Algorithms and hardness results for parallel large-margin learning Phil Long (Google) and Rocco Servedio (Columbia)

Setting:

- Target:  $\gamma$ -separated halfspace
- Domain: unit ball in R<sup>n</sup>



• Question: can output an  $\epsilon$ -accurate hypothesis using

• poly 
$$\left(\log n, \log \frac{1}{\gamma}, \log \frac{1}{\epsilon}\right)$$
 time

• poly 
$$\left(n, \frac{1}{\gamma}, \frac{1}{\epsilon}\right)$$
 processors?

Poster T068



## Positive result

Dependence on  $1/\epsilon$  already handled by Freund (boost-by-majority). Revised goal:

• poly 
$$\left(\log n, \log \frac{1}{\gamma}\right)$$
 time

• poly 
$$\left(n, \frac{1}{\gamma}\right)$$
 processors.

| Algorithm   | Number of processors              | Running time                             |
|-------------|-----------------------------------|------------------------------------------|
| Perceptron  | $poly(n, 1/\gamma)$               | $	ilde{O}(1/\gamma^2)(\log n)$           |
| SmoothBoost | $\operatorname{poly}(n,1/\gamma)$ | $	ilde{O}(1/\gamma^2)(\log n)$           |
| LP          | 1                                 | $\operatorname{poly}(n, \log(1/\gamma))$ |
| This paper  | $\operatorname{poly}(n,1/\gamma)$ | $	ilde{O}(1/\gamma) + O(\log n)$         |

## Algorithm

- Parallel boost-by-majority to handle *ϵ*-dependence (Freund)
- Weak learner:
  - Random projection (Johnson/Lindenstrauss, Arriaga/Vempala)
  - Interior point method (Renegar)
    - Compute Hessian using parallel matrix inversion (Reif)
    - Round intermediate solutions (preserve margin)

## Negative result



- Some boosters [KM95,MM00,KS02,LS05,LS08] use decision trees and branching programs.
- Calls to weak learners from the same "layer" parallelizable.
- Q: Can save iterations?
- A: No (so  $\Omega(1/\gamma^2)$  iterations needed)
- Proof sketch:
  - variables conditionally independent given label
  - in stage *i*, give variable *i* to all weak learners.

Poster T068