(ég) —R@®)| < cst."n”O.

Problem: Usually, these coordinates and even p, are
unknown.
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lo-type penalization

lo-type penalization

Define the estimator
g oin{ 10) + Aol 0l

where ||0||o is the number of non-zero coordinates in 6.

Examples: C, (Mallows, 1973), AIC (Akaike, 1973), BIC
(Schwarz, 1978)...
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Results with fg-type penalization

Good theoretical properties. For example:

Theorem (Bunea et al., 2007)

In the fixed design case,

2
E [R(@,,BIC) —R@| < cst.%og(p).
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Results with fg-type penalization

Good theoretical properties. For example:

Theorem (Bunea et al., 2007)

In the fixed design case,

2
E [R(@,,BIC) —R@)| < cst.%og(p).

Problem: 2° possible submodels. In practice, #%° can
be computed for p at most a few tens!!
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¢1-type penalization

(1-type penalization - the LASSO (Tibshirani, 1996)

Define the estimator

arg in{ r(6) + Al |

Can be computed for very large p, using for example the very
popular LARS algorithm (Efron, Hastie, Johnstone &
Tibshirani, 2004).
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Variants: bridge regression (Frank & Friedman, 1993),
nonnegative garrote (Breiman, 1995), basis pursuit (Chen,
Donoho, Saunders, 2001), Dantzig selector (Candés & Tao,
2007), LOL (Kerkyacharian, Mougeot, Picard & Tribouley,
2010)...

Problem: restrictive assumption on the design are required to
prove sparsity oracle inequalities:

@ mutual coherence assumption (Bunea, Tsybakov &
Wegkamp 2007),

e restricted eigenvalue condition (Koltchinskii, to appear,
Bickel, Ritov & Tsybakov, to appear),
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Bayesian statistics

Possible idea: bayesian estimator with a prior distribution
7(df) that gives large probability to sparse parameters 6
(George 2000 good review, Casella & Moreno 2006, Cui &
George 2008 ...).

Monte Carlo methods usually allow to compute the estimators.

No theoretical results like sparsity oracle inequalities.
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PAC-Bayesian approach

References: everybody in this room!

Dalalyan & Tsybakov 2008: use tools from Catoni (2007) to
build an estimator

© that can be approximated by Monte Carlo methods;
@ that satisfies a spartisy oracle inequality.

But:
Q fixed design only;
Q 0 € RP with ||0]]2 < C only.
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@ Sparse regression estimation
@ Setting of the problem
@ Short bibliography
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© Two agregation procedures
e Additional notations
@ Procedure 1: unbounded parameter space
@ Procedure 2: random design

© MCMC methods for the computation of the estimator
e Hastings-Metropolis for 4,
o RIMCMC for 0,
@ Remarks on the empirical results
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The submodels

For any J C {1,...,p} and K > 0, we put

Ok ={0eRP: ||0], <K},
OU)={#eRP: 6,40 jcJ},
Ok(J) = Ok N O(J),

Uo,(s)(d0) = the uniform proba. measure on ©«(J).

For any 6 € R”, only one J(0) such that 6 € J(0).
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Definition of é,,

For the sake of simplicity, ||¢;|, = 1.
For any J C {1,...,p} let 0, € arg mingeo(y) r(0).

Let us choose A > 0, we define the prior 7, = 2_“‘_1(‘5")71
and:

~ 2
—A(r(ej)#"T“') N
_ DenTue 0,

0
” 2.1 WJe_A('(éJ)J“ZUiUI)
<n
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N

Theoretical result for 6

We assume that there is a 6* such that f = fy-.

Theorem

Let us assume that Xi, ..., X, are deterministic. Let us
assume Wi, .., W, i.id. N(0,0%), let us choose A = ;%
then:

E (|

f,—fI)

402|J(0")| 7p
= (|J(9*)\)
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Theoretical result for é,,

Theorem
Let us assume that Xi, ..., X, are deterministic. Let us
assume Wi, .., W, iid. N(0,0), let us choose A = ;%,

then:
~f1I7)

i (
402!J(9)| v
<Irn|n Ify — f|12 ___7;__—Iog (szng)
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Definition of 4,

We put m(df) = >, 2_|J|_1(|5|)71U@K+%(J)(d9) for a given
K > 0.

Let us choose A > 0, we put

i / fe= O m(dp)
b, = .
/ =) ()
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Motivation for definition of 4,

Variant of a result by Catoni (2001).

PAC-Bayesian inequality
For any 0 < A < n/w, 0 € Ok, and 0’ € O, ¢ €]0; 1], with
prob. at least 1 — ¢,

R(0x) — R(¢)

Jrdp—r(0) + 5 [K(p,m) + log 7|
1— AC
2(n—w)

< inf
peMi(eKch)

where C802 + (2||f || + L(2K +1/n))?,
w =8¢+ 2(||f|leo + L(K +1/(2n)))]L(2K + 1/n).
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Theoret|ca| result for 9

Theorem

Random or deterministic design. Known o > 0 and £ > 0
with E(W?) < 02 and E(|W;|*) < 02k!¢k=2 (sub-gaussian).
Then, with probability at least 1 — ¢, for A\ = e

0eEOK n

R(6,) < min {R(Q) + =

+ 22 ol

J(0)]

where C; = C1(0,, (|1 los s | Bplloos [[Flloo) and Co = Co(...)

are known constants.

np2e(K +1) e g] }
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MCMC methods for the computation of the
estimators

© MCMC methods for the computation of the estimator
@ Hastings-Metropolis for ¢,
e RJIMCMC for 6,

@ Remarks on the empirical results
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Hastings-Metropolis algorithm for 6, (1/2)

é\n = Z W_/é_/.

Jl<n

We simulate a Markov Chain J©, ..., J™) with invariant
distribution (w )<
Hastings-Metropolis:

o draw /() from k(J),.);

o take

1) with proba. a(J®, ()

(0, ()
(t41) W, (1Y,
J = =min (1, o KT ) -

J®  with proba. 1 — a(J®), l(t))
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Hastings-Metropolis algorithm for 6, (2/2)

k(d,) = ki (J, ) Lqy1=0p
+ k+(Ja ) "; k*(J> )

Lio<isj<nt + k=(J; ) Lgsj=n}
where, for j ¢ J,

oSl ialYimty (X6 (X))
oI5 SialYi=f; (Xi)lon(X))]

ke (4, U {j}) =
heJ

and, for j € J,
e*C|(§J)J’|

k-(J,J\ ) =

Pierre Alquier PAC-Bayesian Bounds for Sparse Regression Estimation



Hastings-Metropolis for 6,
RIJMCMC for 6,
MCMC methods for the computation of the estimator Remarks on the empirical results

~

Reversible Jump MCMC algorithm for 6

For #,, we have to simulate 81), ..., 8 from

e Om(do)
/ e ®m(dt)
Ok

Rmk: Hastings-Metropolis with a measure m(.) on several
subspaces known as "Reversible Jump" MCMC (Green 1995,
Green & Richardson 1997).
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Empirical remarks

On a small set of experiments:

© we are able to compute 8, and 4, for p = 1000,
O better than the LASSO when p 7 with o fixed,
© the LASSO is better when o /" with p fixed,
© computation time depends heavily on |J(6*)].
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