
Algorithms and hardness results
for parallel large-margin learning

Phil Long (Google) and Rocco Servedio (Columbia)

+

+

+

+

+

+

_

_
_

_

_

_

_

+

_

+

Setting:

• Target: γ-separated halfspace

• Domain: unit ball in Rn

• Computational model: PRAM (parallel RAM)

• Question: can output an ε-accurate hypothesis using

• poly
(

log n, log 1
γ , log 1

ε

)
time

• poly
(

n, 1
γ ,

1
ε

)
processors?

Poster T068



Positive result
Dependence on 1/ε already handled by Freund
(boost-by-majority). Revised goal:

• poly
(

log n, log 1
γ

)
time

• poly
(

n, 1
γ

)
processors.

Algorithm Number of processors Running time

Perceptron poly(n,1/γ) Õ(1/γ2)(log n)

SmoothBoost poly(n,1/γ) Õ(1/γ2)(log n)

LP 1 poly(n, log(1/γ))

This paper poly(n,1/γ) Õ(1/γ) + O(log n)

Poster T068



Algorithm

• Parallel boost-by-majority to handle ε-dependence
(Freund)

• Weak learner:

• Random projection (Johnson/Lindenstrauss,
Arriaga/Vempala)

• Interior point method (Renegar)

• Compute Hessian using parallel matrix inversion (Reif)

• Round intermediate solutions (preserve margin)

Poster T068



Negative result

.
.
.

.
.
.

• Some boosters [KM95,MM00,KS02,LS05,LS08] use
decision trees and branching programs.

• Calls to weak learners from the same “layer” parallelizable.

• Q: Can save iterations?

• A: No (so Ω(1/γ2) iterations needed)

• Proof sketch:

• variables conditionally independent given label

• in stage i , give variable i to all weak learners.

Poster T068


