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Given some interaction data from a sequential decision-
making problem with a large state space, what is the best 

possible decision?

Not much a priori information about the problem.



Approach: Value-based (estimate the optimal 
action-value function, then follow its greedy 
policy)

For large state spaces, function approximation 
is required.

Challenge: How to choose the architecture of 
the function approximator?



How to choose the architecture 
of the function approximator?

[Unknown] regularities of the 
value function.

Smoothness (various 
notions)

Sparsity

Low-dimensional input 
manifold

Action-gap

Number of samples
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Classical Image Representation: DCT
• Discrete Cosine Transform (DCT)

Basically a real-valued Fourier transform (sinusoids)

• Model: most of the energy is at low frequencies

• Basis for JPEG image compression standard

• DCT approximations: smooth regions great, edges blurred/ringing

Modern Image Representation: 2D Wavelets

• Sparse structure: few large coeffs, many small coeffs

• Basis for JPEG2000 image compression standard

• Wavelet approximations: smooths regions great, edges much sharper

• Fundamentally better than DCT for images with edges



Solution: 
Adaptive Algorithms

Adaptive 
Algorithms

Flexible statistical 
inference algorithm

Model Selection

Nonparametric 
methods

• A flexible algorithm: an algorithm 
that has some tunable parameters  and 
can deliver the optimal performance for 
a vast range of regularities - provided 
that its parameters are chosen properly.

• Examples: Regularized LSPI and Fitted Q-
Iteration algorithms, Tree-based FQI, NN-based 
FQI, GPTD, etc.

• A model selection algorithm: an 
algorithm that tunes the parameters of a 
flexible algorithm.



Regularization

F =

[

i�1

Fi

Fi ={f : J(f)  µi} (µ1 < µ2 < · · · )
J(f) :some measure of complexity



Problem Setup







We cannot directly use empirical Bellman error to get 
an unbiased estimate of the true Bellman error.

Challenge

The variance term depends on the estimate (as opposed 
to supervised learning scenarios)



What about estimating the effect of the 
Bellman operator itself?!



What if we have a good estimation of

˜Qk ⇡ T ⇤Qk for k = 1, . . . , P? Then

we may hope that kQk � ˜Qkk⌫ ⇡ kQk � T ⇤Qkk⌫ , and because kQk � ˜Qkk⌫ ⇡
kQk � ˜Qkkn (LLN), we can use this ”surrogate” risk instead.



Not done yet!

What if we have a bad estimate of the Bellman operator?



1

2
kQk � T ⇤Qkk2⌫  kQk � Q̃kk2⌫| {z }

⇡kQk�Q̃kk2

n

+ kT ⇤Qk � Q̃kk2⌫| {z }
b̄k (by Regress)



Example: Ck =

32B2⌧(1 + a)

(1� a)2an
ln(k)

Figure 1: Consider the problem of estimating the Bellman error kQk�T ⇤Qkk2⌫ . If T ⇤Qk is replaced
by a surrogate ˜Q(1)

k , kQk � ˜Q(1)
k k2⌫ gives a relatively good estimate of this quantity because ˜Q(1)

k

is close to T ⇤Qk. However, when ˜Q(2)
k replaces T ⇤Qk, the resulting estimate of the Bellman error

becomes poor and kQk � ˜Q(2)
k k2⌫ would be an underestimate of the true Bellman error. This might

lead to the unjust selection of the candidate Qk. One way to protect oneself against such mistakes is
to take into account how well the surrogate ˜Qk approximates T ⇤Q.

Algorithm 1 BERMIN({Qk}k=1,2,...,D(m,n), REGRESS(·), �, a, B, ⌧)

1: Split D(m,n) into two disjoint parts: D(m,n) = D0
m [D00

n.
2: Choose (Ck) such that S =

P
k�1 exp(�

(1�a)2an
16B2⌧(1+a)Ck) <1.

3: Choose (�0k) such that
P

k�1 �
0
k = �/2.

4: for k = 1, 2, . . . do

5: (

˜Qk,¯bk) REGRESS(D0
m,k, �

0
k)

6: ek  1
|D00

n |
P

(X,A)2D00
n
(Qk(X,A)� ˜Qk(X,A))2

7: RRL
k  1

(1�a)2 ek +

¯bk
8: end for

9: ˆk  argmink�1

⇥
RRL

k + Ck

⇤

10: return

ˆk

situation arises when one transforms the algorithm into an anytime method, whose computation
budget may or may not be limited, which keeps generating candidates if given more time. As a
consequence of this, we add another penalty term that prevents optimistic selection bias and we will
let P =1. If P is finite and small compared to n, this penalty term can safely be ignored.

BERMIN, shown as Algorithm 1, implements the described ideas. The algorithm’s inputs are the
candidate action-value functions, the dataset D(m,n), a regression procedure REGRESS, a desired
error probability �, and three constants: 0 < a < 1, B, and ⌧ . Here a is a tuning parameter, the
constant B is the bound on all functions involved (that is Qk, ˜Qk, T ⇤Qk, and ¯bk), and ⌧ is the
forgetting time of the Markov chain (cf. [1]). The effect of these values on the quality of the solution
is quantified in Theorem 1.

2.1 Theoretical Guarantee and Conclusions

In this section we state our main result, which shows that BERMIN has an oracle-like behavior. We
prove the result under the following assumptions:

Assumption A1 Assume that the following hold:

1. The standard offline sampling assumption is satisfied by the data set D00
n =

{(X1, A1, R1, X 0
1), . . . , (Xn, An, Rn, X 0

n)}. The time-homogeneous Markov chain
X1, X2, . . . , Xn uniformly quickly forgets its past with a forgetting time ⌧ .

2. The functions Qk, ˜Qk, T ⇤Qk (k � 1) are bounded by a deterministic quantity B > 0.

3. The functions Qk (k � 1) are deterministic.
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Remember ...







Conclusion



Thank you!



Under certain assumptions, one can also prove the 
adaptivity.
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Algorithm 2 Regress({D
n

,D0
n

}, {F
1

,F
2

, . . . }, a
n

, ⌧, (C
k

))

1: // Let {(X 0
t, Y

0
t )} be the input-output pairs in D0

n: D0
n = {(X 0

1, Y
0
1 ), . . . , (X

0
n, Y

0
n)}.

2: for k = 1, 2, . . . do

3: f̂k  A(Dn,Fk).
4: R̄k = 1

(1�an)2
1
n

Pn
i=1(f̂k(X

0
i)� Y

0
i )

2.

5: end for

6: k̂  argmink�1

⇥
R̄k + Ck

⇤
.

7: Choose �1,�2, . . . such that �k � 0 and
P

k�1 �k = 2/3.

8: return f̂k̂ and Bk̂(n, ·�k̂, ⌧)

D.1 The Excess-Risk Estimation Algorithm

Let (X
1

, Y
1

), . . . , (X
n

, Y
n

) be a stationary, time-homogeneous Markov chain taking values in X ⇥
[�B,B] for X ⇢ Rd and let the regression function f⇤ be defined by f⇤(x) = E [Y

i

|X
i

= x]. Let
⌧ be an upper bound on the forgetting time of (X

i

, Y
i

) (cf. Appendix B). Denote the stationary
distribution underlying (X

i

) by ⌫. Given D
n

= {(X
1

, Y
1

), . . . , (X
n

, Y
n

)}, the goal is to provide a
good estimate f̂ of f⇤ and a high confidence upper bound on the excess-risk

kf̂ � f⇤k2 def

= kf̂ � f⇤k2
2,⌫

.

We assume that we are given a sequence of nested function spaces (F
k

) and f⇤ is known to
belong to their union [

k�1

F
k

. We further assume that we are given an algorithm A, which, given
F

k

, �, and a dataset of n points, returns an estimate f̂
k

of f⇤ that belongs to F
k

. We further
assume that for any k � 1 there exist functions A

k

and B
k

such that for any 0 < �  1,

L
k

def

= kf̂
k

� f⇤k2  A
k

(f⇤) +B
k

(n, �, ⌧) (17)

holds with probability 1 � � and that the value B
k

(n, �, ⌧), which possibly depends on the data,
can be computed at any arguments (n, �, ⌧) and hence is available to our algorithm. No similar
assumption is made about function A

k

.
The algorithm that we propose works with the data split in half: The first half, D

n

, is used
to find the candidates f̂

k

(by calling A), while the second half is used to run the model-selection
algorithm to approximately select the candidate with the smallest excess risk. Finally, the algo-
rithm returns the function B

k

(n, ·�
k

, ⌧) for the selected value of k as the high-probability bound
on the excess-risk returns. Here, �

k

� 0,
P

k�1

�
k

= 2/3 determines the prior distribution of the
error probability �. The algorithm is given as Algorithm 2. For simplicity, we assume that the full
dataset, D

n

[D0
n

holds 2n datapoints.
Bounds of the type (17) are of major interest in the theory of regression estimation. The first

term, which depends only on k and f⇤ and is independent of n and � corresponds to the so-called
approximation error and shows how well one can approximate f⇤ with elements of F

k

. The second
term is a bound on the error resulting from using a finite sample, i.e., it bounds the estimation
error. When the sample is made of a sequence of independent, identically distributed random
variables, there are many results in the literature that can provide bounds of the type (17), e.g.,
Györfi et al. 2002; van de Geer 2000; Lugosi and Wegkamp 2004; Bartlett et al. 2005. The case of
dependent sample is much less explored. However, since at the heart of most result are exponential
tail inequalities and most exponential tail inequalities available for the independent case have been
extended to the dependent case, one expects that with some work existing bounds can be readily
extended to the dependent case (see Farahmand and Szepesvári (2011) for some recent results
along this direction and a discussion of some prior work).

D.2 Theoretical Analysis of the Excess Error Estimator

The purpose of this section is to prove that under some technical conditions the regression estimate
returned by Algorithm 2 satisfies an oracle-like property and the returned bound is a proper high-
probability bound on the excess risk of the resulting estimator. The first part of the statement








