Efficient Estimation of N-point Spatial Statistics

- n-point correlation functions give the probability of points occurring in a given configuration
- A general, powerful spatial statistic, capable of fully characterizing any distribution
- Previously used to understand:
 Hierarchical structure formation
 Gaussianity of the early universe
 Models of galaxy mass bias

Computational Task

- Estimate n-point functions by counting *n*-tuples of points satisfying some distance constraints $O(N^n)$ directly, per set of constraints
- Need many sets of constraints repeat computation *M* times
- Need to estimate variance repeat the computation for J subsamples
- Need large *n* (at least 3) to accurately distinguish distributions

SDSS (millions of points) Virgo Sim. (billions of points)

Overall complexity:

 $O(J \cdot M \cdot N^n)$

Efficient Computation

- Build kd-trees on the data
- Compare *n* nodes, prune if distance bounds allow

Share information among different matchers - overcome dependence on M

> Incorporate jackknife resampling directly

- overcome dependence on J

kd-tree Level 2 kd-tree Level 4

prune if $d > r_1$

Preliminary Results & Ongoing Work

	Multi-bandwidth ^{new}	Single bandwidth [Moore, et al, 2001]	Naive - O(N ⁿ) (estimated)
2 point cor. 100 matchers	4.96 s	352.8 s	2.0 x 10 ⁷ s
3 point cor. 243 matchers	13.58 s	891.6 s	1.1 x 10 ¹¹ s
4 point cor. 216 matchers	503.6 s	14530 s	2.3 x 10 ¹⁴ s

10⁶ mock galaxies

- Heterogeneous Architectures: perform leaf-leaf computations very efficiently on GPU
- Massively Parallel tree code: scales to thousands of processors