Model Selection in Markovian Processes

Shie Mannor

Department of Electrical Engineering Technion Joint work with Dotan Di-Castro (Technion) and Duncan Simester (MIT)

NIPS December 2011

< A >

The Sec. 74

1/22

Planning under uncertainty: We typically want to maximize the expected average/discounted reward

- Model is known.
- Assumes we can tradeoff different elements and monitize.
- Expectation can be tricky.
- Rare events can be meaningful (black swans).

4 A >

Planning under uncertainty: We typically want to maximize the expected average/discounted reward

Model is known.

- Assumes we can tradeoff different elements and monitize.
- Expectation can be tricky.
- Rare events can be meaningful (black swans).

4 A >

Planning under uncertainty: We typically want to maximize the expected average/discounted reward

- Model is known.
- Assumes we can tradeoff different elements and monitize.
- Expectation can be tricky.
- Rare events can be meaningful (black swans).

4 A N

The Sec. 74

Planning under uncertainty: We typically want to maximize the expected average/discounted reward

- Model is known.
- Assumes we can tradeoff different elements and monitize.
- Expectation can be tricky.
- Rare events can be meaningful (black swans).

Planning under uncertainty: We typically want to maximize the expected average/discounted reward

- Model is known.
- Assumes we can tradeoff different elements and monitize.
- Expectation can be tricky.
- Rare events can be meaningful (black swans).

• Deterministic uncertainty in the parameters \rightarrow Robust MDPs. (Known model)

- Probabilistic uncertainty in the parameters \rightarrow Bayesian RL. (Known model)
- Uncertainty due to random transitions/rewards → Risk sensitive optimization (mean-variance, percentile, coherent risk measures).
- Model uncertainty \rightarrow This talk

- Deterministic uncertainty in the parameters \rightarrow Robust MDPs. (Known model)
- Probabilistic uncertainty in the parameters \rightarrow Bayesian RL. (Known model)
- Uncertainty due to random transitions/rewards → Risk sensitive optimization (mean-variance, percentile, coherent risk measures).
- Model uncertainty \rightarrow This talk

A (1) N (2) N (2) N (2) N

- Deterministic uncertainty in the parameters \rightarrow Robust MDPs. (Known model)
- Probabilistic uncertainty in the parameters \rightarrow Bayesian RL. (Known model)
- Uncertainty due to random transitions/rewards → Risk sensitive optimization (mean-variance, percentile, coherent risk measures).
- Model uncertainty \rightarrow This talk

EN 4 EN

- Deterministic uncertainty in the parameters \rightarrow Robust MDPs. (Known model)
- Probabilistic uncertainty in the parameters \rightarrow Bayesian RL. (Known model)
- Uncertainty due to random transitions/rewards → Risk sensitive optimization (mean-variance, percentile, coherent risk measures).
- $\bullet \ \ \text{Model uncertainty} \to \text{This talk}$

- Open pit mining (with BHP Biliton)
- Objective: dig out gold
- Objective: Keep throughput reasonable, but under severe variance constraints
- Model is not known for mining but "known" for the rest of the supply chain Model is terribly complicated

- Open pit mining (with BHP Biliton)
- Objective: dig out gold
- Objective: Keep throughput reasonable, but under severe variance constraints
- Model is not known for mining but "known" for the rest of the supply chain Model is terribly complicated

- Open pit mining (with BHP Biliton)
- Objective: dig out gold
- Objective: Keep throughput reasonable, but under severe variance constraints
- Model is not known for mining but "known" for the rest of the supply chain Model is terribly complicated

• Print Service Providers (with HP-Research Labs)

- A scheduling problem with many machines
- Objective: Maximize reward, but under operational constraints
- Where does the model come from?
- A fairly stochastic problem.

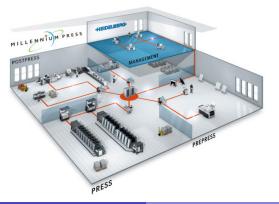
< 🗇 🕨

∃ ► < ∃</p>

- Print Service Providers (with HP-Research Labs)
- A scheduling problem with many machines
- Objective: Maximize reward, but under operational constraints
- Where does the model come from?
- A fairly stochastic problem.

- Print Service Providers (with HP-Research Labs)
- A scheduling problem with many machines
- Objective: Maximize reward, but under operational constraints
- Where does the model come from?
- A fairly stochastic problem.

- Print Service Providers (with HP-Research Labs)
- A scheduling problem with many machines
- Objective: Maximize reward, but under operational constraints
- Where does the model come from?
- A fairly stochastic problem.



- Print Service Providers (with HP-Research Labs)
- A scheduling problem with many machines
- Objective: Maximize reward, but under operational constraints
- Where does the model come from?
- A fairly stochastic problem.



• Large US retailer (Fortune 500 company)

- Marketing problem: send or not send coupon/invitation/mail order catalogue
- Common wisdom: per customer look at RFM
- Recency, Frequency, Monetary value
- Dynamics matter
- How to discretize?

- Large US retailer (Fortune 500 company)
- Marketing problem: send or not send coupon/invitation/mail order catalogue
- Common wisdom: per customer look at RFM
- Recency, Frequency, Monetary value
- Dynamics matter
- How to discretize?

∃ ► < ∃</p>

< A

- Large US retailer (Fortune 500 company)
- Marketing problem: send or not send coupon/invitation/mail order catalogue
- Common wisdom: per customer look at RFM
- Recency, Frequency, Monetary value
- Dynamics matter
- How to discretize?

12 N A 12

- Large US retailer (Fortune 500 company)
- Marketing problem: send or not send coupon/invitation/mail order catalogue
- Common wisdom: per customer look at RFM
- Recency, Frequency, Monetary value
- Dynamics matter
- How to discretize?

Much \$\$\$ on the line

- Real state space is huge with lots of uncertainty and parameters. Problem may not even be Markov.
- Batch data are available with no opportunity for exploration
- Operative solution: build a small MDP (< 300 states!), solve, apply.
- Function approximation does not seems to buy much here \rightarrow isolated problems are solved with special solvers.

• Risk and uncertainty are of the essence

Much \$\$\$ on the line

- Real state space is huge with lots of uncertainty and parameters. Problem may not even be Markov.
- Batch data are available with no opportunity for exploration
- Operative solution: build a small MDP (< 300 states!), solve, apply.
- Function approximation does not seems to buy much here \rightarrow isolated problems are solved with special solvers.

• Risk and uncertainty are of the essence

7/22

Much \$\$\$ on the line

- Real state space is huge with lots of uncertainty and parameters. Problem may not even be Markov.
- Batch data are available with no opportunity for exploration
- Operative solution: build a small MDP (< 300 states!), solve, apply.
- Function approximation does not seems to buy much here \rightarrow isolated problems are solved with special solvers.

• Risk and uncertainty are of the essence

7/22

Much \$\$\$ on the line

- Real state space is huge with lots of uncertainty and parameters. Problem may not even be Markov.
- Batch data are available with no opportunity for exploration
- Operative solution: build a small MDP (< 300 states!), solve, apply.
- Function approximation does not seems to buy much here \rightarrow

Risk and uncertainty are of the essence

Much \$\$\$ on the line

- Real state space is huge with lots of uncertainty and parameters. Problem may not even be Markov.
- Batch data are available with no opportunity for exploration
- Operative solution: build a small MDP (< 300 states!), solve, apply.
- Function approximation does not seems to buy much here \rightarrow isolated problems are solved with special solvers.

• Risk and uncertainty are of the essence

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

NIPS

Much \$\$\$ on the line

- Real state space is huge with lots of uncertainty and parameters. Problem may not even be Markov.
- Batch data are available with no opportunity for exploration
- Operative solution: build a small MDP (< 300 states!), solve, apply.
- Function approximation does not seems to buy much here \rightarrow isolated problems are solved with special solvers.

• Risk and uncertainty are of the essence

Two important questions

What model to use?

If I choose a model - how to optimize? (Not today.)

< 🗇 🕨

The Model Selection Problem

We will focus on a simpler problem:

- Ignore action completely (MRP). We have: State \rightarrow reward \rightarrow next state.
- **②** We observe a sequence of T observations and rewards that occur in some space $\mathcal{O} \times \mathbb{R}$ (\mathcal{O} is complicated)

 $\mathcal{D}(T) = (o_1, r_1, o_2, r_2, \dots, o_T, r_T).$

- Solution We are given *K* mappings from *O* to states spaces *S*₁,...,*S_K*, belong to MRPs *M*₁,...,*M_K*, respectively. Each mapping *H_i* : *O* → *S_i* describes a model where *S_i* = {*x*⁽ⁱ⁾₁,...,*x*⁽ⁱ⁾_{|*S_i*|}} is the state space of the MRP *M_i*.
- We do not describe how the mappings $\{H_i\}_{i=1}^{K}$ are constructed.

A model selection criterion takes as input D_T and the models M_1, \ldots, M_k , and it returns one of the *k* models as the proposed true model.

Definition: A model selection criterion is weakly consistent if

$$\mathbb{P}^{i}\left(\hat{M}(D_{T})\neq i\right)
ightarrow 0$$
 as $n
ightarrow\infty,$

where \mathbb{P}^{i} is the probability induced when model *i* is the correct model.

Penalized Likelihood Criteria

In abstraction: data samples y_1, y_2, \ldots, y_T .

$$L_i(T) = \max_{\theta} \{ \log P(y_1, \ldots, y_T | M_i(\theta)) \}.$$

We denote the dimension of θ by $|M_i|$. Then, an MDL model estimator has the following structure

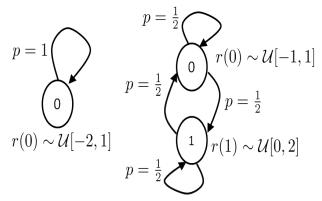
$$\mathrm{MDL}(i) \triangleq |M_i|f(T) - L_i(T),$$

where f(T) is some sub-linear function.

Many related criteria: AIC, BIC, and many others.

Impossibility result

Theorem: There does not exist a consistent MDL-like criterion.



Identifying Markov Reward Processes

We look at the aggregate prediction error.

Two types of aggregations:

- Reward aggregation
- Pransition probability aggregation

We will focus on refined models: $M_1 \leq M_2$ is M_2 is a refinement of M_1 .

Reward Aggregation

Define reward mean square error (RMSE) operator to be

$$\mathcal{L}_{RMSE}^{i}(D_{T}) = \frac{1}{T} \sum_{j \in \mathcal{S}_{i}} \epsilon(x_{j}^{i}),$$

where $\epsilon(x_j^i)$ is the error in state *j* in model *i* of the reward estimate. Observation: $\lim_{T\to\infty} \mathcal{L}_{RMSE}^i(D_T) = \sum_{x\in S_i} \pi(x) \operatorname{Var}(x).$

Lemma: Suppose M_i contains M_k . Then, for a single trajectory D_T we have $\mathcal{L}_{RMSE}^i(D_T) \leq \mathcal{L}_{RMSE}^k(D_T)$. Moreover, if the states aggregated in M_i are with different mean rewards, then the inequality is sharp.

Corollary: Consider a series of refined models $M_1 \leq \ldots \leq M_k$. Then,

$$\mathcal{L}^1_{RMSE}(D_T) \geq \mathcal{L}^2_{RMSE}(D_T) \geq \ldots \geq \mathcal{L}^k_{RMSE}(D_T).$$

イロト イポト イヨト イヨト 二日

Reward Aggregation Score

The (reward) score for the j-th model to be

$$\hat{M}(j) = |M_j| \frac{f(T)}{T} + \mathcal{L}^j_{RMSE}(D_T),$$
(1)

where f(T) is a sub-linear increasing function with $\lim_{T\to\infty} f(T)/\sqrt{T} \to \infty$. Based on the RMSE, we consider the following model selector

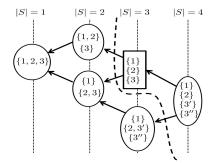
$$\hat{M}_{RMSE} = \arg\min_{j} \left\{ \hat{M}(j) \right\}.$$

Theorem: The model selector \hat{M}_{MSE} is weakly consistent.

Comment: Not hard to get finite time analysis.

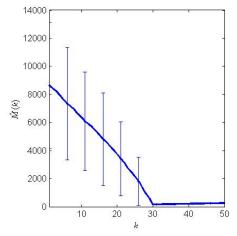
Hierarchical model selection

Have a comparative test: \rightarrow select the best model in a hierarchy



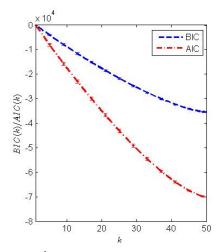
The Sec. 74

Experiments with artificial data



The figure reports the test statistic $\hat{M}(k)$ for different model dimensions k. The error bars are one standard deviation from the mean.

Experiments with artificial data



The test statistic $\hat{A}IC(k)/\hat{B}IC(k)$ for different model dimensions *k*.

18/22

Experiments with real data

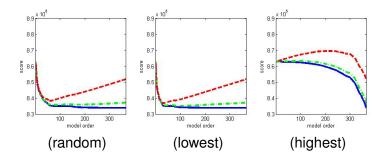
Large US apparel retailer. RFM measures: Recency, Frequency and Monetary value

Problem: How to aggregate? Focus on recency

- Randomly
- 2 Most recent
- Least recent

< 6 b

Real data



Each graph is for a different value of f(T)/T: blue =1, green = 10, red = 50.

Conclusion

- A very special model selection problem.
- Standard approaches fail but not all is lost
- Mismatched models?
- No word on optimization
- How to aggregate?

< 6 b

-

• Learning from batch: What is the objective?

- Finding the model is "easy"
- Learning the model actively (cf. Maillard, Munos, and Ryabko, this NIPS).
- Todo: Handling model, parametric and inherent uncertainty
- Todo: Large state space (but who cares?)

イロト イポト イラト イラ

- Learning from batch: What is the objective?
- Finding the model is "easy"
- Learning the model actively (cf. Maillard, Munos, and Ryabko, this NIPS).
- Todo: Handling model, parametric and inherent uncertainty
- Todo: Large state space (but who cares?)

- Learning from batch: What is the objective?
- Finding the model is "easy"
- Learning the model actively (cf. Maillard, Munos, and Ryabko, this NIPS).
- Todo: Handling model, parametric and inherent uncertainty
- Todo: Large state space (but who cares?)

イロト イポト イラト イラ

- Learning from batch: What is the objective?
- Finding the model is "easy"
- Learning the model actively (cf. Maillard, Munos, and Ryabko, this NIPS).
- Todo: Handling model, parametric and inherent uncertainty
- Todo: Large state space (but who cares?)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Learning from batch: What is the objective?
- Finding the model is "easy"
- Learning the model actively (cf. Maillard, Munos, and Ryabko, this NIPS).
- Todo: Handling model, parametric and inherent uncertainty
- Todo: Large state space (but who cares?)