BSM

$$
\begin{aligned}
& S M+G R
\end{aligned}
$$

$$
\begin{aligned}
& 8=g_{\mu}{ }_{l}^{W_{\mu}^{ \pm} z_{\mu}, A} A_{c} \\
& Q_{L} \equiv\binom{u}{d}_{L} q_{R} \equiv u_{R}, d_{R} \\
& L \equiv\binom{e}{v}_{L} e_{R}, v_{R} \\
& H \equiv\binom{H^{0}}{H^{1}}
\end{aligned}
$$

$$
\begin{aligned}
& g_{4} H Q_{L} u_{R}+g_{d} H^{*} Q_{l} d_{R} \\
& + \\
& +g_{e} H^{*} L e_{R}+g_{\nu} H L v_{R} \\
& g_{u, d, e, v} \\
& \langle H\rangle \neq 0
\end{aligned}
$$

(H)
0.

$$
L_{w} \lesssim r \in S M
$$

GR:

$$
10_{\mathrm{cm}}^{-2} \approx r \geqslant 10^{28} \mathrm{~cm}
$$

WHY BSA?
$s \mu_{\text {. }}$
(11) Hierarchy Probbm.
(2) Strong $C P$
(3) Fermion manes
\qquad
GR.
(a) Dark Matter
(2) Singularatiel: $B H$, Commological. . \}
(3) Quentum gravity)
$h_{\mu \nu} \quad \operatorname{spin}-2 \quad M=0$ $T^{\mu} \sim_{m}^{a_{\mu \nu}} \tau_{\mu \nu}$

$$
\int \frac{h_{\mu v}}{M_{p}} \tau^{\mu v}
$$

$$
\begin{aligned}
& \frac{\hbar=c=1}{[L]=[M]^{-1}}
\end{aligned}
$$

$$
\begin{aligned}
& T^{\mu \nu}=\left(\begin{array}{l}
M \\
0_{0} \\
\\
\\
\\
0
\end{array}\right) \delta(\vec{x}) \\
& \tau^{\mu \nu}=\left(\begin{array}{l}
m_{0} \\
0_{0} \\
\\
\end{array}\right) \delta(\vec{x}-\vec{r}) \\
& V(r)=-G_{N} \frac{M m}{r} \\
& V(r)_{E M}=\frac{e_{1} e_{2}}{r} \\
& G_{N}=\frac{1}{M_{P}^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& V\left(\left(r_{g e} \propto\left(\frac{M}{M_{p}}\right)\left(\frac{m}{M_{p}}\right) \frac{1}{r}\right.\right. \\
& V(r)_{e m} \alpha e_{1} e_{2} \frac{1}{r} \\
& e \longleftrightarrow \frac{m}{M_{p}} \\
& M_{p}-10^{19} \mathrm{Gev} \sim 10^{-4} \mathrm{~g} .
\end{aligned}
$$

$$
\begin{aligned}
& \left(\frac{E}{\mu_{p}}\right) \\
& \frac{L p \rightarrow r}{E \geqslant M_{p}} \\
& L \quad E \sim \frac{1}{L}
\end{aligned}
$$

$m \ll M_{p}$
$m \gg M_{p}$

$$
C_{N} \frac{m_{m^{\prime}}}{r}=\frac{m^{\prime *} v^{2}}{2}
$$

$$
h_{\mu} \ll \mu_{p}
$$

