

BErMin:

A Model Selection Algorithm for Reinforcement Learning Problems

Amir-massoud Farahmand and Csaba Szepesvári

academic.SoloGen.net

www.ualberta.ca/~szepesva

Based on: Farahmand and Szepesvári, "**Model Selection in Reinforcement Learning**," Machine Learning Journal (MLJ), Vol. 85, No. 3, pp. 299–332, 2011.

Given some interaction data from a sequential decisionmaking problem with a large state space, what is the best possible decision?

Not much a priori information about the problem.

- Approach: Value-based (estimate the optimal action-value function, then follow its greedy policy)
- For large state spaces, function approximation is required.
- Challenge: How to choose the architecture of the function approximator?

How to choose the architecture of the function approximator?

- [Unknown] regularities of the value function.
 - Smoothness (various notions)
 - Sparsity
 - Low-dimensional input manifold
 - Action-gap
- Number of samples

$$\int_{\mathcal{X}} |V^{(k)}(x)|^2 \, \mathrm{d}x < \infty$$

Solution: Adaptive Algorithms

- A flexible algorithm: an algorithm that has some tunable parameters and can deliver the optimal performance for a vast range of regularities provided that its parameters are chosen properly.
 - Examples: Regularized LSPI and Fitted Q-Iteration algorithms, Tree-based FQI, NN-based FQI, GPTD, etc.
- A model selection algorithm: an algorithm that tunes the parameters of a flexible algorithm.

Regularization

$$\mathcal{F} = \bigcup_{i \geq 1} \mathcal{F}_i$$
 $\mathcal{F}_i = \{f : J(f) \leq \mu_i\} \qquad (\mu_1 < \mu_2 < \cdots)$
 $J(f)$ recome massive of complexity

J(f):some measure of complexity

Problem Setup

- Discounted MDP: $(\mathcal{X}, \mathcal{A}, P, R, \gamma)$. \mathcal{X} is a general state space. \mathcal{A} has finite number of actions. $0 \le \gamma < 1$.
- Action-value function for policy π : $Q^{\pi}(x,a) \triangleq \mathbb{E}\left[\sum_{t=1}^{\infty} \gamma^{t-1} R_t \mid X_1 = x, A_1 = a\right]$
- Optimal action-value function: $Q^*(x, a) \triangleq \sup_{\pi} Q^{\pi}(x, a)$.
- Bellman optimality operator: $(T^*Q)(x,a) \triangleq r(x,a) + \gamma \int_{\mathcal{X}} \max_{a'} Q(y,a') P(dy|x,a)$.
- Fixed-point property: $Q^* = T^*Q^*$.
- Norms: $||Q||_{\nu}^2 \triangleq \int_{\mathcal{X} \times \mathcal{A}} |Q(x,a)|^2 d\nu(x,a)$ and $||Q||_n^2 = \frac{1}{n} \sum_{i=1}^n |Q(X_i,A_i)|^2$ for a particular set $\{(X_i,A_i)\}_{i=1}^n$.

Given: A list of action-value functions Q_1, Q_2, \ldots, Q_P (with the possibility of P > n, or even $P = \infty$) and a dataset

$$\mathcal{D}_n = \{(X_1, A_1, R_1, X_1'), \dots, (X_n, A_n, R_n, X_n')\}$$

with

- $-X_i \sim \nu_{\mathcal{X}}$ $(i=1,\ldots,n)$, with $\nu_{\mathcal{X}}$ as the fixed distribution over the states.
- $-A_i \sim \pi_b(\cdot|X_i)$ (π_b : data-generating policy, i.e., "behavior" policy).
- $-R_i \sim \mathcal{R}(\cdot|X_i,A_i)$
- $-X_i' \sim P(\cdot|X_i, A_i)$

Goal: Devise a procedure that selects the action-value function amongst $\{Q_1, \ldots, Q_P\}$ that has the smallest Bellman (optimality) error, i.e., choose $Q_{\hat{k}}$ with

$$\hat{k} = \underset{1 \le k \le P}{\operatorname{argmin}} \|Q_k - T^* Q_k\|_{\nu}^2.$$

Challenge

$$\mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}\left|Q(X_{i},A_{i})-\left[R_{i}+\gamma\max_{a'\in\mathcal{A}}Q(X'_{i},a')\right]\right|^{2}\right] = \|Q-T^{*}Q\|_{\nu}^{2} + \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}\left|T^{*}Q(X_{i},A_{i})-\left[R_{i}+\gamma\max_{a'\in\mathcal{A}}Q(X'_{i},a')\right]\right|^{2}\right] \neq \|Q-T^{*}Q\|_{\nu}^{2},$$

The variance term depends on the estimate (as opposed to supervised learning scenarios)

We cannot directly use empirical Bellman error to get an unbiased estimate of the true Bellman error.

What about estimating the effect of the Bellman operator itself?!

What if we have a good estimation of $\tilde{Q}_k \approx T^*Q_k$ for k = 1, ..., P? Then we may hope that $\|Q_k - \tilde{Q}_k\|_{\nu} \approx \|Q_k - T^*Q_k\|_{\nu}$, and because $\|Q_k - \tilde{Q}_k\|_{\nu} \approx \|Q_k - \tilde{Q}_k\|_n$ (LLN), we can use this "surrogate" risk instead.

Not done yet!

What if we have a bad estimate of the Bellman operator?

$$\frac{1}{2} \|Q_k - T^* Q_k\|_{\nu}^2 \le \|Q_k - \tilde{Q}_k\|_{\nu}^2 + \|T^* Q_k - \tilde{Q}_k\|_{\nu}^2$$

$$\approx \|Q_k - \tilde{Q}_k\|_{n}^2 \le \bar{b}_k \text{ (by REGRESS)}$$

Algorithm 1 BERMIN($\{Q_k\}_{k=1,2,...}, \mathcal{D}_{(m,n)}, \text{REGRESS}(\cdot), \delta, a, B, \tau$)

- 1: Split $\mathcal{D}_{(m,n)}$ into two disjoint parts: $\mathcal{D}_{(m,n)} = \mathcal{D}'_m \cup \mathcal{D}''_n$.
- 2: Choose (C_k) such that $S = \sum_{k \ge 1} \exp(-\frac{(1-a)^2 a n}{16B^2 \tau (1+a)} C_k) < \infty$.
- 3: Choose (δ'_k) such that $\sum_{k>1} \delta'_k = \delta/2$.
- 4: **for** $k = 1, 2, \dots$ **do**
- 5: $(\tilde{Q}_k, \bar{b}_k) \leftarrow \text{REGRESS}(\mathcal{D}'_{m,k}, \delta'_k)$
- 6: $e_k \leftarrow \frac{1}{|\mathcal{D}_n''|} \sum_{(X,A) \in \mathcal{D}_n''} (Q_k(X,A) \tilde{Q}_k(X,A))^2$
- 7: $\mathcal{R}_k^{\text{RL}} \leftarrow \frac{1}{(1-a)^2} e_k + \overline{b}_k$
- 8: end for
- 9: $\hat{k} \leftarrow \operatorname{argmin}_{k>1} \left[\mathcal{R}_k^{\mathrm{RL}} + C_k \right]$
- 10: return \hat{k}

Example:
$$C_k = \frac{32B^2\tau(1+a)}{(1-a)^2an}\ln(k)$$

Algorithm 1 BERMIN($\{Q_k\}_{k=1,2,...}, \mathcal{D}_{(m,n)}, \text{REGRESS}(\cdot), \delta, a, B, \tau$)

- 1: Split $\mathcal{D}_{(m,n)}$ into two disjoint parts: $\mathcal{D}_{(m,n)} = \mathcal{D}'_m \cup \mathcal{D}''_n$.
- 2: Choose (C_k) such that $S = \sum_{k>1} \exp(-\frac{(1-a)^2 a n}{16B^2 \tau (1+a)} C_k) < \infty$.
- 3: Choose (δ'_k) such that $\sum_{k>1} \delta'_k = \delta/2$.
- 4: **for** $k = 1, 2, \dots$ **do**
- 5: $(\tilde{Q}_k, \bar{b}_k) \leftarrow \text{REGRESS}(\mathcal{D}'_{m,k}, \delta'_k)$
- 6: $e_k \leftarrow \frac{1}{|\mathcal{D}_n''|} \sum_{(X,A) \in \mathcal{D}_n''} (Q_k(X,A) \tilde{Q}_k(X,A))^2$
- 7: $\mathcal{R}_k^{\text{RL}} \leftarrow \frac{1}{(1-a)^2} e_k + \overline{b}_k$
- 8: end for
- 9: $\hat{k} \leftarrow \operatorname{argmin}_{k \geq 1} \left[\mathcal{R}_k^{\text{RL}} + C_k \right]$
- 10: return \hat{k}

Assumptions:

- 1. The data set $\mathcal{D}''_n = \{(X_1, A_1, R_1, X'_1), \dots, (X_n, A_n, R_n, X'_n)\}$ is generated as described and the time-homogeneous Markov chain X_1, X_2, \dots, X_n uniformly quickly forgets its past with a forgetting time τ .
- 2. The functions Q_k , \tilde{Q}_k , T^*Q_k $(k \ge 1)$ are bounded by a deterministic quantity B > 0.
- 3. The functions Q_k $(k \ge 1)$ are deterministic.
- 4. For each k and for any $0 < \delta'_k < 1$, $(\tilde{Q}_k, \bar{b}_k) = \text{REGRESS}(\mathcal{D}'_{m,k}, \delta'_k)$ are $\sigma(\mathcal{D}'_m)$ -measurable, $\bar{b}_k \in [0, 4B^2]$ and $\|\tilde{Q}_k T^*Q_k\|_{\nu}^2 \leq \bar{b}_k$ holds with probability at least $1 \delta'_k$.
- 5. For $(X_i, A_i, R_i, X_i') \in \mathcal{D}_n''$, the distribution of (X_i, A_i) is ν given \mathcal{D}_m' : $\mathbb{P}\{(X_i, A_i) \in U | \mathcal{D}_m'\} = \nu(U)$ for any measurable set $U \subset \mathcal{X} \times \mathcal{A}$.

Theorem – Model Selection for RL/Planning. Let previous assumptions hold. Consider the BERMIN algorithm used with some $0 < a < 1, 0 < \delta \le 1$, and $(C_k)_{k>1}$ such that

$$S \triangleq \sum_{k>1} \exp\left(-\frac{(1-a)^2 a n}{16B^2 \tau (1+a)} C_k\right) < \infty$$

holds. Let \hat{k} be the index selected by BERMIN. Then, with probability at least $1 - \delta$,

$$||Q_{\hat{k}} - T^*Q_{\hat{k}}||_{\nu}^{2} \le 4(1+a) \min_{k \ge 1} \left\{ \frac{2}{(1-a)^{2}} ||Q_{k} - T^*Q_{k}||_{\nu}^{2} + \frac{3}{(1-a)^{2}} \bar{b}_{k} + 2C_{k} \right\} + \frac{96B^{2}\tau (1+a)}{(1-a)^{2}a n} \ln \left(\frac{4S}{\delta} \right).$$

Remember ...

Goal: Devise a procedure that selects the action-value function amongst $\{Q_1, \ldots, Q_P\}$ that has the smallest Bellman (optimality) error, i.e., choose $Q_{\hat{k}}$ with

$$\hat{k} = \underset{1 \le k \le P}{\operatorname{argmin}} \|Q_k - T^* Q_k\|_{\nu}^2.$$

Goal: Devise a procedure that selects the action-value function amongst $\{Q_1, \ldots, Q_P\}$ that has the smallest Bellman (optimality) error, i.e., choose Q_k with

$$\hat{k} = \underset{1 \le k \le P}{\operatorname{argmin}} \|Q_k - T^* Q_k\|_{\nu}^2.$$

Oracle-like inequality:

$$\|Q_{\hat{k}} - T^* Q_{\hat{k}}\|_{\nu}^{2} \leq 4(1+a) \min_{k \geq 1} \left\{ \frac{2}{(1-a)^{2}} \|Q_{k} - T^* Q_{k}\|_{\nu}^{2} + \frac{3}{(1-a)^{2}} \overline{b}_{k} + 2C_{k} \right\} + \frac{96B^{2}\tau (1+a)}{(1-a)^{2}a^{n}} \ln \left(\frac{4S}{\delta}\right)$$

$$C_k = \frac{32B^2\tau(1+a)}{(1-a)^2an}\ln(k)$$

Conclusion

What have been achieved?

- A complexity regularization-based approach for choosing a model with the minimum Bellman error.
- Oracle-like guarantee for the quality of the selected model.

Remaining concerns:

- How to generate the list of candidates Q_1, \ldots, Q_P efficiently?
- Efficient ways to estimate the excess error (i.e., \bar{b}_k).
- The relation of the Bellman error and the quality of the resulting policy.

Thank you!

Under certain assumptions, one can also prove the adaptivity.

How to estimate $\overline{b}_k(\delta)$? The problem of excess error estimation

Problem: Let $(X_1, Y_1), \ldots, (X_n, Y_n)$ be a stationary, time-homogeneous Markov chain taking values in $\mathcal{X} \times [-B, B]$ for $\mathcal{X} \subset \mathbb{R}^d$ and let the regression function f^* be defined by $f^*(x) = \mathbb{E}[Y_i|X_i = x]$. Given $\mathcal{D}_n = \{(X_1, Y_1), \ldots, (X_n, Y_n)\}$, the goal is to provide a good estimate \hat{f} of f^* and a high confidence upper bound on the excess-risk

$$\|\hat{f} - f^*\|^2 \triangleq \|\hat{f} - f^*\|_{2,\nu}^2$$
.

Assumptions (simplified):

- We are given a sequence of nested function spaces (\mathcal{F}_k) and $f^* \in \bigcup_{k>1} \mathcal{F}_k$.
- We are given an algorithm A, which, given \mathcal{F}_k , δ , and a dataset of n points, returns an estimate \hat{f}_k of f^* that belongs to \mathcal{F}_k .
- For any $k \geq 1$ there exist functions \mathfrak{A}_k and \mathfrak{B}_k such that for any $0 < \delta \leq 1$,

$$L_k \triangleq \|\hat{f}_k - f^*\|^2 \le \mathfrak{A}_k(f^*) + \mathfrak{B}_k(n, \delta, \tau)$$

holds with probability $1 - \delta$ and that the value $\mathfrak{B}_k(n, \delta, \tau)$, which possibly depends on the data, can be computed at any arguments (n, δ, τ) and hence is available to our algorithm. No similar assumption is made about function \mathfrak{A}_k .

```
Algorithm 2 REGRESS(\{\mathcal{D}_n, \mathcal{D}'_n\}, \{\mathcal{F}_1, \mathcal{F}_2, \dots\}, a_n, \tau, (C_k))
```

```
1: // Let \{(X'_t, Y'_t)\} be the input-output pairs in \mathcal{D}'_n: \mathcal{D}'_n = \{(X'_1, Y'_1), \dots, (X'_n, Y'_n)\}.
```

- 2: **for** k = 1, 2, ... **do**
- 3: $\hat{f}_k \leftarrow \mathsf{A}(\mathcal{D}_n, \mathcal{F}_k)$.

4:
$$\bar{\mathcal{R}}_k = \frac{1}{(1-a_n)^2} \frac{1}{n} \sum_{i=1}^n (\hat{f}_k(X_i') - Y_i')^2$$
.

- 5: end for
- 6: $\hat{k} \leftarrow \operatorname{argmin}_{k \geq 1} \left[\bar{\mathcal{R}}_k + C_k \right]$.
- 7: Choose β_1, β_2, \ldots such that $\beta_k \geq 0$ and $\sum_{k>1} \beta_k = 2/3$.
- 8: **return** $\hat{f}_{\hat{k}}$ and $\mathfrak{B}_{\hat{k}}(n, \cdot \beta_{\hat{k}}, \tau)$

Assumptions

Assumptions on the data:

- 1. $\mathcal{D}_n = \{(X_1, Y_1), \dots, (X_n, Y_n)\}, \mathcal{D}'_n = \{(X'_1, Y'_1), \dots, (X'_n, Y'_n)\}, X_i, X'_i \in \mathcal{X}, |Y_i|, |Y'_i| \leq B \text{ for some } B > 0.$
- 2. \mathcal{D}_n and \mathcal{D}'_n are independent.
- 3. (X'_i, Y'_i) is a time-homogenous, stationary Markov chain and its forgetting time is upper bounded by τ . We denote by ν the stationary distribution underlying (X'_i) and we let $\|\cdot\| = \|\cdot\|_{\nu}$.

Assumptions on (\mathcal{F}_k) and the regressor function f^* :

- 1. The function spaces $\mathcal{F}_1, \mathcal{F}_2, \ldots$ hold measurable, real-valued functions with domain \mathcal{X} bounded by B > 0.
- 2. The function $f^*(x) = \mathbb{E}[Y'_t|X'_t = x]$ belongs to $\bigcup_{k \geq 1} \mathcal{F}_k$.

Assumptions on algorithm A and functions \mathfrak{A}_k , \mathfrak{B}_k :

- 1. For any $n \geq 1$, $k \geq 1$, A returns a $\sigma(\mathcal{D}_n)$ -measurable function \hat{f}_k that belongs to \mathcal{F}_k and the error bound $L_k \triangleq \|\hat{f}_k f^*\|^2 \leq \mathfrak{A}_k(f^*) + \mathfrak{B}_k(n,\delta,\tau)$ holds for this function with probability $1-\delta$.
- 2. The functions \mathfrak{A}_k are such that for some C > 1, $\mathfrak{A}_k(f^*) \leq C \inf_{f \in \mathcal{F}_k} ||f f^*||^2$ holds for all $k \geq 1$ and $\mathfrak{A}_k(\cdot) \geq \mathfrak{A}_{k+1}(\cdot)$ holds for any $k \geq 1$.
- 3. The known function $\mathfrak{B}_k(n,\delta,\tau) \xrightarrow{n\to\infty} 0$ is a decreasing function of n and an increasing function of τ .

Theorem – Excess Error Estimation Assume that the conditions listed in the assumptions hold and the value of a_n given to the algorithm depends on n (e.g., $a_n = cn^{-1/2}$ with some c > 0). Assume that the penalty factors, $C_k = C_k(n)$, passed to the excess error estimation algorithm are such that for any fixed k, $C_k(n)$ is a strictly decreasing function of n and for any fixed n,

$$S_n = \sum_{k>1} \exp\left(-\frac{(1-a_n)^2 a_n n}{8B^2(1+a_n)\tau}C_k(n)\right) < \infty.$$

Let \hat{f} and \hat{b} be the pair returned by the algorithm. Then, the following hold: (A) For any $0 < \delta \le 1$,

$$\|\hat{f} - f^*\|^2 \le (1 - a_n^2) \min_{k \ge 1} \left[\frac{\|\hat{f}_k - f^*\|^2}{(1 - a_n)^2} + 2C_k(n) \right] + \frac{2a_n}{1 - a_n} L(f^*) + \frac{16B^2(1 + a_n)\tau \ln(\frac{2S_n}{\delta})}{(1 - a_n)a_n n}$$

holds with probability at least $1 - \delta$, where $L(f) = \mathbb{E}\left[(f(X_1') - Y_1')^2\right]$. (B) Fix $0 < \delta \le 1$. Then, there exists $n_0 = n_0(f^*, \delta) \ge 1$ such that for any $n \ge n_0$, the inequality $\|\hat{f} - f^*\|^2 \le \hat{b}(\delta)$ holds with probability at least $1 - \delta$.

Note that by selecting $a_n \propto n^{-1/2}$, Part (A) shows that the procedure's excess error above the oracle's performance is $O(n^{-1/2})$.