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High-dimensional regression estimation

Regression model

We observe n independent pairs (X1,Y1), ..., (Xn,Yn) in
X ×R with

Yi = f (Xi) + Wi

and E(Wi) = 0, E(W 2
i ) ≤ σ2.

Objective: to approximate f (.) by fθ(.) =
∑p

j=1 θjφj(.) where
(φj(.))pj=1 is some dictionary of functions.

Problem: p > n.
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Measures of the risk

Empirical norm: ‖g‖2n = 1
n

∑n
i=1 g(Xi)

2.

Empirical risk: r(θ) = 1
n

∑n
i=1 [Yi − fθ(Xi)]2 = ‖Y − fθ‖2n.

Prevision risk: R(θ) = E [r(θ)].
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Sparse regression estimation

Assumption: there is a p0 � n such that ∃θ ∈ argminR(.)
with at most p0 non-zero coordinates: "sparse" regression.

If these coordinates were known, we can build the LSE θ̂0n and
obtain, at least in the �xed design case

E
[
R(θ̂0n)− R(θ)

]
≤ cst.

σ2p0
n

.

Problem: Usually, these coordinates and even p0 are
unknown.

Pierre Alquier PAC-Bayesian Bounds for Sparse Regression Estimation



Sparse regression estimation
Two agregation procedures

MCMC methods for the computation of the estimator

Setting of the problem
Short bibliography
Overview of the talk

`0-type penalization

`0-type penalization

De�ne the estimator

arg min
θ∈Rp

{
r(θ) + λn,p‖θ‖0

}
where ‖θ‖0 is the number of non-zero coordinates in θ.

Examples: Cp (Mallows, 1973), AIC (Akaike, 1973), BIC
(Schwarz, 1978)...
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Results with `0-type penalization

Good theoretical properties. For example:

Theorem (Bunea et al., 2007)

In the �xed design case,

E
[
R(θ̂BICn )− R(θ)

]
≤ cst.

σ2p0 log(p)

n
.
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Results with `0-type penalization

Good theoretical properties. For example:

Theorem (Bunea et al., 2007)

In the �xed design case,

E
[
R(θ̂BICn )− R(θ)

]
≤ cst.

σ2p0 log(p)

n
.

Problem: 2p possible submodels. In practice, θ̂BICn can

be computed for p at most a few tens!!
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`1-type penalization

`1-type penalization - the LASSO (Tibshirani, 1996)

De�ne the estimator

arg min
θ∈Rp

{
r(θ) + λn,p‖θ‖1

}
.

Can be computed for very large p, using for example the very
popular LARS algorithm (Efron, Hastie, Johnstone &
Tibshirani, 2004).
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Variants: bridge regression (Frank & Friedman, 1993),
nonnegative garrote (Breiman, 1995), basis pursuit (Chen,
Donoho, Saunders, 2001), Dantzig selector (Candès & Tao,
2007), LOL (Kerkyacharian, Mougeot, Picard & Tribouley,
2010)...

Problem: restrictive assumption on the design are required to
prove sparsity oracle inequalities:

mutual coherence assumption (Bunea, Tsybakov &
Wegkamp 2007),

restricted eigenvalue condition (Koltchinskii, to appear,
Bickel, Ritov & Tsybakov, to appear),

...
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Bayesian statistics

Possible idea: bayesian estimator with a prior distribution
π(dθ) that gives large probability to sparse parameters θ
(George 2000 good review, Casella & Moreno 2006, Cui &
George 2008 ...).

Monte Carlo methods usually allow to compute the estimators.

No theoretical results like sparsity oracle inequalities.
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PAC-Bayesian approach

References: everybody in this room!

Dalalyan & Tsybakov 2008: use tools from Catoni (2007) to
build an estimator

1 that can be approximated by Monte Carlo methods;

2 that satis�es a spartisy oracle inequality.

But:

1 �xed design only;

2 θ ∈ Rp with ‖θ‖2 ≤ C only.
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The submodels

For any J ⊂ {1, ..., p} and K > 0, we put

ΘK = {θ ∈ Rp : ‖θ‖1 ≤ K} ,

Θ(J) = {θ ∈ Rp : θj 6= 0⇔ j ∈ J} ,

ΘK (J) = ΘK ∩Θ(J),

uΘK (J)(dθ) = the uniform proba. measure on ΘK (J).

For any θ ∈ Rp, only one J(θ) such that θ ∈ J(θ).
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De�nition of θ̂n

For the sake of simplicity, ‖φj‖n = 1.

For any J ⊂ {1, ..., p} let θ̂J ∈ argminθ∈Θ(J) r(θ).

De�nition

Let us choose λ > 0, we de�ne the prior πJ = 2−|J|−1
(
p

|J|

)−1
and:

θ̂n =

∑
|J|≤n πJe

−λ
„
r(θ̂J)+ 2σ2|J|

n

«
θ̂J∑

|J|≤n πJe
−λ
“
r(θ̂J)+ 2σ2|J|

n

” .
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Theoretical result for θ̂n

We assume that there is a θ∗ such that f = fθ∗ .

Theorem

Let us assume that X1, ..., Xn are deterministic. Let us
assume W1, ..., Wn i.i.d. N (0, σ2), let us choose λ = n

4σ2
,

then:

E
(∥∥fθ̂n − f

∥∥2
n

)
≤ 4σ2|J(θ∗)|

n
log

(
7p

|J(θ∗)|

)
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Theoretical result for θ̂n

Theorem

Let us assume that X1, ..., Xn are deterministic. Let us
assume W1, ..., Wn i.i.d. N (0, σ2), let us choose λ = n

4σ2
,

then:

E
(∥∥fθ̂n − f

∥∥2
n

)
≤ min

θ∈Rp

{
‖fθ − f ‖2n +

4σ2|J(θ)|
n

log

(
7p

|J(θ)|

)}
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De�nition of θ̃n

We put m(dθ) =
∑

J 2
−|J|−1( p

|J|

)−1
uΘ

K+ 1
n

(J)(dθ) for a given

K > 0.

De�nition

Let us choose λ > 0, we put

θ̃n =

∫
θe−λr(θ)

m(dθ)∫
e−λr(θ)

m(dθ)
.
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Motivation for de�nition of θ̃n

Variant of a result by Catoni (2001).

PAC-Bayesian inequality

For any 0 < λ < n/w , θ ∈ ΘK+c and θ′ ∈ ΘK , ε ∈]0; 1[, with
prob. at least 1− ε,

R(θ̃λ)− R(θ′)

≤ inf
ρ∈M1

+(ΘK+c)

∫
rdρ− r(θ′) + 1

λ

[
K(ρ,m) + log 1

ε

]
1− λC

2(n−wλ)

where C8σ2 + (2‖f ‖∞ + L(2K + 1/n))2,
w = 8[ξ + 2(‖f ‖∞ + L(K + 1/(2n)))]L(2K + 1/n).
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Theoretical result for θ̃n

Theorem

Random or deterministic design. Known σ > 0 and ξ > 0
with E(W 2

i ) ≤ σ2 and E(|Wi |k) ≤ σ2k!ξk−2 (sub-gaussian).
Then, with probability at least 1− ε, for λ = n

2C1 ,

R(θ̃n) ≤ min
θ∈ΘK

{
R(θ) +

3C2
n

+
8C1
n

[
|J(θ)| log np2e(K + 1)

|J(θ)|
+ log

2

ε

]}

where C1 = C1(σ, ξ, ‖φ1‖∞, ..., ‖φp‖∞, ‖f ‖∞) and C2 = C2(...)
are known constants.
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Hastings-Metropolis algorithm for θ̂n (1/2)

θ̂n =
∑
|J|≤n

wJ θ̂J .

We simulate a Markov Chain J(0), ..., J(N) with invariant
distribution (wJ)|J|≤n.
Hastings-Metropolis:

draw I (t) from k(J(t), ·);
take

J(t+1) =


I (t) with proba. α(J(t), I (t))

= min
(
1,

w
I (t)k(I (t),J(t))

w
J(t)k(J(t),I (t))

)
,

J(t) with proba. 1− α(J(t), I (t)).
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Hastings-Metropolis algorithm for θ̂n (2/2)

k(J, ·) = k+(J, ·)1{|J|=0}

+
k+(J, ·) + k−(J, ·)

2
1{0<|J|<n} + k−(J, ·)1{|J|=n}

where, for j /∈ J,

k+(J, J ∪ {j}) =
e
ζ| 1

n

Pn
i=1

[Yi−fθ̂J (Xi )]φj (Xi )|∑
h/∈J e

ζ| 1
n

Pn
i=1

[Yi−fθ̂J (Xi )]φh(Xi )|

and, for j ∈ J,

k−(J, J \ {j}) =
e−ζ|(θ̂J)j |∑
h∈J e

−ζ|(θ̂J)h|
.

Pierre Alquier PAC-Bayesian Bounds for Sparse Regression Estimation



Sparse regression estimation
Two agregation procedures

MCMC methods for the computation of the estimator

Hastings-Metropolis for θ̂n
RJMCMC for θ̃n
Remarks on the empirical results

Reversible Jump MCMC algorithm for θ̃n

For θ̃n, we have to simulate θ(1), ..., θ(N) from

e−λr(θ)m(dθ)∫
ΘK

e−λr(t)
m(dt)

.

Rmk: Hastings-Metropolis with a measure m(.) on several
subspaces known as "Reversible Jump" MCMC (Green 1995,
Green & Richardson 1997).
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Empirical remarks

On a small set of experiments:

1 we are able to compute θ̂n and θ̃n for p = 1000,

2 better than the LASSO when p ↗ with σ �xed,

3 the LASSO is better when σ ↗ with p �xed,

4 computation time depends heavily on |J(θ∗)|.
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