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Given some interaction data from a sequential decision-
making problem with a large state space, what is the best
possible decision!?

Not much a priori information about the problem.




¢ Approach:Value-based (estimate the optimal
action-value function, then follow its greedy

policy)

¢ For large state spaces,
is required.

¢ Challenge: How to choose the architecture of
the function approximator?




How to choose the architecture
of the function approximator?

¢ [Unknown] regularities of the
value function.

¢ Smoothness (various
notions)

® Sparsity

* Low-dimensional input
manifold

¢ Action-gap

¢ Number of samples




Solution:
Adaptive Algorithms

o A flexible algorithm: an algorithm
that has some tunable parameters and Adaptive
can deliver the optimal performance for Algorithms
a vast range of regularities - provided
that its parameters are chosen properly.

Model Selection

® Examples: Regularized LSPlI and Fitted Q-
Iteration algorithms, Tree-based FQI, NN-based
FQI, GPTD, etc.

A model selection algorithm: an
algorithm that tunes the parameters of a
flexible algorithm.




Regularization

F=JF

i>1

Fi={f:J(f) < wi} (g < pg < --+)

J(f) :some measure of complexity




Problem Setup



Discounted MDP: (X, A, P,R,~). X is a general state space. A has finite
number of actions. 0 < v < 1.

Action-value function for policy 7: Q™ (z,a) = E [Zfil VIR | Xy =2, A = a}

Optimal action-value function: Q*(z,a) = sup.. Q™ (z,a).
Bellman optimality operator: (I*Q)(z,a) = r(x,a)+7 [, max, Q(y,a’)P(dy|z, a).
Fixed-point property: Q" = T*Q*.

Norms: [|Ql, £ [y, 4 |Q(z, a)Pdv(z,a) and [QIl, = 5 XiLy |Q(Xs, A
for a particular set {(X;, A;)}7_;.




Given: A list of action-value functions Q1,Qs,...,Qp (with the possibility of
P > n, or even P = 00) and a dataset

Dn — {(X17 Ala R17 X{)? ceey (Xn7 Aﬂ? Rﬂ? X’I/’L)}
with

X; ~vy (1 =1,...,n), with vy as the fixed distribution over the
states.

— A; ~mp(+|X;) (mp: data-generating policy, i.e., “behavior” policy).

— Xj ~ P(| Xy, A;)

Goal: Devise a procedure that selects the action-value function amongst {Q+,...,Qp}
that has the smallest Bellman (optimality) error, i.e., choose ); with

k = argmin ||Qr — T" Q| .
1<k<P




Challenge

o

Q(Xi, 4;) — [R; +V£HQ§Q(X£,&’)]

o

1Q —-T*Q|: +E —Z T*Q(X;, Ai) — [Ri + ymax Q(X},a")]| | # Q@ —T*Q|lZ.

a’'c€ A

/

The variance term depends on the estimate (as opposed
to supervised learning scenarios)

We cannot directly use empirical Bellman error to get
an unbiased estimate of the true Bellman error.




What about estimating the effect of the

Bellman operator itself?!




What if we have a good estimation of Q ~ T*Qy for k = 1,...,P? Then

we may hope that [[Qg — Qrlly ~ ||Qr — T*Qr||,, and because ||Qr — Qrll, ~
|Qr — Qk|ln (LLN), we can use this ”surrogate” risk instead.




Not done yet!

What if we have a bad estimate of the Bellman operator?




1 . 5 ~ . -

1Qk — T Qull? < Qi — QulE+ 7" @k — Gl
—_—
%HQ’f_@kHi <b; (by REGRESS)




Algorithm 1 BERMIN({Q% }x=1,2,..., D(m,n), REGRESS(-), 0, a, B, T)
1: Split Dy, ) into two disjoint parts: Dy, ) = D;, U D,,.
1—a)?an
Choose (C) such that S = ), -, exp( 1éBQT)(1+a) Cr) < oo.
: Choose (0,) such that ) , -, 6 = /2.

cfork=1,2,...do
(Qk, bk) < REGRESS(D! ks 07.)

ek = 1o77 2 (x. ayeny (@k(X, A) = Qu(X, A))°
RRL < (1—1a)2 er + bx

end for

k argm1n,€>1 RR-+ Cy|

return %

2:
3

4

S5:
6:
7:
3:
9:

[
<

32B%7T(1 + a)
(1 —a)?an

Example: C} = In(k)
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Algorithm 1 BERMIN({Qk}k=1,2,...7 D(m,n)a REGRESS(.)v 57 a, B? T)

1:

A e A U TR Y

[
<

Split Dy, ,,) into two disjoint parts: Dy, ,) = D,, U D;,.
Choose (C},) such that S =3, - | exp(— 18}3_2?(2112) Cr) < 00,
Choose (9;,) such that >, o, 6, = /2.
fork=1,2,...do -

(Qk, bk) < REGRESS(D,, ., ;)

€L < |D”| Z(X A)eD”(Qk(X A) Qk(X7 A))2
R < ay ex + by

end for
k argm1nk>1 RE-+ Cy|

return %




Assumptions:

L.

. For each k and for any 0 < &, < 1, (Qk,bx) = REGRESS(D’

m, k>’
o (D’ )-measurable, b, € [0,4B%] and ||Qr — T*Qw||> < by holds with
probability at least 1 — ¢..

. For (X;,A;,Ri, X!) € D"

The data set D)) = {(X1, A1, R1,X7),...,(Xn, An, Ry, X))} is generated
as described and the time-homogeneous Markov chain X, X5, ..., X,, uni-
formly quickly forgets its past with a forgetting time 7.

. The functions Qi, Qr, T*Qr (k > 1) are bounded by a deterministic

quantity B > 0.

. The functions Qi (k > 1) are deterministic.

0;.) are

7 the distribution of (Xj;, A;) is v given D, :
P{(X;,A;) e UD, } =v(U) for any measurable set U C X x A.



Theorem — Model Selection for RL/Planning. Let previous assumptions
hold. Consider the BERMIN algorithm used with some 0 < a < 1,0 <0 <1,
and (Cg)g>1 such that

A B (1—a)?an
S_ZGXP( 16327(1+a)0k> =

k>1

holds. Let k be the index selected by BERMIN. Then, with probability at least
1 —09,

Qs — T*Q;|I7 <

| 2 o 3 06827 (1 +a) . [4S
4<1+a>rkn§?{(1_a)2 1Qr—T Qkuy+(1_a)25k+zck}+ Tt 1n<7>.




Remember ...



Goal: Devise a procedure that selects the action-value function amongst {Q1,...,Qp}
that has the smallest Bellman (optimality) error, i.e., choose @; with

k= argmin ||Qr — T*Qxl|? .
1<k<P




Goal: Devise a procedure that selects the action-value function amongst {Q1,...,Qp}
that has the smallest Bellman (optimality) error, i.e., choose @; with

k= argmin ||Qr — T*Qxl|? .
1<k<P

Oracle-like inequality:

Qs — T*Q; ||, <

4(1—|—a)1gl>ilil{(12a)2[QkT*Qk,2,J e @@} 961192_a a)1n<4(;9)

32B%7(1 + a)
(1 —a)?an

Cr = In(k)




Conclusion

What have been achieved?

e A complexity regularization-based approach for choosing a model with the
minimum Bellman error.

e Oracle-like guarantee for the quality of the selected model.
Remaining concerns:

e How to generate the list of candidates ()1, ..., Q) p efficiently?

o Efficient ways to estimate the excess error (i.e., b).

e The relation of the Bellman error and the quality of the resulting policy.




Thank you!



Under certain assumptions, one can also prove the

adaptivity.




How to estimate by ()7

The problem of excess error estimation




Problem: Let (X1,Y7),...,(X,,Y,) be a stationary, time-homogeneous Markov
chain taking values in X x [~ B, B] for X C R% and let the regression function f*

be defined by f*(x) = E |Y;|X; = x|. Given D,, = {(X1,Y1),...,(Xn,Yn)}, the

goal is to provide a good estimate f of * and a high confidence upper bound

on the excess-risk

If = 1220 = 17115,
Assumptions (simplified):

e We are given a sequence of nested function spaces (Fy) and f* € Up>1Fk.

e We are given an algorithm A, which, given F, 0, and a dataset of n points,
returns an estimate fp of f* that belongs to Fj.

e For any k£ > 1 there exist functions 2, and *B;. such that for any 0 < 0 < 1,

Ly = ka — f*HQ < Qlk(f*) T %k(n757 7-)

holds with probability 1 — ¢ and that the value B (n,d, 7), which possibly
depends on the data, can be computed at any arguments (n,d,7) and
hence is available to our algorithm. No similar assumption is made about
function Ay.




Algorithm 2 REGRESS({D,,D.},{Fi,Fa,... } an, T, (Ci))
. // Let {(X{,Y{)} be the input-output pairs in D,,: D;, = {(X1,Y7),...,(X,,Y,)}.
: for k=1,2,... do

fk <— A(Dn,Fk) A

ﬁk — m % :L:l(fk(Xz/) - Yq;/)Q-

ko argming - [7?;.C + C’k].
: Choose 31, B2, ... such that 8 > 0 and Zk21 Br = 2/3.

1
2
3
4:
5: end for
6
7
8: return fk and B;(n,-B;,7)




Assumptions

Assumptions on the data:
1. D, ={(X1,Y1),...,(Xn,Yn)}, D, ={(X,Y]),..., (X, Y}, X;, X €
X, Y|, |Y/!| < B for some B > 0.
2. D,, and D, are independent.

3. (X!,Y/) is a time-homogenous, stationary Markov chain and its for-

getting time is upper bounded by 7. We denote by v the stationary
distribution underlying (X/) and we let ||-|| = ||-||

7

Assumptions on (Fy) and the regressor function f*:

1. The function spaces Fi, Fa,... hold measurable, real-valued func-
tions with domain X bounded by B > 0.

2. The function f*(x) = E[Y/|X{ = z] belongs to Ux>1F%.

Assumptions on algorithm A and functions 21, B;.:

1. For any n > 1, k > 1, A returns a o(D,,)-measurable function fj

that belongs to Fj and the error bound Lj = ka — 1?2 <A (f*)+
Bi(n,d,7) holds for this function with probability 1 — 4.

. The functions %A, are such that for some C' > 1, A (f*) < Cinfscr, || f—
f*|I? holds for all k > 1 and () > Ap41(-) holds for any k > 1.

. The known function By (n,d,7) —— 0 is a decreasing function of

n and an increasing function of 7.




Theorem — Excess Error Estimation Assume that the conditions listed
in the assumptions hold and the value of a,, given to the algorithm depends
on n (e.g., a, = en~1/? with some ¢ > 0). Assume that the penalty factors,
Cr = Cr(n), passed to the excess error estimation algorithm are such that for
any fixed k, Ci(n) is a strictly decreasing function of n and for any fixed n,

(1—an)?a,n
Sp = Zexp( SB2(1+ a.)r C’k(n)) < 00.

k>1

Let f and b be the pair returned by the algorithm. Then, the following hold:
(A) For any 0 < § <1,

~ 2 ] 5 fk —
_ f* <(1 — ]
f f —< a’n) Il?zlrll (1 L an)2

+ QCk (n)

16B2(1 + ay,)7In(%)

i (1 —ap)apn

holds with probability at least 1 — d, where L(f) = E [(f(X]) — Y{)?].
(B) Fix 0 < 6 < 1. Then, there exists ng = ng(f*,9) > 1 such that for any

A 2 A
n > ng, the inequality H f— f*ll <b(d) holds with probability at least 1 — §.

Note that by selecting a,, oc n~1/2, Part (A) shows that the procedure’s
excess error above the oracle’s performance is O(n=1/2).







