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What matters in policies?

Planning under uncertainty: We typically want to maximize the
expected average/discounted reward

Model is known.
Assumes we can tradeoff different elements and monitize.
Expectation can be tricky.
Rare events can be meaningful (black swans).
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Types of uncertainty

Deterministic uncertainty in the parameters→ Robust MDPs.
(Known model)

Probabilistic uncertainty in the parameters→ Bayesian RL.
(Known model)

Uncertainty due to random transitions/rewards→ Risk sensitive
optimization (mean-variance, percentile, coherent risk measures).

Model uncertainty→ This talk
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Motivation I
Open pit mining (with BHP Biliton)
Objective: dig out gold

Objective: Keep throughput reasonable, but under severe
variance constraints

Model is not known for mining but “known” for the rest of the
supply chain
Model is terribly complicated
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Motivation II
Print Service Providers (with HP-Research Labs)
A scheduling problem with many machines

Objective: Maximize reward, but under operational constraints

Where does the model come from?
A fairly stochastic problem.
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Motivation III
Large US retailer (Fortune 500 company)
Marketing problem: send or not send coupon/invitation/mail order
catalogue

Common wisdom: per customer look at RFM
Recency, Frequency, Monetary value

Dynamics matter
How to discretize?
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Common to the problems
Much $$$ on the line

Real state space is huge with lots of uncertainty and parameters.
Problem may not even be Markov.

Batch data are available with no opportunity for exploration

Operative solution: build a small MDP (< 300 states!), solve,
apply.

Function approximation does not seems to buy much here→
isolated problems are solved with special solvers.

Risk and uncertainty are of the essence
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Two important questions

1 What model to use?

2 If I choose a model - how to optimize? (Not today.)
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The Model Selection Problem

We will focus on a simpler problem:
1 Ignore action completely (MRP). We have: State→ reward→

next state.
2 We observe a sequence of T observations and rewards that occur

in some space O × R (O is complicated)

D(T ) = (o1, r1,o2, r2, . . . ,oT , rT ).

3 We are given K mappings from O to states spaces S1, . . . ,SK ,
belong to MRPs M1, . . . ,MK , respectively.
Each mapping Hi : O → Si describes a model where
Si = {x

(i)
1 , . . . , x (i)

|Si |
} is the state space of the MRP Mi .

4 We do not describe how the mappings {Hi}Ki=1 are constructed.
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The Identification Problem

A model selection criterion takes as input DT and the models
M1, . . . ,Mk , and it returns one of the k models as the proposed true
model.

Definition: A model selection criterion is weakly consistent if

Pi
(

M̂(DT ) 6= i
)
→ 0 as n→∞,

where Pi is the probability induced when model i is the correct model.
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Penalized Likelihood Criteria

In abstraction: data samples y1, y2, . . . , yT .

Li(T ) = max
θ
{log P(y1, . . . , yT |Mi(θ))}.

We denote the dimension of θ by |Mi |. Then, an MDL model estimator
has the following structure

MDL(i) , |Mi |f (T )− Li(T ),

where f (T ) is some sub-linear function.

Many related criteria: AIC, BIC, and many others.
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Impossibility result

Theorem: There does not exist a consistent MDL-like criterion.
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Identifying Markov Reward Processes

We look at the aggregate prediction error.

Two types of aggregations:
1 Reward aggregation
2 Transition probability aggregation

We will focus on refined models: M1 � M2 is M2 is a refinement of M1.
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Reward Aggregation

Define reward mean square error (RMSE) operator to be

Li
RMSE(DT ) =

1
T

∑
j∈Si

ε(x i
j ),

where ε(x i
j ) is the error in state j in model i of the reward estimate.

Observation: limT→∞ Li
RMSE(DT ) =

∑
x∈Si

π(x)Var(x).

Lemma: Suppose Mi contains Mk . Then, for a single trajectory DT we
have Li

RMSE(DT ) ≤ Lk
RMSE(DT ). Moreover, if the states aggregated in

Mi are with different mean rewards, then the inequality is sharp.

Corollary: Consider a series of refined models M1 � . . . � Mk . Then,

L1
RMSE(DT ) ≥ L2

RMSE(DT ) ≥ . . . ≥ Lk
RMSE(DT ).
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Reward Aggregation Score

The (reward) score for the j-th model to be

M̂(j) = |Mj |
f (T )

T
+ Lj

RMSE(DT ), (1)

where f (T ) is a sub-linear increasing function with
limT→∞ f (T )/

√
T →∞.

Based on the RMSE, we consider the following model selector

M̂RMSE = arg min
j

{
M̂(j)

}
.

Theorem: The model selector M̂MSE is weakly consistent.

Comment: Not hard to get finite time analysis.
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Hierarchical model selection

Have a comparative test: → select the best model in a hierarchy
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Experiments with artificial data

The figure reports the test statistic M̂(k) for different model dimensions
k . The error bars are one standard deviation from the mean.
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Experiments with artificial data

The test statistic ÂIC(k)/B̂IC(k) for different model dimensions k .
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Experiments with real data

Large US apparel retailer.
RFM measures: Recency, Frequency and Monetary value

Problem: How to aggregate? Focus on recency

1 Randomly
2 Most recent
3 Least recent
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Real data

(random) (lowest) (highest)

Each graph is for a different value of f (T )/T : blue =1, green = 10, red
= 50.
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Conclusion

A very special model selection problem.

Standard approaches fail - but not all is lost

Mismatched models?

No word on optimization

How to aggregate?
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Outlook

Learning from batch: What is the objective?

Finding the model is “easy"

Learning the model actively (cf. Maillard, Munos, and Ryabko, this
NIPS).
Todo: Handling model, parametric and inherent uncertainty

Todo: Large state space (but - who cares?)
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