Efficient Estimation of N -point Spatial Statistics

- n-point correlation functions give the probability of points occurring in a given configuration
- A general, powerful spatial statistic, capable of fully

$d V_{1}$
 characterizing any distribution
- Previously used to understand:
- Hierarchical structure formation
- Gaussianity of the early universe
- Models of galaxy mass bias

Computational Task

- Estimate n-point functions by counting n-tuples of points satisfying some distance constraints - $O\left(N^{n}\right)$ directly, per set of constraints
- Need many sets of constraints - repeat computation M times
- Need to estimate variance - repeat the computation for J subsamples
- Need large n (at least 3) to accurately distinguish distributions SDSS (millions of points) Virgo Sim. (billions of points)

Overall complexity:
$O\left(J \cdot M \cdot N^{n}\right)$

Efficient Computation

- Build kd-trees on the data
- Compare n nodes, prune if distance bounds allow

Share information among different matches

- overcome dependence on M
$\left\{\begin{array}{l}\text { incorporate jackknife }\end{array}\right.$
- overcome dependence on J

$k d$-tree Level $2 k d$-tree Level 4

Preliminary Results \& Ongoing Work

	Multi-bandwidth new	Single bandwidth [Moore, et al, 200I]	Naive $-O\left(\mathrm{~N}^{n}\right)$ (estimated)
2 point cor. 100 matchers	4.96 s	352.8 s	$2.0 \times 10^{7} \mathrm{~s}$
3 point cor. 243 matchers	13.58 s	891.6 s	$1.1 \times 10^{11} \mathrm{~s}$
4 point cor. 216 matchers	503.6 s	14530 s	$2.3 \times 10^{14} \mathrm{~s}$

10^{6} mock galaxies

- Heterogeneous Architectures: perform leaf-leaf computations very efficiently on GPU
- Massively Parallel tree code: scales to thousands of processors

